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Bearing is a crucial component of industrial equipment, since any fault occurring in this system usually affects the functionality of
the whole machine. To manage this problem, some currently available technologies enable the remote prognosis and diagnosis of
bearings, before that faults compromise the system function and safety, respectively. A system for the in-service monitoring of
bearing, to detect any inner fault or damage of components andmaterial, allows preventing undesiredmachine stops. Moreover, it
even helps in performing an out-monitoring action, aimed at revealing any anomalous behaviour of the system hosting bearings,
through their dynamic response.%e in-monitoring can be based on the vibration signal measurement and exploited to detect the
presence of defects in material. In this paper, the orthogonal empirical mode decomposition is analysed and tested to investigate
how it could be effectively exploited in a lean in-service monitoring operation and remote diagnosis. %e proposed approach is
validated on a test rig, where an elementary power transmission line was set up. %e activity highlights some main properties and
practical issues of the technological implementation, as well as the precision of the Orthogonal Empirical Mode Decomposition, as
a compact approach for an effective detection of bearing faults in operation.

1. Introduction

%e roller and ball bearings are crucial elements of rotating
machinery, since they affect both the critical speeds and the
dynamic stability of the supported shaft [1]. Failures oc-
curring in the bearing system not only decrease its own life
but even affect the performance of the whole rotor system in
service. Unexpected overloading conditions, inadequate
lubrication, or ineffective sealing [2] induce a wrong dy-
namic behaviour and may cause machine breakdowns,
stops, and even dangerous accidents [3]. An effective fault
diagnosis in rolling-element bearings assures both the sys-
tem and workspace safety, as well as a continuous efficiency
in production. Damage occurs in rolling elements, inner and
outer raceways, and cages. %ose different failures motivate
the typical occurrence of a complex vibration signal which
can be detected, monitored, and analysed. A series of impact
impulses, for instance, is exhibited, when the rolling element
impacts a localized fault [4, 5]. Luckily, the vibration signal
induced by material damage arises at different frequencies.

%erefore, dynamic analysis of monitored vibration can be
exploited to perform the bearing diagnosis and even to
localize the defect inside the damaged component [6].

%ree main techniques have been assessed to perform
the condition monitoring, based on the time-domain, the
frequency-domain, and the time-frequency analyses [2, 6].
%e first approach exploits the statistical interpretation of
the vibration signal in time, to detect faults, which change
some typical parameters of dynamic response [7–9]. %e
frequency-domain analysis is based on the elaboration of
spectral contents of signal, as in the Fast Fourier Transform
(FFT) [10]. %e high frequency resonance analysis, referred
to as “envelope analysis,” identifies simultaneously the
bearing fault and the affected element [11]. %e envelope
analysis has been widely applied, since 1974 [12], even in
presence of pervasive noise, since it allows identifying the
fault characteristic frequency, within the spectrum of vi-
bration signal [13–15].

%e early stage of defect nucleation is rather difficult to
be detected through the first two approaches above
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described, by monitoring the vibration signal, because of
interference noise [16, 17]. %e approach based on the
combined time-frequency analysis looks more effective,
because the interference noise is reduced, since this method
works only on the frequency bandwidth of signal. Typical
tools of the time-frequency analysis developed in the lit-
erature are the short-time Fourier transform, the wavelet
transform [18–20], the spectral kurtosis [6, 21–23], and the
Hilbert–Huang transform (HHT) [24–27].

%e Empirical Mode Decomposition (EMD) is a self-
adaptive time-frequency method, which detects the over-
lapping in time and in frequency by decomposing the
nonstationary dynamic signal into several so-called “In-
trinsic Mode Functions” (IMFs) [28]. %is characteristic has
been widely exploited in several fault diagnosis techniques
[28–33]. Nevertheless, some drawbacks are still present, such
as border effect evidence, unreliable stopping criterion
[34, 35], and mode mixing. %ose issues motivated a further
development of the research activity, leading to some new
refined approaches as the “Ensemble Empirical Mode De-
composition” (EEMD) [36, 37]. %is method decomposes
the dynamic signal by resorting to some noise assisted
analysis technology [38–40], but it does not assure a precise
identification of the IMFs [34]. %erefore, improving the
EEMD has been performed by exploiting some statistical
features [41]. Basically, the vibration signal is distinguished
into noise, signal, and trend [42].

Particularly, the “Generalized Empirical Mode Decom-
position” (GEMD) has been developed to comprehend the
time-frequency-energy analysis and the features of the EMD
and of its modified versions [43], while in some other case, the
optimum frequency bandwas focalized [44].%e “Orthogonal
Empirical Mode Decomposition” (OEMD) consists in a new
procedure to decompose into IMFs, the monitored signals
[45]. Multi-fault bearings have been tested in [46], and a new
concept of EMD has been developed to select the most
suitable IMFs to characterize the system faults.

According to the literature, the OEMD is fairly simply,
user friendly, easy to be implemented, sufficiently fast, and
precise, as well as easily implementable into a condition
monitoring. %ose properties are checked in a test case, to
define the feasibility of exploiting this approach, in a
complete system, especially when a smart monitoring based
on a remote action of diagnosis and prognosis must be
performed. %e OEMD technique is here applied to a
specific industrial case, to define the main needs of the
monitoring system, and to check its effectiveness while
testing. %e experimental evidences confirm the effective-
ness of the proposed approach, especially when results are
compared with those of the envelope method, for a pre-
liminary trade-off analysis of the in-monitoring system
layout, as is done in the Model Based Systems Engineering
[47]. Fulfilling requirements of the Industry 4.0 initiative, by
introducing a bearing condition monitoring system in a
simple and effective way is mandatory. Monitoring and data
processing are performed to investigate the effectiveness of
the proposed approach, and the suitability to be integrated
within an industrial monitoring system, applied to several
bearings, is explored.

2. Materials and Methods

To design the in-monitoring system, a preliminary de-
scription of the typical algorithms and methods applied to
bearing dynamic signal is required, to develop and apply the
Orthogonal Empirical Mode Decomposition.

2.1.  e Hilbert–Huang Transform and the Empirical Mode
Decomposition. Decomposing the bearing dynamic signal to
define a series of Intrinsic Mode Functions (IMFs) and
applying the Hilbert Transform is suggested in the time-
frequency analysis. To describe this approach, it must be
noticed that the IMFs satisfy two requirements; i.e., in the
whole set of data, the difference between the number of
extrema and the number of zero crossings must be equal or
at least differ by one, and at any point of this function, the
difference between the envelope of local maxima and of local
minima must be null [48].

In the context of bearing dynamic analysis, the IMF
should be considered as the dynamic signal, being charac-
terized in amplitude and frequency.%emajority of dynamic
signals does not comply perfectly with the requirements of
the IMFs. %erefore, if one just applies the Hilbert Trans-
form, an accurate description of the instantaneous frequency
of the bearing signal cannot be assured. However, it is
possible decomposing first the signal into a sum of IMFs and
then transforming the result through the Hilbert Transform.

Since a dynamic signal very seldom looks like an IMF,
Huang et al. [24–26] proposed an adaptive approach to
decompose the signal into IMFs because the decomposition
is performed on the acquired dynamic signal, to interpret
each mode separately as an IMF. Particularly, a generic
signal, h1(t), is interpreted as the superposition of the ac-
quired dynamic signal, x(t), and an additional signal, m(t),
is expressively added, to fulfil the requirements to be an IMF.
When a first mode is considered, that sum is

h1k(t) � x(t) + m1(t), (1)

where k is the number of iterations required to complete the
signal decomposition.%erefore, when function h1k(t) fulfils
the requirements abovementioned to be an IMF, it is
classified as the first IMF as follows:

c1(t) � h1k(t). (2)

To reach that result, an iterative process is needed. %e
amplitude and frequency of the signal are not analysed
separately, but the signal is taken as is. %e iterative process
uses different possible IMFs trying to minimize a defined
stopping criterion. Usually, as in this paper, the standard
deviation between two consecutive iterations, SDk, is used
as a criterion and kept within a threshold to stop the process:

SDk �
􏽐

T
t�0 hk− 1(t) − hk(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏽐
T
t�0h

2
k− 1

. (3)

%e first IMF c1(t) usually contains the highest fre-
quencies present in the dynamic signal. A residual content is
found as r1(t):
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r1(t) � x1(t) − c1(t). (4)

%e contribution of the remaining lowest frequencies is
treated as a new signal. It is subjected to iteration process to
extract the second IMF c2(t), and the procedure goes on,
step by step, until that the whole signal is decomposed. %is
process is interrupted, when the last residual signal rn(t)

becomes a monotonic function, a constant or an extreme
function.

%e above-described decomposition of the acquired
dynamic signal into n modes is finally represented as

x(t) � 􏽘
N

j�0
cj(t) + rn(t). (5)

For each mode, it is possible to calculate the associated
frequency.

2.2. Orthogonal Empirical Mode Decomposition. %e Em-
pirical Mode Decomposition (EMD) allows decomposing
every dynamic signal into a finite number n of IMFs, as in
equation (5). %e energy associated to the oscillation modes
of that decomposition is even found. For instance, when the
signal x(t) is decomposed into two IMFs:

x(t) � c1(t) + c2(t), (6)

the total energy associated is [27]

Ex � 􏽚
T

0
x
2
(t)dt, (7)

where T is the total duration of signal.
If the decomposition is performed with a negligible

residual contribution r(t), the energy can be calculated as a
sum of the energies associated to the IMFs:

Ex � E1 + E2 � 􏽚
T

0
c1(t)( 􏼁

2dt + 􏽚
T

0
c2(t)( 􏼁

2dt. (8)

According to equation (5), it can be even written as

Ex � 􏽚
T

0
c1(t) + c2(t)( 􏼁

2dt. (9)

Developing the content of integral in equation (9), it
might be realized that equations (8) and (9) are equal only
when the term with the product of functions c1(t)c2(t) is
null. %is is possible, when the two IMFs are orthogonal.
In this case, the two IMFs completely decompose the
dynamic signal and precisely represent the energy asso-
ciated. Similarly, this deduction can be applied to the n
IMFs.

It can be noticed that the orthogonality of IMFs is
theoretically demonstrated, but in practice it is never per-
fectly found, if the IMFs are identified by means of enve-
lopes, obtained by cubic spline functions. %is leads to an
apparent loss of energy, when it is expressed by resorting to
the IMFs. To investigate the real limitations of this method, a
deeper investigation on the orthogonality of the IMFs is
useful. Equation (5) can be expressed assuming that the
residual signal r(t) is an additional IMF:

x(t) � 􏽘
n+1

j�1
cj(t). (10)

When the energy is calculated, the square value of signal
is introduced:

x
2
(t) � 􏽘

n+1

j�1
c
2
j(t) + 2 􏽘

n+1

j�1
􏽘

n+1

k�1
cj(t)ck(t). (11)

If the orthogonality of modes holds, products at the right
hand of equation (11) are null. To evaluate the degree of
orthogonality exhibited by the system, an index can be
defined:

OI � 􏽘
T

t�0

􏽐
n+1
j�1􏽐

n+1
k�1cj(t)ck(t)

x2(t)
. (12)

It is referred to as orthogonality index (OI). Typical
values span from 10− 2 to 10− 3, when the energy lost by
approximating the real content of the acquired signal by the
IMFs is the minimum possible. If a lack of orthogonality is
foreseen in the process, the symbol cj(t) can be used to
describe a generic nonorthogonal IMF. Whenever the first
IMF is orthogonal and might be represented as OIMF
(Orthogonal IMF), it is never assured that the second IMF is
orthogonal to the first one. %erefore, when the second IMF
is defined, at the end of the iterative process, it must be
represented as

c2(t) � c2(t) − β2,1c1(t), (13)

where β2,1 measures the percentage of c1(t) leading to
overlapping between the two IMFs. Consequently, β2,1 is
defined as orthogonality coefficient between c2(t) and c1(t).
When this rationale is extended to the signal modes,

cj+1(t) � cj+1(t) − 􏽘

j

i�1
βj+1,ici(t), (14)

where ck(t) is the generic OIMF, with k≤ j, which is or-
thogonal to all the other ones, when

􏽘

T

t�0
cj+1(t)ck(t) � 0. (15)

Equations (14) and (15) can be used to formulate the
orthogonality coefficient as

βj+1,i �
􏽐

T
t�0cj+1(t)ci(t)

􏽐
T
t�0c

2
i (t)

. (16)

%erefore, the acquired dynamic signal can be composed
by n IMFs and correlated as follows:

x(t) � 􏽘
n

j�1
cj(t) 􏽘

n

i�j

βi,j
⎛⎝ ⎞⎠ + rn(t). (17)

Introducing aj � 􏽐
n
i�jβi,j, it becomes
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x(t) � 􏽘
n

j�1
ajcj(t) + rn(t) � 􏽘

n

j�1
c
∗
j (t) + rn(t). (18)

Equation (18) describes the acquired dynamic signal as
the sum of n OIMFs, c∗j (t), and of residual signal, rn(t). %e
extraction of the IMFs has not been modified but resorting
to orthogonal IMFs enhances this process. %e OEMD as-
sures the orthogonality of the IMFs, adding a powerful
property to the decomposition of the monitored signal, but
even preserves all the intrinsic characteristics of the IMFs.

2.3. Experimental Test Rig. Once that a protocol to process
the dynamic signal is defined, by introducing the OEMD
method, a test rig has been designed and built to test the
approach, but even to analyse its practical implementation.
Some main issues have been carefully considered:

(i) To set up all the required conditions for establishing
a suitable analogy between a typical industrial
equipment and this test rig

(ii) To implement a sufficiently wide variety of testing
conditions even by resorting to a combination of
different sources of vibration

(iii) To keep the assembly sufficiently simple to assure a
repeatable and easy mounting

(iv) To design a structure to be tuneable through a
known set of parameters

%e test rig shown in Figure 1 reproduces at lower scale a
quite typical industrial system. It consists in a power
transmission line supported by rolling-element bearings and
equipped with pulleys coupled by belts. Properties are de-
scribed in Table 1.

%e acquisition system is composed by two acceler-
ometers PCB 308B ICP and a signal analyser DIFA-APB 200
(Table 2).

%e frequencies of bearing defects are known in the
literature. %ey depend on the defect itself, on the bearing
type and angular speed [48]. %ey are classified and then
used even in some industrial applications [49] to detect
damages and predict the residual life of components. Some
typical values of frequency are defined as

BPFO �
N

2
ω 1 −

d

D
cos θ􏼠 􏼡,

BPFI �
N

2
ω 1 +

d

D
cos θ􏼠 􏼡,

BSF �
N

2
ω 1 +

d2

D2 cos
2 θ􏼠 􏼡,

FTF �
1
2
ω 1 −

d

D
cos θ􏼠 􏼡,

(19)

where N is the number of rolling elements inside the
bearing, ω the spin speed, d the diameter of rolling element,
D the distribution diameter of the rolling elements, i.e., the

average between the outer and inner diameter of bearing,
and θ the contact angle between the rolling element and the
raceways. %e acronym BPFO stands for Ball Passing
Frequency Outer, BPFI for Ball Passing Frequency Inner,
BSF for Ball Spin Frequency, and FTF for Fundamental
Train Frequency.

When the damage nucleates and the fault arises, a series
of impact impulses appears in the vibration spectrum of the
machinery, as spikes in the signal, at one or evenmore values
of frequency or of integer multiples of those. %ese marks
include a defined information related to the type and lo-
cation of damage. Considering the ball raceways (outer and
inner), if a little crack appears, the frequency affected by
irregularities in the spectrum of vibration is the BPFO
(BPFI) or its fundamentals. If the size of defect increases,
some lateral bands appear just in correspondence of that
frequency.%eir amplitude is related to the severity of defect.
%e spectrum becomes bevelled (spectrum comb). Con-
sidering defects on the balls, the affected frequency values
are BSF and FTF and their fundamentals. %e more the balls
damaged, the higher the number of BSF fundamentals
produced.

3. Results and Discussion

A preliminary validation of the orthogonal empirical mode
decomposition (OEMD) method is performed by pro-
gramming a dedicated MATLAB® code, and then results are
compared with the data acquired on the test rig. When the
shaft of test rig rotates at the typical spin speed of about
960 rpm, the synchronous signal is set at 16Hz, and the
characteristics frequencies of that bearing are 86Hz (BPFO)
and 57Hz (BPFI).

Monitoring is performed by two accelerometers, being
one (channel 1) aligned with the shaft axis and the other one
(channel 2) along the radial direction of the monitored
bearing. %e monitoring activity includes some steps. A
preliminary data acquisition in time is performed through
channels 1 and 2, respectively. %e data processing then
starts and the OEMD method is applied. %e OIMFs are
extracted, and then the Fast Fourier Transform is applied to
the interpreted signal based on the OIMFs. Finally, the data
analysis is completed for the diagnosis of the system failures.

1

10

11

3 5 8

7

2
9

6

4

Figure 1: Test rig. 1, electric motor; 2, countershaft; 3, driving
pulley; 4, driven pulley; 5, trapezoidal belt; 6, pretensioning system;
7, undamaged bearing; 8, faulty bearing; 9, positioning slide; 10,
fixing rail for the electric motor; 11, platform. Red squares rep-
resent the two accelerometers mounted one vertical and one along
the axis of the shaft.
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Firstly, the bearings without defects are tested, and then a
defect is created in the outer and in the inner ring.

In Figure 2, a comparison of the harmonic content of the
same bearing without and with defects is reported in order to
highlight the very little difference and the necessity to use a
detailed technique for understanding the presence of a
defect.

In order to create defects, a trace inside the outer
raceway was made by means of a tool with a sharp edge. By
controlling the pressure on the tool, the trace can be created
with different depths. %e so-created defects can be easily
characterized and measured. Tests were performed at
different dimensions of the same defect, so starting with an
invisible defect came to an important defect (order of 1/
10mm). %e same procedure was used for damaging the
inner ring.

3.1. Detection of Damage in the Outer Raceway. To test the
monitoring system, some faults are intentionally created on
bearings. A specific case study is here described as an ex-
ample of the activity. A first defect is introduced in the outer
raceway of monitored bearings with a dimension of 20 μm.
%e rotor system is then operated, and dynamic signals
acquired on both the monitored channels. Each signal vector
corresponding to a single channel is processed, by resorting
to the OEMDmethod above described. Results are processed
by the Fast Fourier Transform (FFT), which apply to each
OIMF. As Table 3 shows, the OEMDmethod is able to detect
the abovementioned characteristic frequency and some of its
harmonics, by processing the data of both channels.

Figures 3 and 4 show some examples of the FFT ob-
tained from the OIMFs. It can be noticed how evident is the

Table 1: Test rig main characteristics.

Electric motor Asynchronous three-phase
220V 3.4 A Δ
380V 1.95 A Y
cosφ� 0.79
P� 0.75 kW
ω� 1400 rpm

Bearings SKF YAR 206-2F
SY506M housing

Driving pulley ϕi � 51mm
ϕe � 78mm

Driven pulley ϕi � 77mm
ϕe � 106mm

First test rig natural frequencies 1° mode 300Hz, 2° mode 1850Hz, 3° mode 5800Hz

Table 2: Accelerometers’ main characteristics.

Voltage sensitivity 100mV/g
Frequency range ±5% 1÷ 3000Hz
Frequency range ±10% 0.7÷ 6500Hz
Resonant frequency ≥22 kHz
Amplitude range 50± g pk
Resolution (broadband) 0.001 g rms
Temperature range − 65÷ 250°F
Amplitude linearity ±1%
Sampling frequency 25600Hz

0 500 1000 1500 2000 2500 3000 3500
Frequency (Hz)

Bearing without defect
Bearing with defect

10–3

10–4

10–5

10–6

10–7

10–8

A
m

pl
itu

de
 (m

/s
2 )

Figure 2: Harmonic content of the signals of bearing without and with
defect.

Table 3: Detection of the defect in the outer raceway (BPFO), based
on the data processing of channels 1 and 2; list of detected
harmonics.

BPFO and its harmonics:
channel 1

BPFO and its harmonics:
channel 2

1st OIMF 26×BPFO 1st OIMF 14×BPFO
24×BPFO 12×BPFO
21×BPFO
14×BPFO

2nd OIMF 14×BPFO 2nd OIMF 14×BPFO
10×BPFO 12×BPFO

3rd OIMF 10×BPFO 3rd OIMF 14×BPFO
8×BPFO 12×BPFO
5×BPFO 8×BPFO

6×BPFO
5×BPFO

4th OIMF 5×BPFO 4th OIMF 6×BPFO
3×BPFO 5×BPFO

3×BPFO
5th OIMF 3×BPFO 5th OIMF 3×BPFO

2×BPFO 2×BPFO
BPFO

6th OIMF BPFO 6th OIMF BPFO
7th OIMF BPFO 7th OIMF BPFO

Shock and Vibration 5



spike associated to the characteristic frequency of defect
and of its harmonics.

As results demonstrate, the OEMD detects the charac-
teristic frequency of the induced defect on the outer ring,
although its dimension is fairly small, if compared to other
more evident damages [50]. %e detection of super-
harmonics of the base frequency improve the capability of
detection, resolution of detected frequency is suitable for a
precise detection, and moreover those results looked re-
peatable as the acquisition is performed several times within
the same experimental campaign.

3.2. Detection of Defect in the Inner Raceway. %e approach
above described is applied to detect a defect induced in the
inner raceway. In this case, the inner ring rotates together
with the shaft. %e defect is again artificially created, re-
specting the small dimensions to describe the incipient
damage, with same size of that induced in the outer ring. As
done for the outer ring, the acquired signal is decomposed
into IMFs and residual signal, by the EMD method. %e
orthogonalization process is then applied.

Table 4 demonstrates that the OEMD method is able to
detect the characteristic frequency of defect and related
harmonics. Particularly, peaks in Figures 5 and 6 identify the
defect.

3.3. Trade-Off of Defect Detection Approaches. %e OEMD
and the envelope methods are both applied to the test rig
operation, even on dynamic signals acquired when the
bearing SKF 1205 ETN9 is tested. %e inner and outer
raceways have been treated to simulate three levels of
damage (20 μm, 60 μm, 100 μm). Dynamic signals are ac-
quired along three directions by three-axes accelerometers.
A comparison between the two methods can be performed.
%ey both detect the faults introduced within the com-
ponent material, despite the size quite small. At least some
harmonics, multiple of the base one related with the fault
induced, are found. Practically, the number of evident
peaks is similar in the spectra elaborated by the two
abovementioned methods. A better recognition of fault in
both those cases is observed on the outer raceway, i.e., on
the fixed and bigger ring. Nevertheless, even faults in the

inner raceway are successfully detected. In terms of de-
tection capabilities, both the envelope and OEMDmethods
are effective. %e brightness of detection evidence is better
in the OEMD because of the signal amplitude. In Figure 7,
the comparison between results provided by the two
methods is shown for the case of defect equal to 20 μm on
the inner and outer rings; it can be noticed that the
maximum value of dynamic signal at inner raceway is
smaller, while at outer raceway is larger. %e envelope and
OEMD methods show a different response, depending on
the type of fault. Results obtained through the OEMD
method exhibit an average amplitude higher of 19% than
the signal of the envelope method, considering the inner
raceway and up to 29.5% higher for the outer raceway, for
given fault.

%e OEMDmethod looks effective in detection, compact
in programming since the code can be easily stored and
operated by a light computing device, the evidences of faults
are bright because of the harmonics detected and of their
amplitude, slightly larger than in the envelope method. %e
OEMDmethod is sensitive for incipient faults, even of small

10 BPFO 14 BPFO×10–3

0 5 10 15 20 25 30

0.5
1

0m
/s

2

Harmonics of BPFO

Figure 3: Defect on the outer raceway: channel 1, 2nd OIMF related
to the BPFO.

12 BPFO 14 BPFO×10–3

0.5
1

0m
/s

2

0 5 10 15 20 25 30
Harmonics of BPFO

Figure 4: Defect on the outer raceway: channel 2, 2nd OIMF related
to the BPFO.

Table 4: Detection of the defect in the inner raceway (BPFI), based
on the data processing of channels 1 and 2; list of detected
harmonics.

BPFI and its harmonics:
channel 1

BPFI and its harmonics:
channel 2

1st OIMF 21×BPFI 1st OIMF 20×BPFI
18×BPFI

19×BPFI13×BPFI
10×BPFI

2nd OIMF 15×BPFI 2nd OIMF 11×BPFI
14×BPFI 10×BPFI
13×BPFI 9×BPFI
12×BPFI
10×BPFI

4th OIMF 5×BPFI 3rd OIMF 9×BPFI
4×BPFI 7×BPFI
8×BPFI
6×BPFI
5×BPFI

7th OIMF BPFI 4th OIMF 9×BPFI
7th OIMF BPFI

12 BPFI
13 BPFI

15 BPFI×10–3

m
/s

2 5
0

0 10 20 30 40 50 60 70
Harmonics of BPFI

Figure 5: Defect on the inner race: channel 1, 2nd OIMF, referred
to the BPFI.

19 BPFI 20 BPFI

m
/s

2

0.01
0.02

0
0 10 20 30 40 50 60 70

Harmonics of BPFI

Figure 6: Defect on the inner race: channel 2, 1st OIMF, referred to
the BPFI.
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size like 20 μm. Signal-to-noise ratio is better for the OEMD
method, and thus a higher capability of identifying the defect
in presence of higher environmental noise has been found.
%e envelope method offers a lower accuracy for a smaller
computational effort. However, for the in-monitoring ser-
vice, the computational effort and time of the OEMD are
largely compatible with the required operation.

4. Conclusion

Designing a lean in-monitoring system to early detect faults
in inner and outer raceways of bearing is a current demand
of industry. Technologies to perform an effective data ac-
quisition and sensors to detect dynamic signals are currently
available. %e effectiveness of the damage detection depends
on the data processing, both in terms of management and
algorithms for the identification of faults. %is issue moti-
vates an investigation about the effectiveness of some di-
agnosis methods applied to the dynamic signal monitored
on bearing as the orthogonal empirical mode decomposition
(OEMD) method and the envelope method, both imple-
menting a time-frequency analysis.

%is study practically tested in a real case those methods
and proposes a trade-off analysis. It is known that, in fault
detection, noise interference reduces the effectiveness of
diagnosis. Resolution of the method is even a relevant issue.
Capability of identifying the fault and its location within the
bearing is a crucial target. %e experimental test campaign
performed demonstrated that implementation of the OEMD
method as well as the envelope method is fairly easy. Faults
are identified even when smaller, on both the inner and outer
raceways, through the identification of the characteristic
frequency and its harmonics with a good approximation.
Some comparative tests show that the amplitude of the signal
harmonics decreases with the level of defect but is higher
with the implementation of the OEMDmethod.%is remark
motivates resorting to the OEMD method, more than to the
envelope method, despite the slightly higher computational
effort, because of the more precise identification of fault,
even when incipient.

Nomenclature

FFT: Fast Fourier transform
HHT: Hilbert–Huang transform
EMD: Empirical mode decomposition
IMF: Intrinsic mode function
EEMD: Ensemble empirical mode decomposition
GEMD: Generalized empirical mode

decomposition
OEMD: Orthogonal empirical mode decomposition
OIMF: Orthogonal intrinsic mode function
hi(t), x(t), m(t): Signals
ci(t): ith IMF
ri(t): Residual
SD: Standard deviation
Ei: Signal energy
OI: Orthogonality index
β: Scale factor
N: Number of rolling elements
ω: Spin speed
D, d: Characteristic diameters of bearings
θ: Contact angle between rolling elements.
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