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Abstract 

This study deals with seismic reliability-based design (SRBD) relationships in terms of beha-

vior factors and displacement demands for softening structures equipped with double friction 

pendulum system (DFPS) bearings. An equivalent 3dof system having a softening post-yield 

slope is adopted to describe the superstructure behavior, whereas velocity-dependent laws 

are assumed to model the responses of the two surfaces of the DFPS. The yielding characte-

ristics of the superstructures are defined for increasing behavior factors in compliance with 

the seismic hazard of L’Aquila site (Italy) and with NTC18 assuming a lifetime of 50 years. 

Considering several natural seismic records and building properties under the hypothesis of 

modelling the friction coefficients of the two surfaces of the DFPS as random variables, in-

cremental dynamic analyses are performed to evaluate the seismic fragility and the seismic 

reliability of these systems. Finally, seismic reliability is assessed and seismic reliability-

based design (SRBD) curves for the two surfaces of the double sliding devices are described. 

 

 

Keywords: behavior factor, ductility demand, friction pendulum bearing, post-yield softening 
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1 INTRODUCTION 

A very effective technique for the seismic isolation[1] of building frames and infrastructure 

is represented by the sliding pendulum bearings [2]-[3] examined by several literature studies 

(e.g., [4]-[7]). Probabilistic analyses and reliability-based analyses have also been presented 

by [8]-[9] as well as reliability analysis and reliability-based optimization of base-isolated 

systems including the main uncertainties have been performed by [10]-[14]. A non-

dimensionalization of the motion equations governing the dynamic response of equivalent 

two-degree-of-freedom (2dof) models equipped with friction pendulum system (FPS) isola-

tors has been proposed by [15]. In the hypothesis that the friction coefficient and the earth-

quake main characteristics are the relevant random variables, seismic reliability analyses of a 

3D base-isolated r.c. system have been developed in Castaldo et al. [16] and Palazzo et al. [17] 

to propose a method useful to design the isolator dimensions in plan. The life-cycle cost anal-

ysis (LCCA) of a r.c. 3D structure isolated by FPS bearings has been examined by [18] to 

evaluate the dependence on increasing isolation degrees. The approach for a seismic reliabili-

ty-based design (SRBD) of elastic systems isolated by FPS has been generalized in Castaldo 

et al. [19] for a wide range of structural properties. A robustness analysis in reliability terms 

of a r.c. 3D building frame isolated by FPS devices in presented in [20] proposing the failure 

scenarios if a malfunction affects a seismic device together with the design solution. The lite-

rature studies of [21] and [22] proposed, respectively, the optimal values of the friction coef-

ficient, on the one hand, as a function of the system properties and of the soil condition in 

order to minimize the superstructure response and, on the other, as a function of the ground 

motion characteristics by means of the ratio PGA/PGV (peak ground acceleration/velocity). 

In [23], a robust design optimization (RDO) of base isolation system considering random sys-

tem parameters characterizing the structure, isolator and ground motion model, is performed 

by minimizing the weighted sum of the expected value of the maximum root mean square ac-

celeration of the structure as well its standard deviation. In [24], an optimal design of friction-

al devices is proposed by applying a Pareto-type optimization approach.  

The seismic performance of bridges or structures isolated with FPS or DFPS has been in-

vestigated in [25]-[31]. Specifically, [28]-[30]provide useful relationships, according also to 

experimental results, for the evaluation of the seismic response of structures isolated by DFPS 

together with the equations governing the dynamic behaviour of these devices. The principal 

benefit of the DFPS bearing is its capacity to accommodate substantially larger displacements 

compared to a traditional FP bearing of identical plan dimensions as discussed in [28]. In [26] 

and [31], the seismic performance of isolated bridge and liquid storage tanks are respectively 

investigated, considering different combinations of radii of curvature and friction coefficients. 

As for the design of base-isolated systems under strong earthquake events, seismic code 

provisions [32]-[36] are based on low values of the strength reduction factor [32]-[36] or be-

havior factor [33]-[34] to ensure a safety level against the non linear dynamic amplification 

phenomenon (partial resonance) [37]. Precisely, NTC18 [34], Eurocode 8 [33] and the Japa-

nese building code [35] provide a maximum behavior factor value of 1.5, without explicitly 

distinguishing between the ductility and overstrength factor terms, ASCE 7 [32] prescribes a 

value equal to 0.375 times the one for corresponding fixed-base systems and no larger than 2. 

In this context, Vassiliou et al. [38] obtained that the displacement ductility demand of the 

inelastic base-isolated structure is 3 times the strength reduction factor confirming that, for 

base-isolated structures, it is not possible to adopt the formulas relating the strength reduction 

factor R and the displacement ductility demand μ of Newmark and Hall [39] and of Miranda 

and Bertero [40]. Then, seismic reliability-based relationships between the ductility-

dependent strength reduction factors and the displacement ductility demand, respectively, for 
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equivalent perfectly elastoplastic and softening structural systems equipped with FPS depend-

ing on the structural properties have been proposed in [41],[42].  

Inspired by [41],[42], this study proposes reliability-based design regressions relating the 

behavior factors and the displacement ductility demands for softening structural systems (sen-

sitive or not sensitive to the P  effects) equipped with double friction pendulum system 

(DFPS) devices and considering a high seismic hazard site like L’Aquila (Italy). By means of 

an equivalent 3dof system, different elastic and inelastic structural system properties are in-

vestigated. Specifically, the yielding characteristics of the softening superstructures are de-

signed in compliance with the life safety limit state and with the seismic hazard of L’Aquila 

site (Italy) assuming a lifetime of 50 years and increasing behavior factors [32]-[35]. The 

model developed by [4] is used to describe the non-linear velocity-dependent behavior of the 

two surfaces of the DFPS. The study is also based on the hypothesis of assuming the both 

friction coefficients of the two surfaces of the DFPS and the characteristics of the records as 

the relevant random variables. In detail, appropriate Gaussian probability density functions 

(PDFs) are adopted to characterize the aleatory uncertainties of the both sliding friction coef-

ficients and, by means of the Latin Hypercube Sampling (LHS) method [43]-[45], the input 

data have been generated.  

Then, several incremental dynamic analyses (IDAs) are performed for increasing seismic 

intensity levels in compliance with the site seismic hazard to derive the seismic fragility 

curves related to the different degrees of freedom of the equivalent (3dof) system. Finally, by 

means of the convolution integral between the fragility curves and the seismic hazard curves 

of L’Aquila site (Italy), in the hypothesis of a design life of 50 years for the equivalent base-

isolated systems, the corresponding reliability curves are derived. 

2 EQUATIONS OF MOTION FOR NON-LINEAR SOFTENING STRUCTURAL 

SYSTEMS WITH DOUBLE CONCAVE SLIDING BEARINGS 

The equivalent model, herein employed and depicted in Fig. 1, is a 3dof system with a dof 

representative of the superstructure behaviour and two dofs representative of the responses of 

the two surfaces of the DFPS. The model takes into account the inelastic softening response 

of the superstructure and non-linear behaviours of the two surfaces of the DFPS [28]. 
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Figure1: 3dof model of an inelastic softening building frame isolated with DFPS. 

Regarding the free body diagram of the DFPS, the bearing restoring force, considering 

only the horizontal component of the displacement on each surface, is: 
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where  1 b sW m m g   is the weight on the upper surface (surface 1) of the bearing, 

 2 b s dW m m m g    is the weight on the lower surface (surface 2) of the bearing, g  is the 

gravity constant, 1R  and 2R  are the radii of curvature of the two surfaces of the device, 
,1bu  

denotes the displacement of the surface 1 with respect to the slider, 
,2bu  represents the slider 

displacement with respect to the ground as well as 
,1d  and 

,2d  are the sliding friction 

coefficients of the two surfaces and sgn  is the signum function of the sliding velocity for 

each surface. In this study, the upper surface (surface 1) is characterized by higher values of 

the friction coefficient and of the radius of curvature. Specifically, 
,1d  

is selected as 
,24 d  

and R1=2R2 [28]-[31]. The force of the bearing coincides with the force of each surface 

response ,1 ,2b b bf f f  . For each surface, the friction coefficient is given as a function of the 

sliding velocity [4]-[6]: 

    , max,i max,i min,i ,exp ford i b if f f u i = 1,2      (2) 

where max,if  and min,if  are, respectively, the friction coefficients at high and very low sliding 

velocities of the i-th surface,   is a constant set equal to 30 as well as the ratio max,i min,i/f f  

equal to 3 for each surface [15]-[21],[41]. 

A bilinear constitutive law describes the inelastic softening behaviour of the superstructure, 

which responses in elastic phase if Eqn.(3) is satisfied and the restoring force isf ,  is expressed 

by Eqn.(4): 

 
 , 0, 1 ,s i i s iu u y u 

       
                  (3) 

   , , , 0, 1s i s i s s i if u k u u                                                 (4) 

where isf ,  is the restoring force at time instant i , isu ,  is the superstructure deformation at the 

same instant, 1,0 iu  is the maximum plastic excursion at time instant ( 1i ) and sk  is the elas-

tic stiffness of the superstructure. The function )( ,isuy  is the yielding condition in function of 

the displacement and is non-univocally defined due to the translation of the elastic domain 

[46]. Defining yu  as the yield displacement, whose yield force is yf , S denotes the ratio be-

tween the softening post-yield and the elastic stiffness [47]-[48], evaluated as: 

                                                             
y

s

k
S

k
                                                       (5) 

The superstructure response is plastic if Eqn.(6) is satisfied and the restoring force applies 

according to Eqn.(7): 

 , 0, 1 ,( )s i i s iu u y u 
 

(6) 

  , , , , 0, 1( ( ))sgn( )s i s s s i s i s i if u k u y u u u     (7) 
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Therefore, the equations which describe the response of an inelastic 3dof system, isolated 

by DFPS devices, to the seismic input  gu t , without any viscous property for the DFPS, are: 
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 (8) 

where sm , bm  and dm
 
are respectively the mass of the superstructure, of the isolation level 

and of the slider, sc
 
is the viscous damping factor of the superstructure. Dividing Eqn.(8a) by 

s b dm m m   as well as Eqn.(8b) by sb mm  and Eqn.(8c) by sm , defining the mass ratios as 

( )s s s b dm m m m    , ( )b b s b dm m m m     and ( )d d s b dm m m m     [49], the isolation 

iib Rg,  and structural sss mk  circular frequency, the structural damping ratio
 

ssss mc  2 , the non-dimensional equations apply: 
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 (9) 

where     /s s s s sa u f u m
 
is the dimensionless force of the superstructure that depends, respec-

tively, on the stiffness sk
 
in the elastic phase and on the yielding condition in the plastic 

phase. Note that the elastic isolation period of vibration varies if the sliding movement occurs 

along surface 1 or surface 2 or along the both surfaces simultaneously [30]. Specifically, if the 

sliding movement is developed along only a surface, the isolation period depends only on the 

radius of curvature of the spherical surface Ri (i.e., typically the radius of the surface with the 

lower friction coefficient) and the bearing behaves like a simple FPS [19], whereas when the 

both surfaces are involved, the isolation effective period applies [30]: 

 1 22  b

R R
T

g



  (10) 

The change of the vibration period shows the adaptive behavior to the seismic intensity 

that characterizes these devices [28]-[30]. It follows that the ratio between the variable isola-

tion period and structural period of vibration, which defines the seismic isolation degree [52] 

cannot be a constant during an earthquake event. Moreover, when the both surfaces slide si-

multaneously the restoring force of the DFPS device can be evaluated as 1eW
 
neglecting the 

mass of the slider [28], where e  
is the effective sliding coefficient given by: 

 
,1 1 ,2 2

1 2

d d

e

R R

R R

 






 (11) 

2.1 Inelastic properties of the superstructure 

The inelastic behavior of the superstructure is assumed as an equivalent single dof system 

[50]-[51] having a softening post-yield stiffness. The behavior factor, q, and displacement 

ductility, , are defined, respectively, as: 
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f u
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s,max

y

u

u
   (13) 

where 
,s elf  and 

,s elu  are, respectively, the peak elastic response values required to the super-

structure, whereas  s,max maxsu u t  is the peak inelastic displacement during a ground motion. 

For a softening systems (sensitive to the P  effects), the behaviour factor q represents only 

the ductility-dependent strength reduction factor due the absolute absence of the overstrength 

capacities. It follows that the parameter q is consistent with both the code provisions [32]-[36] 

assuming a unitary overstrength factor, and with the one discussed in [41],[42]. 

 

3 UNCERTAINTIES RELEVANT TO THE PERFORMANCE ASSESSMENT 

For the seismic reliability assessment of a building frame, within the structural perfor-

mance (SP) evaluation method [53]-[55], specific correlations between the SP levels [56] and 

appropriate exceeding probabilities during its design life [57]-[58] as well as the relevant 

(aleatory and/or epistemic) uncertainties with the corresponding PDFs have to be defined. Ac-

cording to the PEER-like modular approach [59] and performance-based earthquake engineer-

ing (PBEE) approach [60]-[61], distinguishing the aleatory uncertainties related to the seismic 

input intensity from those corresponding to the characteristics of the record by means of an 

intensity measure (IM), this work evaluates and quantifies the seismic reliability of softening 

systems equipped with DFPS, located in L’Aquila site (Italy), assuming also the friction coef-

ficients as other relevant random variables. Other aleatory uncertainties are not modelled 

since their effects can be neglected as discussed in [41],[62]. The epistemic uncertainties are 

not considered in this study.  

Specifically, a Gaussian PDF truncated on both sides to 2% and 6% with a mean equal to 

4% for the upper surface (
,1d ) and a Gaussian PDF truncated on both sides to 0.5% and 1.5% 

with a mean of 1% for the lower surface (
,2d ) are used to model, respectively, the sliding 

friction coefficients at large velocities of the two surfaces of the DFPS bearings [41]-[42]. 

These values are in compliance with [28]-[31] and chosen in order to obtain a mean value of 

the effective friction coefficient equal to 3% and, so to allow a comparison with the FPS ana-

lysed in [41]-[42]. Then, using the LHS technique [43]-[45], 15 sampled couples of the fric-

tion coefficients at large velocities are defined. 

As for the uncertainty on the characteristics of the seismic records (record to record varia-

bility), according to PBEE approach [60]-[61] and similarly to [41]-[42], the spectral dis-

placement  bbD TS , , related to the equivalent effective period 2 /b bT    (Eq.(10)) and to 

damping ratio b  [19],[41] is chosen as IM [64]-[66]. Considering b  equal to zero 

[15],[41],[67], the corresponding IM is hereinafter denoted as 
 bD TS

 in the range from 0 m 

to 0.45 m according to the seismic hazard of L’Aquila site (Italy) [34]. The record-to-record 

variability is taken into account by means of 30 ground motion records, corresponding to 19 

different earthquake events, selected form different national and international databases. A 

detailed description may be found in [41]. 
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4 INCREMENTAL DINAMIC ANALYSES: RESULTS AND COMPARISON 

The performance of systems isolated with DFPS is evaluated through incremental dynamic 

analyses (IDAs), considering several structural parameters combination and L’Aquila (Italy) 

as the reference site. 

4.1 Design of the elastic and inelastic properties of the structural systems 

An extended parametric analysis is carried out considering the following deterministic pa-

rameters: isolation degree dI , varying between 2, 4, 6 and 8 with respect to the equivalent 

effective isolated period; the equivalent effective isolation period bT , varying between 3s, 4s, 

5s and 6s; the mass ratio 
s , assumed equal to 0.6 and 0.8 with 

d  equal to 0.001 and so 
b  

equal to 0.399 and 0.199; the behaviour factor q , ranging from 1.1 to 2, with a step of 0.1, 

according to the codes [32]-[35], and the post-yield softening stiffness ratio S, set equal to 

0.03 [47]-[51]. It follows that 384 equivalent 3dof systems, with isolation damping ratio b  

and superstructure damping ratio s  respectively equal to 0% and 2%, are properly defined. 

These abovementioned 384 equivalent 3dof systems derive from 32 different 3dof systems 

(with the different values of dI , of bT and of the mass ratio) by modifying the behavior factor 

In the hypothesis of 
,1d  and 

,2d  equal to 4% and 1%, respectively, and a ratio equal to 2 

between R1 and R2 [28]-[31], the yielding characteristics of 32 3dof elastic systems, necessary 

to perform IDAs, are evaluated considering the average elastic responses to the 30 seismic 

inputs scaled to the IM value of the life safety limit state for L’Aquila site (Italy): the 

IM=  bD TS
 
applies 0.311 m for bT =3, 4, 5 s and 0.26 m for bT =6 s (NTC18 [34]). In this 

way, the average values in terms of both yield strength 
,averageyf  and displacement 

,averageyu  of 

the superstructure have been computed in Matlab-Simulink [72] and, the yielding properties 

are finally defined for each value of q, according to Eqn.(14): 

 
, , , , ,

,

y average s el average s el average

y average

s s

f f u
u

k k q q
    (14) 

4.2 Incremental dynamic analysis (IDA) curves  

This section describes the responses of the 384 equivalent 3dof softening systems having 

different properties (i.e., dI , bT , 
s , q , S) combined with the 15 sampled couples of the fric-

tion coefficients, to the 30 seismic inputs scaled to the different IM=  bD TS , ranging from 0 

m to 0.45 m. A total number of 450 numerical analyses has been performed for each IM level 

and parameter combination. The isolated non-linear softening systems are modelled in Mat-

lab-Simulink [72], by employing the Runge-Kutta-Fehlberg integration algorithm to solve the 

coupled equations (Eqn.(9)) and determine the responses of each degree of freedom. For each 

structural system with a softening behaviour, the collapse condition assumed within the nu-

merical analysis is reached when the response of the superstructure is equal to zero. The re-

sults of the non-linear IDAs have made it possible to estimate the collapsed system cases as 

well as the superstructure and isolation response parameters, expressed, respectively, in terms 

of displacement ductility demand   and of displacements for the DFPS (i.e., peak value for 

each surface or peak value of their sum computed at each time instant). These response para-

meters are assumed as the engineering demand parameters (EDPs) and their peak values have 

been fitted with lognormal distribution [15],[16]-[21],[41],[60],[67], by estimating the sample 
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lognormal mean, ln ( )EDP , and the sample lognormal standard deviation ln ( )EDP , or dis-

persion ( )EDP , through the maximum likelihood estimation technique, to determine the 

50
th

, 84
th

 and 16
th

 percentile of each lognormal PDF [15]. Note that other uncertainties [73]-

[78] as well as the influence of the infills [79]-[82] are not considered in this study. 

Figures 2-6 show the IDA results related to softening structures. Only the results corres-

ponding to some parameters ( dI =2 and 8, bT =3s and 6s and mainly related to s  equal to 

0.6) are reported due to space constraints. 

Fig.s 2-3 show the IDA results regarding the isolation level EDP max,bu , which is the peak 

value of the sum of ub,1 and ub,2 in each time instant. This response parameter is important to 

design the elements and components at the isolation level and to estimate the maximum dis-

placement of the isolation system. Therefore, the displacement max,bu  shown in Fig.s 2-3 is 

the maximum displacement recorded during the non-linear dynamic analysis, and generally is 

not concomitant with the maximum displacement recorded at each single surface. 

Fig. 2 depicts the response of the EDP   with a mass ratio equal to 0.8, whereas Fig. 3 and 

4 illustrate the responses of the surface 1 and 2, respectively, with a mass ratio of 0.6. As for 

the isolation level EDP  , the lognormal mean decreases by decreasing Tb (Fig. 2) and also for 

lower Id due to the lower values of the superstructure elastic stiffness.  

As regards the softening superstructure, the statistics of the  strongly increase for higher q 

(Fig.s 5-6).  
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Figure 2: IDA curves of the isolation level with 

s =0.8 for d=2, Tb=3 s, S=0.03 (a), d=2, Tb=6 s, S=0.03 (b), 

d=8, Tb=3 s, S=0.03 (c), d=8, Tb=6 s, S=0.03 (d). 
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Figure 3: IDA curves of the sliding surface 1 with 

s =0.6 for d=2, Tb=3 s, S=0.03 (a), d=2, Tb=6 s, S=0.03 (b), 

d=8, Tb=3 s, S=0.03 (c), d=8, Tb=6 s, S=0.03 (d). 
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Figure 4: IDA curves of the sliding surface 2 with 

s =0.6 for d=2, Tb=3 s, S=0.03 (a), d=2, Tb=6 s, S=0.03 (b), 

d=8, Tb=3 s, S=0.03 (c), d=8, Tb=6 s, S=0.03 (d). 
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Figure 5: IDA curves of the superstructure with 

s =0.6 for d=2, Tb=3 s, S=0.03 (a), d=2, Tb=6 s, S=0.03 (b), 

d=8, Tb=3 s, S=0.03 (c), d=8, Tb=6 s, S=0.03 (d). 
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Figure 6: IDA curves of the superstructure with 

s =0.8 for d=2, Tb=3 s, S=0.03 (a), d=2, Tb=6 s, S=0.03 (b), 

d=8, Tb=3 s, S=0.03 (c), d=8, Tb=6 s, S=0.03 (d). 
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It is worthy to note that the 50th, 84th and 16th percentiles illustrated in Figures 2-6 have 

been evaluated without considering the failure cases. From the IDA curves corresponding to 

the softening systems, it is possible to observe a number of dynamic collapses which increase 

in quite all the parameter combinations for increasing IM levels. The influence of the data re-

lated to the dynamic collapses has computed within the seismic fragility assessment as dis-

cussed later. Similarly, the influence of the other structural properties (i.e., , q and S) on both 

the DFPS and on the softening superstructures are properly discussed in the next section. 

5 SEISMIC FRAGILITY CURVES  

Defined the limit states, respectively, in terms of the radii in plan for the two surfaces of 

the DFPS device, 
1 2[ ]and [ ]r m r m , and of the displacement ductility for the superstructure,  [-

], the seismic fragility, representative of the probabilities Pf exceeding the different limit 

states at each level of the IM, is evaluated. Tables 1-2 report, respectively, the failure prob-

abilities in 50 years [54],[55] with the corresponding LS thresholds, related to the LSs pro-

vided by the codes [33]-[34]: the failure probability in 50 years [18],[54],[55] corresponding 

to the collapse LS [34] for the DFPS; whereas, the failure probability in 50 years [18],[54],[55] 

corresponding to the life safety LS [34] for the superstructure in compliance with the design. 

The limit state thresholds of Table 1 are also used to assess the fragility in terms of the overall 

displacement demand to the DFPS. For the both LSs, several thresholds are considered with 

the aim to provide reliable LS thresholds for these systems. For each parameter combination 

(384 equivalent 3dof systems), the probabilities fP  exceeding the different LSs at each IM 

level, are numerically computed and then fitted through lognormal distributions [19] with a R-

square value higher than 0.8. For the softening systems, the number of both the collapse and 

not-collapse cases has been considered to estimate the seismic fragility for each parameter 

combination at each IM level by means of the total probability theorem [83], as follows: 

                    














N

N

N

N
LSFimIMP

collapsenotcollapsenot

EDPimIMEDPSL 11))(1()( |  (15) 

where N is the total number of analyses at each IM level, and not collapseN   is the number of 

numerical simulations without any collapse. The first term of the sum in Eq.(15) represents 

the probability exceeding a LS corresponding to not-collapsing cases [83].  

 

 
  LSr,1 LSr,2 LSr,3 LSr,4 LSr,5 LSr,6 LSr,7 LSr,8 LSr,9 LSr,10 

ri [m] for i =1,2 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

pf (50 years)=1.5·10-3 

 

Table 1: Limit state thresholds for the two surfaces of the DFPS with the associated exceeding probability. 

 

  LSμ,1 LSμ,2 LSμ,3 LSμ,4 LSμ,5 LSμ,6 LSμ,7 LSμ,8 LSμ,9 LSμ,10 

μ [-] 1 2 3 4 5 6 7 8 9 10 

pf (50 years)=2.2·10
-2

 
 

Table 2: Limit state thresholds for the superstructure with the associated exceeding probability. 
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Fig.s 7-9 depict the fragility curves (i.e., the exceeding probabilities 
fP  (complementary 

distribution functions (CCDFs))) versus the IM for softening structures. Precisely, the curves 

corresponding to the different structural properties of interest and related only to some LS 

thresholds (LSr,4 and LSμ,3) and to dI =8 and bT =3s, are represented. Generally, the seismic 

fragility of each degree of freedom decreases for increasing the corresponding LS threshold. 

Fig.s 7-8 illustrate the fragility curves regarding the response of two surfaces of DFPS. For 

the all limit states, the exceeding probabilities slightly increase for decreasing s . Then, es-

pecially for high limit state thresholds, the fragility decreases by decreasing bT , dI  and in-

creasing q. Note that the probability exceeding a limit state is quite low for the single surface, 

with a lower probability for the surface 2 characterized by a lower friction coefficient with a 

lower radius of curvature, in compliance with the IDA results.  
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Figure 7: Seismic fragility curves of the sliding surface 1 related to LSr,4=0.2 m, for d=2, Tb=3 s, S=0.03 (a), d=2 

and Tb=6 s, S=0.03 (b),d=8 and Tb=3 s, S=0.03 (c), d=8 and Tb=6 s, S=0.03 (d). 

The fragility curves of the nonlinear softening superstructures are shown in Fig. 9. The ex-

ceeding probabilities are slightly higher as s  increases but highly increase for increasing 

values of q. Conversely, higher values of Tb for fixed dI  lead to a decrease of the seismic fra-

gility because an increase of the period Ts means an increase of the correlated yielding dis-

placement as well as lower values of Tb for fixed dI  lead to higher values of the seismic 

fragility. In fact, the coupling between dI  and bT  is a very important parameter because it de-

fines Ts and the corresponding yielding displacement.  
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Figure 8: Seismic fragility curves of the sliding surface 2 related to LSr,4=0.2 m, for d=2, Tb=3 s, S=0.03 (a), d=2 

and Tb=6 s, S=0.03 (b),d=8 and Tb=3 s, S=0.03 (c), d=8 and Tb=6 s, S=0.03 (d). 
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Figure 9: Seismic fragility curves of the superstructure related to LSμ,3=3, for d=2, Tb=3 s, S=0.03 (a), d=2 and 

Tb=6 s, S=0.03 (b),d=8 and Tb=3 s, S=0.03 (c), d=8 and Tb=6 s, S=0.03 (d). 
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Therefore, as also discussed in [41]-[42], in the case of systems with low Ts, the ensuing 

dynamic amplification can cause disproportioned superstructure responses and, so a high 

seismic fragility derives.  

The post-yield softening stiffness ratio S strongly and negatively influences the superstruc-

ture seismic fragility leading to a very high displacement ductility demand. Comparing the 

results with the outcomes of [42], for the softening systems higher values of Tb lead to a 

higher probability exceeding a limit state, especially for the superstructure. This important 

difference is due to the lower effectiveness the DFPS in comparison to the FPS because at low 

IM and at the beginning of each seismic record, the sliding occurs along only one surface hav-

ing lower friction coefficient with the consequence that both the energy dissipated and the ac-

tual equivalent isolation period are lower. 

6 SEISMIC PERFORMANCE OF INELASTIC STRUCTURES WITH DFPS 

The convolution integral between the previously achieved seismic fragility curves and the 

seismic hazard curves expressed in terms of the same IM, SD(Tb), related to the reference site 

(L’Aquila (Italy)), allows the evaluation of the mean annual rates exceeding the limit states 

for each parameter combination. Then, by using a Poisson distribution, the seismic reliability 

of the all softening structures isolated by DFPS in the time frame of interest (e.g., 50 years) 

have been computed.  

 

 

 

 P
f [

-]
 (

5
0

 y
ea

rs
)  

γs=0.6 

γs=0.8 

 

a) 

q 

 ub,max [m]  

 

 

 P
f [

-]
 (

5
0

 y
ea

rs
)  

γs=0.6 

γs=0.8 

 

b) 

q 

 ub,max [m]  

 

 

 P
f [

-]
 (

5
0

 y
ea

rs
)  

γs=0.6 

γs=0.8 

 

c) 

q 

 ub,max [m]  

 

 

 P
f [

-]
 (

5
0

 y
ea

rs
)  

γs=0.6 

γs=0.8 

 

d) 

q 

 ub,max [m]  
Figure 10: Seismic reliability curves of the isolation level related to d=2, Tb=3 s, S=0.03 (a), d=2 and Tb=6 s, 

S=0.03 (b),d=8 and Tb=3 s, S=0.03 (c), d=8 and Tb=6 s, S=0.03 (d). The arrow denotes the increasing direction 

of q. 

In this work, the seismic hazard of L’Aquila site (Italy), soil class B, with geographic 

coordinates 42°38’49’’N and 13°42’25’’E, has been considered, as widely described in [41].  
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As for the DFPS devices, the seismic reliability evaluation makes it possible to define 

SRBD curves to design the dimensions in plan of each surface of these devices and the overall 

dimension of the isolation level as a function of the expected reliability level and of the struc-

tural properties.  
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Figure 11: Seismic reliability curves of the superstructure level related to d=2, Tb=3 s, S=0.03 (a), d=2 and Tb=6 

s, S=0.03 (b),d=8 and Tb=3 s, S=0.03 (c), d=8 and Tb=6 s, S=0.03 (d). The arrow denotes the increasing direc-

tion of q. 

Fig. 10 depicts the linear regressions, representative of the seismic reliability of the overall 

dimension of the isolation level, in the semi-logarithmic space for softening systems. The val-

ue of R-square is higher than 0.8 demonstrating the robustness and the effectiveness of the 

kind of the regressions selected within the different statistic approaches [84]-[89]. The ex-

ceeding probability of Pf = 1.5·10
-3

 can be assured for a global dimension larger than 1 m, in 

the case of low Id and sdepending on the behaviour factors. The overall dimension of the 

isolation level estimated with the above described curves, can also be useful to define the ra-

dius in plan of each surface of the DFPS. In fact, SRBD curves of each surface, evaluated and 

not represented due to space constrains, highlighted that around 1/3 of the global dimension 

can be attributed to the surface 2 (having a lower friction coefficient with a lower radius of 

curvature) and 2/3 to the surface 1 for low Tb, whereas for high Tb, these ratios become 1/4 

and 3/4, respectively. This aspect is a very important design feature because if high displace-

ments are required to the isolation level, especially for softening systems, they are divided 

between the two sliding surfaces reducing the geometric encumbrance of the itself device and 

of the structural elements directly connected as also highlighted in [28]-[30].   

Fig. 11 shows the results, representative of the SP curves of the softening superstructure in 

50 years, in the logarithmic scale for the different LS thresholds in terms of  and for the dif-
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ferent structural properties. The seismic reliability of the superstructure increases for low val-

ues of s, Id, q and for high values of Tb. Comparing the results with the outcomes achieved by 

[42], the seismic reliability of systems equipped with DFPS, with different friction coeffi-

cients for the two surfaces, is slightly lower respect the systems equipped with simple FPS 

due to the reasons previously explained for the fragility assessment. 

7 CONCLUSIONS 

This study describes the seismic reliability-based performance of softening structural sys-

tems equipped with double concave sliding devices isolators on varying the elastic and inelas-

tic building properties, seismic intensity levels with the hypothesis of the friction coefficients 

and of the characteristics of the seismic records assumed as the relevant random variables. By 

means of an equivalent 3dof system with a non-linear velocity-dependent model for the two 

surfaces of the DFPS, incremental dynamic analyses are carried out considering several natu-

ral seismic records, the seismic hazard of L’Aquila site (Italy), increasing behavior factors and 

different post-yield stiffness ratios. Then, the seismic fragility curves are derived for the sof-

tening superstructure and for the isolation level taking also into account the dynamic failure 

cases. After that, assuming a design life of 50 years, seismic reliability-based design (SRBD) 

curves are proposed useful to design the radii in plan of the two surfaces as well as the maxi-

mum demand to the DFPS. The results have highlighted the negative effects of the post-yield 

stiffness as well as the possibility to reduce the encumbrance of the devices and of the struc-

tural elements directly connected because the seismic demand is divided on the two surfaces. 

This aspect is a very important design feature of the DFPS representing an its advantage.    
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