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Abstract: Understanding the use of current land cover, along with monitoring change over time,
is vital for agronomists and agricultural agencies responsible for land management. The increasing
spatial and temporal resolution of globally available satellite images, such as provided by Sentinel-2,
creates new possibilities for researchers to use freely available multi-spectral optical images, with
decametric spatial resolution and more frequent revisits for remote sensing applications such as
land cover and crop classification (LC&CC), agricultural monitoring and management, environment
monitoring. Existing solutions dedicated to cropland mapping can be categorized based on per-pixel
based and object-based. However, it is still challenging when more classes of agricultural crops
are considered at a massive scale. In this paper, a novel and optimal deep learning model for
pixel-based LC&CC is developed and implemented based on Recurrent Neural Networks (RNN) in
combination with Convolutional Neural Networks (CNN) using multi-temporal sentinel-2 imagery of
central north part of Italy, which has diverse agricultural system dominated by economic crop types.
The proposed methodology is capable of automated feature extraction by learning time correlation
of multiple images, which reduces manual feature engineering and modeling crop phenological
stages. Fifteen classes, including major agricultural crops, were considered in this study. We also
tested other widely used traditional machine learning algorithms for comparison such as support
vector machine SVM, random forest (RF), Kernal SVM, and gradient boosting machine, also called
XGBoost. The overall accuracy achieved by our proposed Pixel R-CNN was 96.5%, which showed
considerable improvements in comparison with existing mainstream methods. This study showed
that Pixel R-CNN based model offers a highly accurate way to assess and employ time-series data for
multi-temporal classification tasks.

Keywords: satellite imagery; deep Learning; pixel-based crops classification; recurrent neural
networks; convolutional neural networks

1. Introduction

Significant increases in populations around the globe, increase demand in agricultural
productivity, and, thus, precise land cover and crop classification and spatial distribution of
various crops are becoming significant for governments, policymakers, and farmers to improve
decision-making processes to manage agricultural practices and needs [1]. Crop maps are produced
relatively at large scale, ranging from global [2], countrywide [3], and local level [4,5]. The growing
need for agriculture in the management of sustainable natural resources becomes essential for the
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development of effective cropland mapping and monitoring [6]. Group on Earth Observations (GEO),
with its Integrated Global Observing Strategy (IGOS), also emphases on an operational system for
monitoring global land covers and mapping spatial distribution of crops by using remote sensing
imagery. Spatial information of the crop maps has been the main source for crop growth monitoring
[7–9], water resources management [10], and decision making for policy makers to ensure food security
[11].

Satellite and Geographic Information System (GIS) data have been an important source factor in
establishing and improving the current systems that are responsible for developing and maintaining
land cover and agricultural maps [12]. Freely available satellite data offers one of the most applied
sources for mapping agricultural land and assessing important indices that describe conditions of crop
fields [13]. Recently launched sentinel-2 is equipped with a multispectral imager that can provide up
to 10 m per pixel spatial resolution with the revisit time of 5 days, which offers a great opportunity to
be exploited in the remote sensing domain.

Multispectral time series data acquired from MODIS and LANDSAT have been widely used in
many agricultural applications such as crop yield prediction [14], landcover and crop classification [15],
leaf area index estimation [16], plant height estimation [17], vegetation variability assessment [18], and
many more. Two different data sources can also be used together to extract more features that lead to
improving results. For example, Landsat-8 and sentinel-1 used together for LC&CC [19].

There are some supervised or unsupervised algorithms for mapping cropland using mono or
multi-temporal images [20,21]. Multi-temporal images have already proven to gain better performance
than mono temporal mapping methods [22]. The imagery used for only key phenological stages
s proved to be sufficient for crop area estimation [23,24]. It has also found in [25], that reducing
time-series length affects the average accuracy of the classifier. Crop patterns were established using
the Enhanced Vegetation Index derived from 250 meters MODIS-Terra time series data and used to
classify some major crops like corn, cotton, and soybean in Brazil [26]. Centimetric resolution imagery
is available at the cost of the high price of commercial satellite imagery or with the extensive UAV
flight campaigns to cover large area during the whole crop cycle to get better spatial and temporal
details. However, most of the studies used moderate spatial resolution (10–30 m) freely available
satellite imagery for land cover mapping due to their high spectral and temporal resolution which is
difficult in the case of UAV and high-resolution satellite imagery.

Other than multispectral time series data, several vegetation indices (VIs) derived from different
spectral bands have been exploited and used to enrich the feature space for vegetation assessment
and monitoring [27,28]. VIs such as the normalized difference vegetation index (NDVI), normalized
difference water index (NDWI), enhanced vegetation indexes (EVI), textural features, such as grey level
co-occurrence matrix (GLCM), statistical features, such as mean, standard deviation, inertial moment
are the features more frequently used for crop classification. It is possible to increase the accuracy
of the algorithms also using ancillary data such as elevation, census data, road density, or coverage.
Nevertheless, all these derived features, along with the phenological metrics involve a huge volume of
data, which may increase computational complexity with little improvement in accuracy [29]. Several
feature selection methods have been proposed [29] to deal with this problem. In [30], various features
have been derived from the MODIS time series and best feature selection has been made using the
random forest algorithm.

LC&CC can also be classified as pixel-based or object-based. Object-based image analysis (OBIA),
described by Blaschke, that segmentation of satellite images into homogeneous image segments can be
achieved with high-resolution sensors [31]. The various object-based classification has been proposed
to produce crop maps using satellite imagery [32–34].

In this work, we proposed a unique deep neural network architecture for LC&CC, which
comprises of Recurrent Neural Network (RNN) that extracts temporal correlations from time series
of sentinel-2 data in combination with Convolutional Neural Network (CNN) that analyzes and
encapsulate the crops pattern through its filters. The remainder of this paper is organized as follows.



Appl. Sci. 2020, 10, 238 3 of 23

Section 2 briefs about related work done for the LC&CC along with an overview of RNN and CNN.
Section 3 provides an overview of the raw data collected and exploited during the research. Section 4
provides detailed information on the proposed model and the training strategies. Section 5 contains
a complete description of the experiments, results, and discussion along with the comparison with
previous state-of-the-art results. Finally, Section 6 draws some conclusions.

2. Related Work

2.1. Temporal Feature Representation

There are various studies proposed in the past to address LC&CC. A more common approach
adopted for classification tasks is to extract temporal features and phenological metrics from the
VIs time series derived from remotely sensed imagery. There are also some simple statistics and
threshold-based procedures used to calculate vegetation related metrics such as Maximum VI and
time of peak VI [35,36], which have improved classification accuracy when compared to using only
VI as features [37]. More complex methods have been adapted to extract temporal features and
patterns to address the vegetation phenology [38]. Further, the time series of VI represented by a set of
functions [39], linear regression [40], Markov model [41], and curve-fitting functions. Sigmoid function
has been exploited by [42,43] and achieved better results due to its robustness and ease to derive
phenological features for the characterization of vegetation variability [44]. Although above-mentioned
methods of temporal feature extraction offer many alternatives and flexibilities in deployment to assess
vegetation dynamics, in practice, there are some important factors such as manually designed model
and feature extraction, intra-class variability, uncertain atmospheric conditions, empirical seasonal
patterns, which make the selection of such methods more difficult. Thus, an appropriate approach is
needed to fully utilize the sequential information from time series of VI to extract temporal patterns.
As our proposed DNN architecture is based on pixel classification, therefore the following subsections
will provide relevant studies and description

2.2. Pixel-Based Crops Classification

A detailed review of the state-of-the-art supervised pixel-based methods for land cover mapping
was performed in [45]. It was found that the support vector machine (SVM) for mono temporal
image classification was the most efficient in terms of overall accuracy (OA) of about 75%. The second
approach was the neural networks (NN) based classifier with almost the same OA 74%. SVM is complex
and resource-consuming for time series multispectral data applications with broad area classification.
Another common approach in remote sensing applications is the random forest (RF)-based classifiers
[46]. Nevertheless, multiple features should be derived to feed the RF classifier for effective use. Deep
Learning (DL) is a branch of machine learning, and it is a powerful tool that is being widely used in
solving a wide range of problems related to signal processing, computer vision, image processing,
image understanding, and natural language processing [47]. The main idea is to discover not only
the mapping from representation to output but also the representation itself. That is achieved by
breaking a complex problem into a series of simple mappings, each described by a different layer of the
model, and then composing them in a hierarchical fashion. A large number of state of the art models,
frameworks, architecture, and benchmark databases of reference imagery exist for image classification
domain.

2.3. Recurrent Neural Network (RNN)

Sequence data analysis is an important aspect in many domains, ranging from natural language
processing, handwriting recognition, image captioning, to robot automation. In recent years, Recurrent
Neural Networks (RNNs) have proven to be a fundamental tool for sequence learning [48], allowing
to represent information from the context window of hundreds of elements. Moreover, the research
community has, over the years, come up with different techniques to overcome the difficulty of training
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over many time steps. For example, long short-term memory (LSTM) [49] and gated recurrent unit
(GRU) [50] based architectures have proven ground-breaking achievements [51,52], in comparison to
standard RNN models. In remote sensing applications, RNNs are commonly used when sequential
data analysis is needed. For example, Lyu et al. [53] employed RNN to use sequential properties such
as spectral correlation and intra-bands variability of multispectral data. They further used the LSTM
model to learn a combined spectral-temporal feature representation from an image pair acquired at
two different dates for change detection [54].

2.4. Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNNs) date back decades [55], emerging from the study of the
brain’s visual cortex [56] and classical concepts of computer vision theory [57,58]. Since the 1990s,
these have been applied successfully in image classification [55]. However, due to technical constraints
such as mainly lack of hardware performance, the large amount of data, and theoretical limitations,
CNNs did not scale to large applications. Nevertheless, Geoffrey Hinton and his team demonstrated
at the annual ImageNet ILSVRC [59] competition the feasibility to train large architectures capable of
learning several layers of features with increasingly abstract internal representations [60]. Since that
breakthrough achievement, CNNs became the ultimate symbol of the Deep Learning [47] revolution,
incarnating all those concepts that underpin the entire novel movement.
In recent years, DL was widely used in data mining and remote sensing applications. In particular,
image classification studies exploited several DL architectures due to their flexibility in feature
representation, and automation capability for end-to-end learning. In DL models, features can be
automatically extracted for classification tasks without feature crafting algorithms by integrating
autoencoders [61,62]. 2D CNNs have been broadly used in remote sensing studies to extract spatial
features from high-resolution images for object detection and image segmentation [63–65]. In crop
classification, 2D convolution in the spatial domain performed better than 1D convolution in the
spectral-domain [66]. These studies formed multiple convolutional layers to extract spatial and
spectral features from remotely sensed imagery.

3. Study Area and Data

The study site near Carpi, Emilia-Romagna, situated in the center-north part of Italy with
central coordinates 44◦47′01′′ N, 10◦59′37′′ E was considered for LC& CC shown in Figure 1.
The Emilia-Romagna region is one of the most fertile plains of Italy. An area almost 2640 km2

was considered, which covers diverse cropland. The major crop fields in this region are maize, lucerne,
barley, wheat, and vineyards. The yearly averaged temperature and precipitation are 14 ◦C and
843 mm for this region. Most of the farmers practice single cropping in this area.

To know about the spatial distribution of crops, we deeply studied Land Use Cover Area frame
statistical Survey (LUCAS) and extracted all the information we need for ground truth data. LUCAS
was carried out by Eurostat to be able to monitor agriculture, climate change, biodiversity, forest, and
water for almost all over Europe [67].

The technical reference document of LUCAS-2015 was used to prepare the ground truth data.
Microdata that contains spatial information of crops and several land cover types along with the
geo-coordinates for the considered region was imported in Quantum Geographic information system
(QGIS) software, an Open-source software used for visualization, editing, analysis of geographical
data. The selection of pixel was made manually by overlapping images and LUCAS data, so a proper
amount of ground truth pixels were extracted for training and testing the algorithm. Several examples
of ground truth fields parcels are illustrated in Figure 2. The sentinel-2 mission consists of twin
polar-orbiting satellites launched by European Space Agency (ESA) in 2015 and can be used in various
application areas such as land cover change detection, natural disaster monitoring, forest monitoring,
and most importantly in agricultural monitoring and management [68].
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Figure 1. The study site is located in Carpi, region Emilia-Romagna is shown with the geo-coordinates
(WGS84). RGB image composite derived from sentinel-2 imagery acquired in August-2015 is shown
and the yellow marker showing geo-locations of ground truth land cover extracted from the Land Use
and Coverage Area frame Survey (LUCAS-2015).

Figure 2. Several examples of zoomed in parts of crop classes considered as ground truth. Shape files
are used to extract pixels for reference data.

It is equipped with multi-spectral optical sensors that capture 13 bands of different wavelengths.
We used only high-resolution bands that have 10 m/pixel resolution shown in Table 1. It also has a
high revisit time of ten days at the equator and five days with twin satellites (Sentinel-2A, Sentinel-2B).
It became more popular in remote sensing community due to fact that it possesses various key features
such as, free access to data products available at ESA Sentinel Scientific Data Hub with reasonable
spatial resolution (which is 10 m for Red, Green, Blue, and Near Infrared bands), high revisit time
and reasonable spectral resolution among other available free data sources. In our study, we used
ten multitemporal sentinel-2 images reported in Table 2, which are well co-registered from July-2015
to July-2016 with close to zero cloud coverage. The initial image selection was performed based on
the cloudy pixel contribution at the granule level. This pre-screening was followed by further visual
inspection of scenes and resulted in a multi-temporal layer stack of ten images. Sentinel Application
Platform (SNAP) v5.0 along with sen2core v 2.5.1 were used to apply radiometric and geometric
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corrections to acquire Bottom of Atmosphere (BOA) Level 2A images from Top of Atmosphere (TOA)
Level 1C. Further details about geometric, radiometric correction algorithms used in sen2cor can be
found in [69]. Bands with 10 meters/pixel along with the derived Normalized Difference Vegetation
Index (NDVI) were used for experiments, as shown in Table 1.

Table 1. Bands used in this study.

Bands Used Description Central Wavelength (µm) Resolution (m)

Band 2 Blue 0.49 10
Band 3 Green 0.56 10
Band 4 Red 0.665 10
Band 8 Near-infrared 0.705 10
NDVI (Band8-Band4)/(Band8+Band4) - 10

Table 2. Sentinel-2 data acquisition.

Date Doy Sensing Orbit # Cloud Pixel Percentage

7/4/2015 185 22-Descending 0
8/3/2015 215 22-Descending 0.384
9/2/2015 245 22-Descending 4.795
9/12/2015 255 22-Descending 7.397

10/22/2015 295 22-Descending 7.606
2/19/2016 50 22-Descending 5.8
3/20/2016 80 22-Descending 19.866
4/29/2016 120 22-Descending 18.61
6/18/2016 170 22-Descending 15.52
7/18/2016 200 22-Descending 0

4. Convolutional and Recurrent Neural Networks for Pixel-Based Crops Classification

4.1. Formulation

A single multi-temporal, multi-spectral pixel can be represented as a two-dimensional matrix
X(i) ∈ Rt∗b where t and b are the number of time steps and spectral bands, respectively. Our goal is to
compute from X(i) a probability distribution F(X(i)) consisting of K probabilities, where K is equal
to the number of classes. To achieve this objective, we propose a compact representation learning
architecture composed of three main building blocks:

• Time correlation representations—this operation extracts temporal correlations from
multi-spectral, temporal pixels X(i) exploiting a sequence-to-sequence recurrent neural network
based on long short-term memory (LSTM) cells. A final time-distributed layer is used to compress
and maintain a sequence like structure, preserving the multidimensionality nature of the data. In
this way, it is possible to take advantage of temporal and spectral correlations simultaneously.

• Temporal pattern extraction—this operation consists of a series of convolutional operations
followed by rectifier activation functions that non linearly maps each elaborated temporal and
spectral patterns onto high dimensional representations. So, RNN output temporal sequences are
processed by a subsequent cascade of filters, which in a hierarchical fashion, extracts essential
features for the successive stage.

• Multiclass classification—this final operation maps the feature space with a probability
distribution F(X(i)) with K different probabilities, where K, as previously stated, is equal to
the number of classes.

The comprehensive pipeline of operations constitutes a lightweight, compact architecture able to
non-linearly map multi-temporal information with its intrinsic nature, achieving results considerably
better than previous state-of-the-art solutions. Human brain mental imagery studies [70], where images
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are a form of internal neural representation, inspired the presented architecture. Moreover, the joint
effort of RNN and CNN distributes the knowledge representation through the entire model, exploiting
one of the most powerful characteristics of deep learning known as distributed learning. An overview
of the overall model, dubbed Pixel R-CNN, is depicted in Figure 3. Each pixel is extracted contemporary
from all images taken at different time steps t with all its spectral bands b. In this way, it is possible
to create an instance X(i), which can feed the first layer of the network. Firstly, the model extracts
temporal representations from the input sample. Subsequently, these temporal features are further
enriched by the convolutional layers that patterns in a hierarchical manner. The overall model act
as a function F(X(i)) that map the input sample with its related probabilities K. So, evaluating the
probability distribution is possible to identify the class belonging to the input sample.

It is worth noticing that this model is known as unrolled through time representation. Indeed,
only after all time steps have been processed, CNN is able to analyze and transform the temporal
pattern. In the following subsections, we are going to describe in detail each individual block.

Figure 3. An overview of the pixel recurrent-convolutional neural networks (R-CNN) model used
for classification. Given a multi-temporal, multi-spectral input pixel X(i), the first layer of long
short-term memory (LSTM) units extracts sequences of temporal patterns. A stack of convolutional
layers hierarchically processes the temporal information.

4.1.1. Time Correlation Representation

Nowadays, a popular strategy in time series data analysis is the use of RNNs that have proven
excellent results in many fields of the application over the years. Looking at the simplest possible RNN
shown in Figure 4, composed of just one layer, it looks very similar to a feedforward neural network,
except it also has a connection going backward. Indeed, the layer is not only fed by an input vector
x(i), but it also receives h(i) (cell state), which is equal to the output neuron itself, y(i). So, at each time
step t, this recurrent layer receives an input 1-D array x(i)t as well as its own output from the previous

time step, y(i)
(t−1). In general, since the output of a recurrent neuron at time step t is a function of all

inputs from previous time steps, it has, intuitively, a sort of memory that influences all successive
outputs. In this example, it is straightforward to compute a cell’s output, as shown in Equation (1).

y(i)t = φ(x(i)t ·Wx + y(i)
(t−1) ·Wy + b), (1)



Appl. Sci. 2020, 10, 238 8 of 23

where, in the context of this research, x(i)t ∈ R(1∗b) is a single time step of a pixel with ninputs equal

to the number of spectral bands b. y(i)t and y(i)
(t−1) are the output of the layer at time t and t− 1,

respectively, Wx and Wy are the weights matrices. It is important to point out that yt as x(i)t are vectors
and they can have an arbitrary number of elements, but the representation Figure 4 does not change.
Simply, all neurons are hidden in the depth dimension. Unfortunately, the basic cell just described
suffers from major limitations, but most of all it is the fact that, during training, the gradient of the loss
function gradually fades away. For this reason, for the time correlation representation, we adopted a
more elaborated cell known as the peephole LSTM unit, see Figure 5. That is an improved variation
of the concept proposed in 1997 by Sepp Hochreiter and Jurgen Schmidhuber [49]. The key idea is
that the network can learn what to store in a long-term state, c(t) what to throw away and what to use
for the current state h(t) and y(t) that, as for the basic unit, are equal. That is performed with simple
element-wise multiplications working as “valves” for the fluxes of information. Those elements, V1,
V2, and V3 are controlled by fully connected (FC) layers that have as input the current input state x(t)
and the previous short-term memory term h(t−1). Moreover, for the peephole LSTM cell, the previous
long-term state c(t−1) is added as an input to the FC of the forgot gate,V1, and the input gate, V2.
Finally, the current long-term state ct is added as an input to the FC of the output gate. All “gates
controllers” have sigmoid as activation functions (green boxes) instead of tanh ones to process the
signals themselves (red boxes). So, to summarize, a peephole LSTM block has three signals as input
and output; two are the standard input state x(t) and cell output y(t). Instead, c and h are the long
and short-term state, respectively, that the unit, utilizing its internal controllers and valves, can feed
with useful information. Formally, as for the basic cell seen before, Equations (2) and (7) summarizes
how to compute the cell’s long-term state, its short-term state, and its output at each time step for a
single instance.

i(t) = σ(WT
ci · c(t−1) + WT

hi · h(t−1) + WT
xi · x

(i)
(t) + bi), (2)

f(t) = σ(WT
c f · c(t−1) + WT

h f · h(t−1) + WT
x f · x

(i)
(t) + b f ), (3)

o(t) = σ(WT
co · c(t) + WT

ho · h(t−1) + WT
xo · x

(i)
(t) + bo), (4)

g(t) = tanh(WT
hg · h(t−1) + WT

xg · x
(i)
(t) + bg), (5)

c(t) = f(t) ⊗ c(t−1) + i(t) ⊗ g(t), (6)

y(t) = h(t) = o(t) ⊗ tanh(c(t)). (7)

Figure 4. A recurrent layer and its unrolled through time representation. A multi-temporal,

multi-spectral pixel X(i) is made by a sequence of time steps, x(i)t , that along the previous output
h(i) feed the next iteration of the network.
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Figure 5. LSTM with peephole connections. A time step t of a multi-spectral pixel x(i)t is processed by
the memory cell which decides what to add and forget in the long-term state c(t) and what discard for

the present state y(i)t .

In conclusion, multi-temporal, multi-spectral pixel X(i) is processed by the first layer of LSTM
peephole cells obtaining a cumulative output Y(i)

(lstm)
. Finally, a TimeDistributedDense layer is applied

which executes simply a Dense function across every output over time, using the same set of weights,
preserving the multidimensional nature of the processed data Equation (8). In Figure 6 is presented a
graphical representation of the first layer of the network. LSTM cells extract temporal representations
from input samples X(i) with x(i)t ∈ R(1∗b) as columns. The output matrix Y(i)

(lstm)
feeds the subsequent

TimeDistributedDense layer:

FtimeD(Flstm(X(i))) = (W ·Y(i)
(lstm)

+ B). (8)

4.1.2. Temporal Patterns Extraction

The first set of layers extract a 2-dimensional tensor Y(i)
(timeD)

for each instance. In the second
operation, after a simple reshaping operation in order to increase the dimensionality of the input tensor
from two to three and being able to apply the following operations, we map each of these 3-dimensional
array Y(i)

(reshape) into a higher-dimensional space. That is accomplished by two convolutional operations,
built on top of each other, that hierarchically apply learned filters, extracting gradually more abstract
representations. More formally, the temporal patterns extraction is expressed, for example, for the first
convolutional layer, as an operation Fconv1

Fconv1(FtimeD(Flstm(X(i)))) = max(0, W1 ∗ Y(i)
(reshape) + B1), (9)

where W1 and B1 represent filters and biases, respectively, and ’∗’ is the convolutional operation. W1,
contains n1 filters with kernel dimension f1 × f1 × c, where f1 is the spatial size of a filter and c is
the number of input channels. As common for CNN, the rectified linear unit (ReLU), max(0,x), has
been chosen as the activation function for both layers units. In Figure 7 is depicted a graphical scheme
of this section of the model. So, summarizing, output matrix Y(i)

(timeD)
of the TimeDistributedDense

layer, after adding an extra dimension, feeds a stack of two convolutional networks that progressively
reduce the first two dimensions, gradually extracting higher-level representations and generating high
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dimensional arrays. Moreover, being the n1 and n2 filters shared across all units, the same operation
carried out with a similarly-sized dense fully connected layers would require a much greater number
of parameters and computational power. Instead, the synergy of RNN and CNN opens the possibility
to elaborate the overall temporal canvas in an optimal and efficient way.

Input

LSTM

LSTM

x0(i)

y0(i)

h0(i)

c0(i)

x1(i)

y1(i)

h1(i)

c1(i)

xt(i)

yt(i)

LSTM LSTM

X(i)

Y(i)(lstm)

Figure 6. Pixel R-CNN first layer for time correlations extraction. Peephole LSTM cells extract

temporal representations from input instances X(i) ∈ Rt∗b. The output matrix Y(i)
(lstm)

feeds a
TimeDistributedDense layer, that preserves the multidimensional nature of the processed data
extracting multi-spectral patterns.

4.1.3. Multiclass Classification

In the last stage of the network, the extracted feature tensor Y(i)
(conv2), after removing the extra

dimensions with a simple flatten operation, is mapped to a probability distribution consisting of K
probabilities, where K is equal to the number of classes. This is achieved by a weighted sum followed
by a softmax activation function:

p̂k = σ(s(x))k =
exp sk(x)

∑K
j=1 exp sj(x)

f or j = 1, . . . , K, (10)

where s(x) = WT .y(i)
( f latten−conv2) + B is a vector containing the scores of each class for the input vector

y(i)
( f latten−conv2), that after the flatten operation is a 1-dimensional array. Weights W and bias B are

learned, during the training process, in such a way to classify arrays of the high dimensional space into
the K different classes. So, p̂k is the estimated probability that the extracted feature vector y(i)

( f latten−conv2)
belongs to class k given the scores of each class for that instance.
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Reshape
Y(i)

Conv2D
Y(i)

(reshape)

(conv2)

f1

f1 c

n1

n2

c
f2

f2

1

Figure 7. Pixel R-CNN convolutional layers. Firstly, output from TimeDistributedDense layer Y(i)
(timeD)

is reshaped in a 3-dimensional tensor Y(i)
(reshape) and then it feeds a stack of two convolutional layers

that progressively reduce the first two dimensions, gradually extracting higher-level representations.

4.2. Training

Learning the overall mapping function F requires the estimation of all network parameters Θ of
the three different model parts. This is simply achieved through minimizing the loss between each
pixel class prediction F(X(i)) and the corresponding ground truth y(i) with a supervised learning
strategy. So, given a data set with n pixel samples {Xi} and the respective true classes set {yi}, we use
categorical cross-entropy as the loss function:

J(Θ) = −1/n
n

∑
i=1

K

∑
k=1

y(i)k log( p̂(i)k ), (11)

where y(i)k cancels all classes loss except for the true one. Equation (11) is minimized using AMSGrad
optimizer [71], an adaptive learning rate method that modifies the basic ADAM optimizer [72]
algorithm. The overall algorithm update rule without the debiasing step is:

mt = β1mt−1 + (1− β1)gt, (12)

vt = β2vt−1 + (1− β2)g2
t , (13)

v̂t = max(v̂t−1, vt), (14)

θt+1 = θt −
η√

v̂t + ε
mt. (15)

Equations (12) and (13) are the exponential decay of the gradient and gradient squared,
respectively. Instead, with the Equation (14), keeping a higher vt term results in a much lower
learning rate, η, fixing the exponential moving average and preventing to converge to a sub-optimal
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point of the cost function. Moreover, we use a technique known as cosine aneling in order to cyclically
vary the learning rate value between certain boundary values [73]. This value can be obtained with
a preliminary training procedure, linearly increasing the learning rate while observing the value of
the loss function. Finally, we employ, as only regularization methodology, “Dropout” [74] in the time
representation stage, inserted between the LSTM and Time-Distributed layer. This simple tweak allows
training a more robust and resilient to noise temporal patterns extraction stage. Indeed, forcing CNN
to work without relying on certain temporal activations can greatly improve the abstraction of the
generated representations distributing the knowledge across all available units.

5. Experimental Results and Discussion

We first processed raw data in order to create a set of n pixel samples X = {Xi} with the related
ground truth labels Y = {yi}. Then, in order to have a visual inspection of the data set, principal
component analysis (PCA), one of the most popular dimensionality reduction algorithms, have been
applied to project the training set onto a lower tri-dimensional hyperplane. Finally, quantitative and
qualitative results are discussed with a detail description of the architecture settings.

5.1. Training Data

Sample pixels require to be extracted from the raw data and then reordered to feed the devised
architecture. Indeed, the first RNN stage requires data points to be collected in slices of time series.

So, we separated labeled pixels from raw data, and we divided them in chunks of data, forming
a tri-dimensional tensor X ∈ Ri×t×b for the successive pre-processing pipeline. In Figure 8, a visual
representation of the data set tensor X generation, where fixing the first dimension Xi,:,: there are
the individual pixel samples X(i) with t = 9 time steps and b = 5 spectral bands. It is worth to
notice that the number of time steps and bands are completely an arbitrary choice dictated by the raw
data availability.

t0 t1 t9

W

H

X(i)

Figure 8. Overview of the tensor X ∈ Ri×t×b generation. The first dimension i represents the collected
instances X(i), the second t the different time steps, and finally the last one b the five spectral bands,
red, green, blue, near-infrared and NDVI. On the top, labeled pixels are extracted simultaneously, from
all-time steps and bands starting from the raw satellite images. Then, Xi,j,k are reshaped in order to set
up the X(i) = Xi,:,: of the data set tensor X.

Subsequently, we adopted a simple pipeline of two steps to pre-process the data. Stratified
sampling has been applied in order to divide the data set tensor X, with shape (92116, 9, 5), in a
training and test set. Due to the natural unbalanced number of instances per class present in the data
set Table 3, this is an important step to preserve the same percentage in the two sets. After selecting a
split percentage for the training of 60%, we obtained two tensors Xtrain and Xtest with shape (55270, 9,
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5) and (36846, 9, 5), respectively. Secondly, as common practice, to facilitate the training, we adopted
standard scaling, (x− µ)/σ, to normalize the two sets of data points.

Table 3. Land cover types contribution in the reference data.

Class Pixels Percentage

Tomatoes 3020 3.20%
Artificials 9343 10.14%
Trees 7384 8.01%
Rye 4382 4.75%
Wheat 12,826 13.92%
Soya 5836 6.33%
Apple 849 0.92%
Peer 495 0.53%
Temp Grass 1744 1.89%
Water 2451 2.66%
Lucerne 17,942 19.47%
Durum Wheat 1188 1.28%
Vineyard 6110 6.63%
Barley 2549 2.76%
Maize 15,997 17.37%
Total 92,116 100%

5.2. Dataset Visualization

To explore and visualize the generated set of points, we exploit Principle Component Analysis
(PCA), reducing the high dimensionality of the data set. For this operation, we considered the
components t and b as features of our data points. So, applying Singular Value Decomposition (SVD)
and then selecting the first three principal components, Wd = (c1, c2, c3), it was possible to plot the
different classes in a tri-dimensional space, having a visual representation of the projected data points.
In Figure 9 the projected data points are plotted in tri-dimensional space. Except for water bodies, it is
worth to point out how much intra-class variance is present. Indeed, most of the classes lay on more
than one hyperplane, demonstrating the difficulty of the task and the studied data set. Finally, it was
possible to analyze the explained variance ratio varying the number of dimensions. From Figure 10,
it is worth to notice that approaching higher components, the explained variance trend stops growing
fast. So, that can be considered as the intrinsic dimensionality of the data set. Due to this fact, it
is reasonable to assume that reducing the number of time steps would not significantly affect the
overall results.

5.3. Experimental Settings

In this section, we examine the settings of the final network architecture. The basic Pixel R-CNN
model, shown in Figure 3, is the result of a careful design aimed at obtaining the best performance
in terms of accuracy and computational cost. Indeed, the final model is a lightweight model with
30,936 trainable parameters (less than 1 MB), fast and more accurate than the existing state-of-the-art
solutions. With the suggested approach, we employed only an RNN layer with 32 output units for
each peephole LSTM cell randomly turned off, with a probability p = 0.2, by a Dropout regularization
operation. For all experiments, peephole LSTM has shown an improvement in overall accuracy around
0.8% over standard LSTM cells. Then, Time Distributed Dense transforms Y(i)

(lstm)
in a 9× 9 square

matrix that feed a stack of two CNN layers with a number of features n1 = 16 and n2 = 32, respectively.
The first layer as a filter size of f1 = 3 and the second one f2 = 7 producing a one-dimensional output
array. Finally, a fully connected layer with SoftMax activation function maps Y(i)

(conv2) to the probability
of the K = 15 different classes. Except for the final layer, we adopted ReLU as activation functions. To
find the best training hyperparameters for the optimizer, we used 10% of the training set to perform a
random search evaluation, with few epochs, in order to select the most promising parameters. Then,
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after this first preliminary phase, the analysis has been focused only on the value of the most promising
hyperparameter, fine-tuning them with a grid search strategy.

Figure 9. Visual representation of the data points projected in the tri-dimensional space using PCA.
The three principal components took into account preserve 64.5% of the original data set variance.

Figure 10. Pareto chart of the explained variance as a function of the number of components.
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So, for the AMSGrad optimizer, we set β1 = 0.86, β2 = 0.98, and ε = 10−9. Finally, as previously
introduced, with a preliminary procedure, we linearly increased the learning rate of η while observing
the value of the loss function to estimate the initial value of this important hyperparameter. In
conclusion, we fed our model with more than 62,000 samples for 150 epochs with a batch size of 128
while cyclically varying the learning rate value with a cosine aneling strategy. All tests have been
carried out with the TensorFlow framework on a workstation with 64 GB RAM, Intel Core i7-9700K
CPU, and an Nvidia 2080 Ti GPU.

5.4. Classification

Performance of the classifier was evaluated by user’s accuracy (UA), producer’s accuracy (PA),
overall accuracy (OA), and the kappa coefficient (K) shown in the confusion matrix see Table 4, which
is the most common metric that has been used for classification tasks [19,75–77]. Overall accuracy
indicates the overall performance of our proposed Pixel R-CNN architecture by calculating a ratio
between the correctly classified total number of pixels and total ground truth pixels for all classes.
The diagonal elements of the matrix represent the pixels that were classified correctly for each class.
Individual class accuracy was calculated by dividing the number of correctly classified pixels in each
category by the total number of pixels in the corresponding row called User’s accuracy, and columns
called Producer’s accuracy. PA indicates the probability that a certain crop type on the ground is
classified as such.

UA represents the probability that a pixel classified in a given class belongs to that class.
Our proposed pixel-based Pixel R-CNN method achieved OA = 96.5% and Kappa = 0.914 with
15 number of classes for a diverse large scale area, which exhibits significant improvement as compared
to other mainstream methods. Water bodies and trees stand highest in terms of UA with 99.1% and
99.3%, respectively. That is mainly due to intra-class variability and the minor change of NIR band
reflectance over time, which was easily learned by our Pixel R-CNN. Most of the classes, including the
major types of crops such as Maize, Wheat, Lucerne, Vineyard, Soya, Rye, and Barley, were classified
with more than 95% UA. Grassland being the worst class, which was classified with the PA = 65%
and UA = 63%. The major confusion of grassland class was with Lucerne and Vineyard. It is worth
mentioning that the Artificial class, which belongs to roads, buildings, urban areas, represents the
mixed nature of pixel reflectances and was accurately detected with UA = 97% and PA = 99%.

For class Apple, obtained PA was 86% while UA = 68%, which shows that 86% of the ground
truth pixels were identified as Apple, but only 68% of the pixels classified as Apple in the classification
actually belonged to class Apple. Some Pixels (see Table 4) belongs to Peer and Vineyard were
mistakenly classified as Apple.

The final classified map is shown in Figure 11 with the example of the zoomed part and the actual
RGB image. To the best of our knowledge, a multi-temporal benchmark dataset is not available to
compare classification approaches on equal footings. There are some data sets available online for
crop classification without having ground truth of other land cover types such as Trees, Artificial land
(build ups), Water bodies, Grassland. Therefore it is difficult to compare classification approaches
on equal footings. Indeed, a direct quantitative comparison of the classification performed in these
studies is difficult due to various dependencies such as the number of evaluated ground truth samples,
the extent of the considered study area, and the number of classes to be evaluated. Nonetheless,
we provided an overview of recent studies and their performances of the study domain by their
applied approaches, the number of considered classes, used sensors, and achieved overall accuracy
in Table 5. Hao et al. [30], achieved 89% OAA by using RF classifier on the extracted phenological
features from MODIS time-series data. They determined that good classification accuracies can be
achieved with handcrafted features and classification algorithms if the temporal resolution of the
data is sufficient. Though, the MODIS sensor data is not suitable for classification of the areas of
large homogeneous regions due to its low spatial resolution (500 m). Conrad et al. [78] used high
spatial resolution data from the RapidEye sensor and achieved 90% OAA for nine considered classes.
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In [76], features from optical and SAR were extracted and used by the committee of neural networks of
multilayer perceptrons to classify a diverse agriculture region considerably. Recurrent encoders have
been employed in [79] to classify a large area for 17 considered classes using high spatial resolution
(10 m) sentinel-2 data and achieved 90% OAA, which proved that recurrent encoders are useful to
capture the temporal information of spectral features that leads to higher accuracy. Voulo et al. [77]
also used sentinel-2 data and achieved a maximum 95% classification accuracy using RF classifier but
nine classes were considered.

Figure 11. (a) Final classified map using Pixel R-CNN, (b) zoomed in region of the classified map, and
(c) Raw Sentinel-2 RGB composite of the zoomed region.

In conclusion, it is interesting to notice neuron activation inside the network during the
classification process. Indeed, it is possible to plot unit values when the network receives specific
inputs and compare how model behaviors change. In Figure 12 four samples, belonging to the same
class “artificials”, feed the model creating individual activations in the input layer. Even if they all
belong to the same class, the four instances took into account present a noticeable variance. Either
the spectral features in a specific time instance (rows) or their temporal variation (columns) present
different patterns that make them difficult to classify. However, already after the first LSTM layer
with the TimeDistributedDense block, the resulting 9× 9 matrices Y(timeD) have a clear pattern that
can be used by the following layers to classify the different instances in their respective classes. So,
the network during the training process learns to identify specific temporal schemes, that allows
making strong distributed and disentangle representations.
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Table 4. Obtained confusion matrix.

Ground Truth
Classified Classes Total PA

TM AR TR RY WH SY AP PR GL WT LN DW VY BL MZ

Tomatoes (TM) 1096 0 0 0 4 11 0 0 0 0 0 0 0 0 0 1111 98%
Artificial (AR) 0 3752 8 1 2 0 2 1 9 9 12 2 6 0 4 3808 99%
Trees (TR) 0 31 2967 1 0 0 0 3 10 0 17 0 2 0 0 3031 98%
Rye (RY) 0 1 0 1960 25 0 0 0 0 0 0 0 0 5 0 1991 98%
Wheat (WH) 38 7 0 221 4981 6 0 0 10 0 14 1 2 38 42 5360 93%
Soya (SY) 3 0 0 0 3 1226 0 0 0 0 11 0 3 0 41 1287 95%
Apple (AP) 0 0 0 0 0 0 142 0 0 0 2 0 21 0 0 165 86%
Peer (PR) 0 0 11 0 0 0 27 124 0 0 0 0 6 0 0 168 73%
Grassland (GL) 0 39 3 7 0 1 0 0 239 0 72 0 3 0 4 368 65%
Water (WT) 0 0 0 0 0 0 0 0 0 906 0 0 0 0 0 906 100%
Lucerne (LN) 0 0 0 2 0 2 0 0 48 0 7250 0 26 0 10 7338 98%
Durum.Wheat (W) 0 4 0 0 0 0 0 0 2 0 0 322 0 0 0 328 98%
Vineyard (VY) 11 7 4 4 11 1 50 1 21 0 93 0 2139 0 7 2349 91%
Barley (BL) 0 1 0 2 24 0 0 0 1 0 1 0 0 817 0 846 96%
Maize (MZ) 17 14 0 0 10 24 0 3 10 0 16 1 6 0 7689 7790 99%
Total 1165 3856 2993 2198 5060 1271 221 132 350 915 7488 326 2214 860 7797
UA 94% 97% 99% 89% 98% 96% 64% 93% 68% 99% 96% 99% 96% 95% 98%

Table 5. An overview and performance of recent studies.

Study
Details

Sensor Features Classifier Accuracy Classes

Our Sentinel-2 BOA Reflectances Pixel R-CNN 96.50% 15
Rußwurm and Körner [78], 2018 Sentinel-2 TOA Reflectances Recurrent Encoders 90% 17
Skakun et al. [77], 2016 Radarsat-2 + Landsat-8 Optical+SAR NN and MLPs 90% 11
Conrad et al. [76], 2014 RapidEye Vegetation Indices RF and OBIA 86% 9
Vuolo et al. [80], 2018 Sentinel-2 Optical RF 91–95% 9
Hao et al. [30], 2015 MODIS Stat + phenological RF 89% 6
J.M. Peña-Barragán [81], 2011 ASTER Vegetation Indices OBIA+DT 79% 13
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(a) (b)

Figure 12. Visual representation of the activation of the internal neurons of Pixel R-CNN, where darker
color are values close to zero and vice versa. (a). four samples of the same class “artificials”, (b). related
activations inside the network at the output of the TimeDistributedDense layer Y(timeD). It is interesting
to notice how the four inputs are pretty different from each other, but the network representations
already at this level are similar.

5.5. Non Deep Learning Classifiers

We tried four other traditional classifiers on the same dataset for comparison, which are Support
Vector Machine (SVM), Kernal SVM, Random Forest (RF), and XGBoost. These are well-known
classifiers for their high performances and also considered as baseline models in classification tasks [74].
SVM can perform nonlinear classification using kernel functions by separating hyperplanes. A widely
used RF classifier is an ensemble of decision trees based on the bagging approach [82,83]. XGBoost is
state of the art classifier based on gradient boosting model of decision trees, which attracted much
attention in the machine learning community. RF and SVM have been widely used in remote sensing
applications [29,30,46]. Each classifier involves hyperparameters that need to be tuned at the time of
classification model development.

We followed the “random search” approach to optimize major hyperparameters [84]. Best
values of hyperparameters were selected based on classification accuracy achieved for the validation
set, and are highlighted with bold letters in Table 6. Further details about hyper parameters and
achieved overall accuracy (OA) for SVM, Kernal SVM, RF, and XGBoost are reported in Table 6 From
these non-deep learning classifiers, SVM stands highest with OA = 79.6% while RF, Kernel SVM,
and XGBoost achieved 77.5%, 76.8%, and 77.2% respectively. From the results presented in Table 6,
our proposed Pixel R-CNN based classifier achieved OA = 96.5%, which is far better results than the
non deep learning classifiers. Learning temporal and spectral correlations from multi-temporal images
considering large data set is challenging for traditional non-deep learning techniques. The introduction
of deep learning models in the remote sensing domain brought more flexibility to exploit temporal
features in such a way that it can increase the amount of information to gain much better and reliable
results for classification tasks.
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Table 6. Comparison of Pixel R-CNN with non-deep learning classifiers.

Model Parameters OA

SVM
C: 0.01, 0.1, 1, 10, 100, 1000

79.50%Kernel: linear

Kernel SVM

C: 0.01, 0.1, 1, 10, 100, 1000

76.20%Kernel: rbf
Gamma: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8

Random
Forest

n_estimators: 10, 20, 100, 200,
500 max_depth: 5, 10, 15, 30
min_samples_split: 3, 5, 10, 15, 30
min_samples_leaf: 1, 3, 5, 10

77.90%

XGBoost

learning_rate: 0.01, 0.02, 0.05, 0.1

77.60%

gamma: 0.05, 0.1, 0.5, 1
max_depth: 3, 7, 9, 20, 25
min_child_weight: 1, 5, 7, 9
subsamples: 0.5, 0.7, 1
colsample_bytree: 0.5, 0.7, 1
reg_labda: 0.01, 0.1, 1
reg_alpha: 0, 0.1, 0.5, 1

Pixel R-CNN Mentioned in experimental settings 96.50%

6. Conclusions

In this study, we developed a novel deep learning model with Recurrent and Convolutional Neural
Network called Pixel R-CNN to perform Land Cover and Crop Classification by using multitemporal
decametric sentinel-2 imagery of central north part of Italy. Our proposed Pixel R-CNN based
architecture exhibits significant improvement as compared to other mainstream methods by achieving
96.5% overall accuracy with kappa = 0.914 for 15 number of classes. We also tested widely used
non-deep learning classifiers such as SVM, RF, SVM kernel, and XGBoost to compare with our
proposed classifier and revealed that these methods are less effective, especially when the temporal
featureq extraction is the key to increase classification accuracy. The main advantage of our architecture
is the capability of automated feature extraction by learning time correlation of multiple images, which
reduces manual feature engineering and modeling crops phenological stages.
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