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 Nowadays, traditional home gateways must support increasingly complex 
applica-tions while keeping their cost reasonably low. Software Defined 
Networking (SDN) would simplify the management of those devices, but 

such an approach is typically reserved for new hardware devices, specifically 
engineered for this paradigm. As a consequence, typical SDN-based home 
gateway performs the switching in software, resulting in non-negligible 
performance degradation. In this paper, we provide our experience and 
findings of adding the OpenFlow support into a non-OpenFlow compatible 
home gateway, exploiting the possible hardware speedup available in 
the existing platform. We present our solution that transparently offloads 
a portion of the OpenFlow rule into the hardware, while keeping 
the remaining ones in software, being able to support the presence of 

multiple hardware tables with a different set of features. Moreover,  
we illustrate the design choices used to implement the func-tionalities 
required by the OpenFlow protocol (e.g., packet-in, packet-out messages) 
and finally, we evaluate the resulting architecture, showing the significant 
advantage in terms of performance that can be achieved by exploiting 
the underlying hardware, while maintaining an SDN-type ability to program 
and to instantiate desired network operations from a central controller. 
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1. INTRODUCTION 

Software Defined Networking (SDN) proposes a new paradigm into the computer networking field 

that allows network administrators to manage network services from a centralized point of control through 

abstraction of lower level functionality [1, 2]. This is achieved by separating the system that makes decisions 

about where traffic is sent (the control plane) from the underlying systems that forward traffic to the selected 

destination (the data plane). Of course, this approach brings significant benefits in the modern data center 

where the improved management of the network and the agility of re-configurations make this feature 

appealing and in great demand, given also the high number of servers that should be handled. At the same 

time, the SDN innovation can bring significant advancements to different areas too. An important domain 

that started to receive an increasing consideration is the administration of home networks [3]. 

Traditional home gateways are getting harder to manage as new application are introduced and 
moved at the customer premises. In this regard, applying SDN to this device would facilitate the home 

network management by providing the possibility to program and control the home network device from 

a centralize point of control, also allowing users to manage and configure the behavior of their network via 

high-level application that can be also designed by third-party developer [4]. To enable this paradigm shift, 

the most common way is to transform the home gateway into an OpenFlow [5] switch. 
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Even though over the years different hardware-based OpenFlow switches have been released [6] 

that perform very high-speed OpenFlow switching, the majority of Customer Premises Equipment’s (CPEs) 

still use System on Chip (SoC) architectures with an integrated layer 2 device. Layer 2 switching is 

hardware-based, which means switches use application-specific integrated circuit (ASICs) for making 

switching decisions very quickly. They are usually traditional, non-OpenFlow compatible ASICs, which 

makes the transition to SDN- compliant solutions far away. Extending these devices with the support for 

the OpenFlow protocol would enable more flexible and granular service provisioning even to generally little 

organizations that couldn’t manage the cost of upgrading their networks with new devices with native 

OpenFlow support. 

A naive solution to this approach would be to add software SDN switch (e.g., Open vSwitch [7]) 
into the home gateway; in this case, the switching is done entirely in software, resulting in poor performance. 

Moreover, other high-speed packet processing solutions such as DPDK [8] or Netmap [9], would require to 

map one or more network interface to a CPU core, consuming important resources from the CPE that cannot 

be used to handle the other operations. To reduce this overhead and speedup the OpenFlow processing and 

forwarding of packet, we could exploit the hardware available in a traditional home gateway. Of course, 

not every operation can be accelerated; in fact, every hardware switch has a finite number of TCAM, critical 

for implementing line-speed forwarding, and it can hold only a limited number of flows. For some hardware, 

the number of flows is only one kind of limitation. Most switches were not designed with anything like 

OpenFlow in mind, especially when their interface ASICs were laid out. The chips do a excellent job of 

switching, and frequently handle basic Layer 3-4 functions as well, but OpenFlow asks for a great deal more. 

This paper describes our experience in porting OpenFlow on already existing hardware switch with 
no support for the OpenFlow standard. We describe our architecture that integrates a hybrid software and 

hardware pipeline and can compensate the hardware limitations in terms of supported matches and actions, 

offloading only part of the OpenFlow rules, which are properly translated into the corresponding hardware 

related commands. While this mapping could result more vendor specific, we believe that the overall 

architecture for the offloading presented in this paper is vendor neutral enough to be exported in other 

platforms with similar characteristics. Moreover, we present our algorithm that is able to map the OpenFlow 

software pipeline into the corresponding hardware pipeline, considering the different number of tables 

(e.g., MAC, VLAN, ACL, etc..) available in the hardware device, while maintaining the semantic and 

precedence of the rules. In our work, we used the hardware pipeline of the NXP QorIQ T1040 platform, 

dividing the supported rules within the tables available in the integrated switch silicon. Finally, all the rules 

(including either the match or the action part) that cannot be mapped with the existing hardware, 

such as rewriting a MAC header, are executed in the software pipeline, which is based on the open source 
xDPd [10] project. 

This paper is organized as follows: we describe the platform we used to validate our selective 

offloading algorithm in Section 2. Section 3 illustrates our architectural design for the OpenFlow rules 

offloading, and Section 4 presents the most significant implementation details of our prototype. Finally we 

show the evaluation and results in Section 5 and we briefly discuss related works in Section 6. Section 7 

concludes the paper. 

 

 

2. BACKGROUND 

This section provides a description of the platform that we used to validate our solution. In particular, 

we present the interface and APIs that are used to program the behavior of the hardware switch available in 
the traditional home gateway together with a description of its hardware pipeline, whose knowledge is 

fundamental to correctly translate the set of OpenFlow rules into device-specific entries. 

 

2.1.  NXP QorIQ T1040 

The NXP QorIQ T1040 [11] platform contains a four 64 bits CPU cores (PowerPC e5500), 

connected to additional modules belonging to the Data Path Acceleration Architecture (DPAA) [12] and 

peripheral network interfaces required for networking and telecommunications. It integrates a Gigabit 

Ethernet switch with eight 1 Gbps external ports and two internal 2.5 Gbps ports connected to Frame 

Manager (FMan) ports. In addition to typical Layer-2 operations, this module is also able to perform 

Layer 2-4 TCAM-based traffic classification on the ingress traffic, applying a specific set of actions 

(e.g., packet redirect) to the processed packet. The LAN ports of the L2 Switch make forwarding decisions 

based only on L2 switch logic, with no involvement from the FMan or CPU. As a consequence, the CPU 
cannot track the packets switched between the eight external L2 Switch ports, which might not be desirable 

in some use cases. To overcome this limitation, we adopt a specific mechanism to redirect these packets from 

the LAN ports to the CPU, which consists in using the copy_to_cpu flag as action in the ACL or MAC table; 
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this flag causes the copy of the packet matching this entry into an internal switch CPU queue. In this way, we 

can process the supported flows in hardware at line rate, while the unsupported ones will be redirected into 

the host’s CPU where they can be processed by the software switch. 

Access to L2 Switch PHY registers: A dedicated UIO Kernel Module, part of the NXP software 

development kit, maps L2 Switch and physical registers into user space, hence offering the possibility to 

program and control the behavior of the L2 Switch through sysfs entries. Notably, this kernel module avoids 

the commonly required context switching between kernel and userspace, because the device is accessed 

directly from user space. 
L2 Switch APIs: The L2 Switch API represents a comprehensive, user-friendly and powerful 

function library that enables to program the switching module through high-level primitives, without 

managing singular registers. It incorporates the most common functions such as device initialization, port 

map setup, reset and configuration, including more complex functions used to specify the Quality of Service 

(QoS) configurations and Access Control Lists (ACLs) entries. 

L2 Switch Hardware Pipeline: The NXP L2 Switch hardware pipeline is rather complex, as shown 

in the high- level view depicted in Figure 1. It is composed of a ingress and egress pipeline, both with 

a different set of tables and actions. When a packet arrives at a particular ingress port, after traversing 

the port MAC controller, it goes through the ingress pipeline, where is subjected to two classification steps. 

In the first (basic) classification stage, some basic information (e.g., VLAN tag, QoS class, DSCP value) are 

extracted from the packet and used in the next classification step. In the second, Advanced Multi-stage 

classification step, three TCAMs (named IS1, IS2 and ES0) serve different purposes. The IS1 table 
implements an L3-aware classification, allowing to override DSCP, QoS, VLAN ID values as a result of 

a lookup on L3-L4 headers. A second lookup is then made on the IS2 table, which applies typical ACL 

actions (i.e., permit, deny, police, redirect, mirror and copy to CPU) to the matched frame in a sequential 

order; if the packet matches the condition of a given ACL, the processing is stopped and the action is applied, 

otherwise it applies the default action, which usually drops all the traffic. Finally, in the egress pipeline, 

the ES0 table handles the egress forwarding based on VLAN and QoS policies. The size of these TCAMs is 

fixed, but the number of allowed entries depends on the complexity of each entry rule. As shown in Figure 1, 

the L2 forwarding module is based on a MAC Table supporting 8K entries; the L2 forwarding is done based 

on the VLAN classification, MAC addresses and the security enforcement as result of IS2. 

 

 

 
 

Figure 1. L2 switch hardware pipeline 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Transforming a traditional home gateway into a hardware-accelerated SDN switch (Sebastiano Miano) 

2671 

2.2.  xDPd software switch 
The eXtensible DataPath daemon (xDPd) [10] is a multi-platform open-source datapath supporting 

multiple OpenFlow versions and built focusing on performance and extensibility, in particular with respect to (i) 

new hardware platforms (network processors, FPGAs, ASICs), (ii) new OpenFlow versions and extensions, and 

(iii) different management interfaces (e.g., OFConfig, CLI, AMQP, Netconf). The xDPd architecture, shown in 

Figure 2, includes a Hardware Abstraction Layer (HAL) that facilitates the porting of the OpenFlow pipeline 

on different hardware, hiding the hardware technology and vendor-specific features from the management and 

control plane logic. It uses the ROFL (Revised OpenFlow Library) libraries [13] as an HAL implementation 

and framework for creating OpenFlow agents communicating with different types of hardware platforms. 

The ROFL library set is mainly composed of three different components. The ROFL-common library 
provides basic support for the OpenFlow protocol and maps the protocol’s wire representation to a set of C++ 

classes. The ROFL-hal library provides a set of basic callback that should be implemented by the platform- 

specific driver to support the OpenFlow protocol features. Finally, the ROFL-pipeline library is a platform- 

agnostic OpenFlow 1.0, 1.2 and 1.3.X pipeline implementation that can be reused in several platforms. 

It is used as software OpenFlow packet processing library and serves as data-model and state manager for 

the ROFL-hal library. 

 

 

 
 

Figure 2. xDPd architecture 

 

 

3. OVERALL ARCHITECTURE 

Figure 3 describes the overall architecture of the system, which is made of a hardware fast path where 

packets are processed by the L2 switch integrated into the platform and a slow path that is running in software 

and is in charge of processing all packets whose matches or actions are not supported by the hardware. 

When a packet arrives at an ingress port, it is first processed by the hardware pipeline according to the rules 

installed by the Selective Offloading Logic component, if a matching rule is not found, packets are redirected to 

the NXP CPU where the xDPd software OpenFlow pipeline is running. It is worth mentioning that all 

the hardware details are hidden by an external user (e.g., OpenFlow controller), which programs 

the device as a simple OpenFlow switch; the rest of components will take care of translating the OpenFlow 

to match the hardware tables to speedup the packet processing. 
 

 

 
 

Figure 3. High-level design 
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3.1.  The selective offloading logic component 
The Selective Offloading Logic is the central component of the architecture and is in charge of 

managing the installation of the flow table entries, maintaining per port counters and translating 

the OpenFlow messages coming from the controller with the corresponding primitives required to interact 

with the hardware switch. This process typically involves deciding which flow entry the device can support 

(based on its feature set) and to sync the statistics from the device to the host. It consists of a northbound part 

that is responsible for the selection of the supported OpenFlow rules and a southbound side which is in charge 

of the communication with the device and is therefore strictly dependent on it. 
The Northbound Interface should be aware of the switch pipeline capabilities, in particular regarding 

device tables, the match types and the actions allowed on each table. It maintains a data structure for each 

hardware table containing the device capabilities regarding supported matches and actions, which is used to 

check if a new flow rule is suitable for hardware offloading, e.g., if it’s matching fields are a subset of  

the ones supported by the hardware. While the NB interface is generic enough for being exported from 

different devices (with similar hardware pipeline), the SB part should be changed to support the new  

device because it involves the flow entry insertion stage, which can obviously change depending on  

the underlying hardware switch. The description of how the communication with the hardware device has 

been implemented is described in Section 4. 
 

3.2.  Selection of the openflow rules for the offloading 
An OpenFlow flow_mod message is used to install, delete and modify a flow table entry;  

as consequence, if the message contains a flow that is supported by the hardware device it should be offloaded 

accord- ingly. As show in the Algorithm 1, the first operation of the Selective Offloading Logic is to install 
the flow into the Software Switch table. This is done for two reasons. Firstly, the time required to insert 

a new rule into the software pipeline is usually faster than the one required to insert an entry into 

the hardware switch tables, since it is not affected by the other entries already installed into the forwarding 

tables. Secondly, this process would simplify the handling of PacketOut messages. Indeed, when 

a PacketOut is received, it should be injected into the data plane of the switch, carrying either a raw packet 

or indicating a local buffer on the switch containing a raw packet to release. Since the buffers are held by 

the software switch implementation and the software pipeline includes all the rules issued by the controller, 

its processing in the software pipeline is faster than injecting the packet in the hardware switch pipeline. 

 

Algorithm 1 Selection of the rule to offload 

1: procedure new_flow_mod (flow_entry_t* new_entry) 

add_entry_to_sw_table(new_entry); 

2: if matches_supported(new_entry) 
&& actions_supported(new_entry) 

then 
3: offload(new_rule); 

4: else 

5: if matches_supported(new_entry) & 

&& actions_supported(new_entry) then 

6: new_entry.actions = copy_to_cpu; 

7: offload(new_entry); 

8: else 

9: if !matches_supported(new_entry) then 

10: for each rule in hwTables do 

11: if rules_set(rule) ⊆ rules_set(new_rule) then 
12: if check_correlation(new_rule, rule) then 

13: delete_from_hardware(rule); 

14: end if 

15: end if 

16: end for 

17: end if 

18: end if 

19: end if 

20: end procedure 
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When the flow_mod is installed in the software table, it is checked to verify its suitability for 

the hardware offloading. In this case, the Selective Offloading Logic compares the matches and actions 

contained in the message with the data structure of each hardware table. If the flow includes matches and 

actions supported by the device tables the Selective Offloading Logic decides the right table (ACL or MAC 

table) in which place the rule (depending on their features set). Particularly, the new flow_mod is installed 

in the MAC-table if it contains only L2 dest MAC and VLAN as match criteria and the actions are 

the supported ones; redirect-to- port and send-to-controller. The remaining supported flows are placed in 

the ACL-table. After this process, the northbound interface calls the southbound part which takes care of 

install the specified rule in the hardware tables. However, if the hardware device supports the matches 

contained in the new entry but not its actions list, we need to process the packet matching that rule in 
the software pipeline. In this case, we inject the new rule in the hardware pipeline but with a single action to 

redirect the packet to the CPU, where the software pipeline processing applies the full action set contained in 

the original flow_ mod. Finally, if the device does not support the new rule matches, to redirect the packets 

in the software pipeline, we should remove all hardware entries that interfere with the new rule matches set, 

avoiding that a new packet matches the hardware rule instead of the software one. When a correlated rule is 

discovered, it is deleted from the device tables so that a new packet will match the default rule that redirects 

all packets to the CPU for the software pipeline processing. 

 

3.3.  Mapping selected openflow rules on hardware tables 
The Southbound Interface of the Selective Offloading Logic handles the mapping of the chosen 

OpenFlow rules in the hardware tables. This mapping is, of course, dependent on the underlying device. 
However, the organization of the MAC or ACL table is almost the same in all hardware switch ASICs, 

making the concepts applied to our offloading architecture also applicable to other architectures. If a flow 

can be offloaded in the MAC table, the corresponding hardware entry contains its fixed MAC address and 

VLAN ID. If the entry contains an output action to a specific port, the list of destination port in the hardware 

entry is filled with a Boolean value indicating if the packet should be forwarded to that particular port.  

The output_to_controller action is converted into an action with the copy_to_cpu flag enabled, indicating that 

the packet should be sent to a specific CPU queue and then redirected to the controller (how this task is 

achieved is specified in Section 4.). When a flow is offloaded to the ACL table, it is necessary to translate  

the formalism used by OpenFlow with the common fields contained in an ACL entry. The ACL uses a list of 

ports affected by that entry. In this case, if a rules specifies an ingress port, its corresponding Boolean value is 

enabled in that list. If not, the list includes all switch ports. An important consideration about this port list is 

required. Indeed, when an ACL rules include a behavior that also affects an output port, that port should also be 
added to the monitored port list. The actions supported by the ACL table are: permit, deny, redirect and copy 

to CPU. An OpenFlow drop action is translated in a deny action of the ACL, including a list of output ports for 

which the action should be applied. An OF output to port action is converted in a ACL redirect action, while 

the output to controller produces the enabling of the copy_to_cpu flag. 

The process of moving a flow table entry to the hardware layer requires additional work if the table 

contains lower priority flow entries that (partially) overlap the newly installed flow entry. In these cases, 

together with the flow entry installation in the software layer, the Selective Offloading Logic decides to add 

them to the ACL table because the MAC table does not have a priority notion. Also, it performs an additional 

action that is the deletion of the flow table entries with lower priority, that are temporarily copied in the system’s 

memory and the installation of the new flow entry with the other previously copied. On the other hand,  

if the new rule has a lower priority compared with those already installed in the ACL, it is inserted at 
the end of the list without moving the others. The flow table entry deletion from a hardware table is,  

in principle, a faster and simpler operation, while the installation requires a reorganization of the previously 

installed entries. 

 

 

4. IMPLEMENTATION DETAILS 

The xDPd/ROFL library set provides a Hardware Abstraction Layer that aims at simplifying  

the support of OpenFlow on a new platform. The Platform Driver, shown in Figure 2, includes the Selective 

Offloading Logic together with implementations for the buffer pool and the software pipeline used internally 

to simplify the OpenFlow porting of the NXP platform. The Platform Driver, also, uses the ROFL-

pipeline library to implement an OpenFlow software switch and includes the logic to translate the OpenFlow 

messages coming from the controller in specific rules (if supported) for the hardware device. The main 
functionality provided by the driver, can be grouped in these 4 parts: (i) device and driver initialization,  

(ii) OpenFlow abstraction of the hardware switch, (iii) port status and statistics, (iv) packet-in and packet-out. 
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4.1.  Device and driver initialization 
The L2 Switch APIs provide an interface for accessing the physical registers of the underlying device, 

exposed to the user space applications through the kernel module described in Section 2.1. Writing these 

records allow us to program and control the behavior of the physical switch (insert flow rules, get statistics, 

change ports behavior, etc. . .). However, we also need to send/receive frames to and from each device port. 

The NXP Gigabit Ethernet switch core uses the MII (Media Independent Interface), which provides a Data 

interface to the Ethernet MAC for sending and receiving Ethernet frames, and a PHY management interface 

called MDIO (Management Data Input/Output) used to read and write the control and status registers. At start- 
up time, the driver performs some initialization steps. Firstly, it locates (usually under /dev/uioX) and opens 

the UIO device, obtaining its file descriptor. Subsequently, it calls the mmap function to map the device 

memory into userspace, hence providing access to the device registers. In the end, the MDIO physical 

registers and devices are opened and used to read and write Ethernet frames from the physical ports. 

 

4.2.  OpenFlow abstraction of the hardware switch 
An OpenFlow switch typically consists of several components. A virtual port module, which maps 

ingress and egress ports to some port abstraction, maintaining per-port counters; a flow table which performs 

lookups on flow keys extracted from packet headers; an action module, which executes a set of actions depend- 

ing on the result of the flow table lookup. Our implementation mirrors these elements to allow the proposed 

selective offload. During the initialization phase, our device driver discovers the physical ports available in 

the hardware switch and adds them to the xDPd physical_switch structure, which represents a simple 
ab- straction used to control a generic switch while hiding platform-specific features. xDPd partitions 

the physical switch into Logical Switch Instances (LSIs), also known as virtual switches. In this driver we use 

a one-to-one mapping between the physical switch and a single LSI, hence mapping the physical ports 

directly to Open- Flow physical ports. Since the OpenFlow controller can add or remove an OpenFlow 

physical port from the LSI, the LSI may contain only a subset of the hardware switch ports. 
 

4.3.  Port management 
The OpenFlow protocol includes also primitives to control and manage the status of the physical 

switch, such as reading the status of each port, add/modify/remove a port from the datapath, enable/disable 

forwarding, retrieve port statistics and more. The Platform Driver redirects these requests to the hardware 

switch once translated with the corresponding SDK API call. Furthermore, a controller can ask for port statistics 

(bytes received, dropped, etc. . .). Therefore the driver should read these statistics from the hardware switch 

and combine them with the similar stats of the software pipeline. As presented before, the OpenFlow physical 
ports of the LSI can be a subset of the hardware ports available in the switch; hence the Platform Driver keeps 

the explicit mapping between them, such as the fact that the hardware port #5 may actually corresponds to 

the OpenFlow port #2. When the controller sends a message referring to an LSI port, the driver retrieves 

the corresponding device port from an internal data structure and translates the OpenFlow command to 

the corresponding SDK API call. When the controller decides to modify the status of a single port, it sends 

an OpenFlow message that is received by the corresponding LSI. After parsing this message the ROFL-

pipeline library call the corresponding method in the ROFL-hal, which should be implemented by 

the driver. When the driver receives this call, it can retrieve the corresponding port structure. However,  

this structure contains a port number that could be different from the physical port number. In order to 

retrieve the right physical port, ROFL-hal allows to add a platform specific structure to the switch port t. 

In this way, when we retrieve the port we have also its corresponding physical port number. 

To provide a seamless compatibility with OpenFlow, the Platform Driver needs to implement also  
an asynchronous event handling mechanism, which is used to send the corresponding message to  

the OpenFlow controller (e.g., link detected, detached, etc. . .). However, while the SDK APIs provide 

several functions to query the switch for port status and statistics, they do not provide any asynchronous 

notification mechanism. Therefore, the Platform Driver uses a background task manager that checks every 

second the port status and, if necessary, notifies the xDPd Content and Management Module (CMM), which in 

turn passes this information to the OpenFlow controller. In short, the background task manager is used to 

check the following events: (i) expiration of a flow entry, (ii) free the space in the buffer pool when a packet 

becomes too old, (iii) update the port status and statistics and (iv) update the flow stats. 
 

4.4.  Packet-in and packet-out 
Packet-In and Packet-Out messages are a fundamental feature of the OpenFlow protocol. The Packet- 

In enables a controller to receive packets from the OpenFlow switch as a result of a specific match-action 

tuple, which allows context-aware forwarding. Similarly, a Packet-Out message enables a controller to inject 

a particular packet into the switch, hence generating ad-hoc traffic for specific purposes (e.g., management). 
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Handling Packet-in messages: The generation of a Packet-In message is a consequence of  

a redirect-to-controller action in the flow table, which requires copying the packet from the physical switch to 

the Platform Driver. When a new flow mod containing the redirect-to-controller action is received,  

the Selective Offloading Logic converts that action into a hardware-dependent rule with the redirect-to-cpu 

flag enabled, which is supported by both ACL and MAC table. In this way, such a packet is no longer passing 

through the L2 switch; instead, it is delivered to the CPU port (the port #10 in Figure 1) and stored in a specific 

CPU queue, as shown in Figure 4. At this point, the Platform Driver can read the packet using the SDK 

APIs, hence triggering the generation of the appropriate OpenFlow message toward the controller. Packets 

that do not have to go to CPU ports are handled entirely by the switch logic and do not require any CPU 

cycles and happen at wire speed for any frame size. However, since the Platform Driver does not receive any 
notification when the packet reaches the CPU queue, a new background frame extractor thread has been 

created that polls continuously the CPU queues for new packets. When a new packet is detected, it generates 

a Packet-In message and sends it to the OpenFlow controller through the xDPd Control and Management 

Module. Packet-in messages can contain either the entire packet, or only a portion of it. In the latter case,  

the message will contain only the packet headers plus a BufferID (automatically generated by platform driver 

and opaque to the controller) that identifies the precise buffer that contains the actual (whole) packet.  

The controller can use the above BufferID when a packet-out is generated, telling that the packet under 

consideration is the one identified with the given BufferID. The driver locks any buffer currently in use, hence 

preventing it from being reused until it has been handled by the controller or a configurable amount of time 

has passed, avoiding zombies and memory exhaustion. Since the hardware switch does not have enough 

memory to store all the above packets, we move them in the memory buffer pool provided by xDPd, 
implemented in the device memory and linked to the corresponding LSI. 

 

 

 
 

Figure 4. Packet-in and packet-out 

 

 

Handling Packet-out messages: Packet-Out messages are used by the controller to force a specific 

packet (e.g., the one received via Packet-in) to be sent out of a specified port of the switch. These messages 
contain a full packet or a buffer ID referencing a packet stored in the buffer pool. The message must also 

include a list of actions to be applied in the order they are specified; an empty action list drops the packet. 

When the Packet- Out message contains an action list with only an output action, the packet is retrieved from 

the local buffer and injected, using the hardware switch APIs, into a physical port of the switch. Otherwise, 

the packet is injected directly into the software switch pipeline, which contains the whole set of flow rules, 

including the ones that are offloaded to the hardware. In this way the above packet will always cross only  

the software pipeline even if it is compatible with the rules present in the hardware pipeline; the limited 

generation rate of packet out messages makes this behavior insignificant from the performance perspective. 

 

 

5. EVALUATION 
In this section we evaluate the SDN capabilities of the traditional home gateway, which consist in 

receiving OpenFlow messages and configure the forwarding behavior of the data plane accordingly.  

In particular, in Section 5.1. we validate the proposed hybrid architecture where part of the rules are 

offloaded in the hardware pipeline (if supported) of the L2 switch available in the home gateway and 

the remaining rules are processed by the software OpenFlow switch. Moreover, in Section 5.2. we evaluate 

the capability of the traditional home gateway to accelerate the Ipv4 IPSec forwarding, which represent 

a valuable scenario in home and enterprise networks, where the traffic between two different OpenFlow 

switches should be encrypted to avoid the risk that physical devices in the path might read or write 

the contents of the tunnel packets. 
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5.1.  xDPd driver evaluation 
For this test we used the experimental setup depicted in in Figure 5. A workstation acting as both 

traffic generator (source) and receiver (sink) with the sufficient number of Gigabit Ethernet ports has been 

connected to the NXP hardware platform under test, i.e., the one presented in Section 2.1. Traffic is generated 

with the DPDK version of Pktgen [14], which has been modified in order to send traffic with the proper network 

parameters (e.g., MAC addresses) required by the specific test. In particular, we used DPDK 17.02.0-rc0 and 

Pktgen 3.0.17. In addition, a second workstation hosts the open source Ryu [15] OpenFlow controller, which 

is connected to a WAN port that is not terminated on the hardware switch of the NXP board. For our tests, 
we used the L2 learning switch application (called simple switch.py), whose behavior is the following: firstly, 

after the connect is established with the OpenFlow controller, the application installs a default rule in 

the flow table of the switch to redirect all packets to the controller. After that, the switch starts generating 

Packet-In messages for all packets received; then, the controller reads the source MAC addresses of the received 

packets and installs a new forwarding rule in the hardware switch as soon as a new MAC address is recognized 

(through a specific flow mod) message). The operating system of the T1040 is compiled with the version 1.7 of 

the NXP SDK and uses the Linux kernel version 3.12.19; xDPd has been installed in order to implement 

the OpenFlow pipeline. In fact, two different versions of xDPd are used; the first one is compiled with 

the support for our offloading driver, which can offload the supported rules to the hardware switch according to 

our proposed architecture. The second version is a vanilla xDPd compiled with the GNU/Linux driver, where 

the OpenFlow pipeline is implemented entirely in software. 

 
 

 
 

Figure 5. Test scenario with the ryu OF controller and the forwarding;  

(a) with the implemented driver (green path), (b) with the software xDPd pipeline as a reference (blue path) 
 

 

5.1.1. Experiment scenario 
To understand the gain we can get from the hardware switching and processing, we performed 4 differ- 

ent experiments where we compare the application processing performance of a standard OpenFlow software 
switch implementation against our architecture that implements the proposed Selective Offloading algorithm. 

The goal of this experiment is not to show how the hardware can outperform the software, which is evident. 

Instead, we aim at demonstrating that (i) using the hardware available in the platform we can reduce the CPU 

processing that consequently becomes free for other tasks, and (ii) that we can introduce more flexibility to 

the platform, potentially enabling to support rules that are not natively supported in the hardware, while still 

leveraging the hardware for fast offloading, in a way that is completely transparent to the forwarding 

application. Our tests measure the throughput of the switch in two different operating conditions. First, we 

usedthe Port-based VLAN functionality, as described in Section 2.1. to redirect all the packets received by  

the hardware switch to the internal CPU, maintaining ingress port information and avoid switching in  

the L2Switch. This is used as a benchmarking, since it provides a simple way to introduce OpenFlow support 

in a traditional switch by moving all the processing in software. Second, we tested our offloading driver by 

selectively moving all the supported rules into the hardware switch, hence providing a more optimized way 
to bring OpenFlow support to an existing switching ASIC. 

In the first two tests (Section 5.1.2. and 5.1.3.), we calculate the performance of the different driver 

implementation in terms of maximum throughput and we evaluate how this is affected by the number of ports 

involved into the processing and the size of the received packets. In particular, we report the throughput in 

million packets per seconds (Mpps) and the corresponding CPU and RAM consumption in the home gateway. 

On the other two tests (Section 5.1.4.), we take into account a scenario where only a part of the rules can be 

offloaded into the hardware device, while the unsupported ones are handled in the software OpenFlow pipeline. 
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5.1.2. SimpleSwitchapplication: forwarding between two ports 
In the first test, PC1 and PC2 exchange a bidirectional traffic flow at the maximum speed (2 x 1Gbps). 

When the rules are installed correctly, the overall throughput of the system is depicted in Figure 6a, which 

shows that our driver leads to a significant performance improvement compared to the software-only version. 

In fact, we can notice that the line rate is never reached when the switching is performed entirely in software, 

likely due to the overhead caused by copying the packet data from user-space to kernel-space memory and 

vice versa. With our driver, the switching is performed entirely in hardware at line rate, as shown by the line 

associated to the throughput of the xDPd hardware, which is completely overlapped with the line rate. 

 

5.1.3. Simple Switch application: forwarding between all ports 
In the second experiment, we used a third machine PC3 equipped with a quad-port Intel I350 Gigabit 

Ethernet NIC, which was installed also in PC1. The four ports on PC1 are connected to the first four ports 

of the switch, while the remaining ports are attached to PC3. Both PC1 and PC3 generate bidirectional traffic 

using Pktgen DPDK at the maximum rate, with the same L2 Switch Ryu application used before. Results are 

shown in Figure 6b, with confirms that the hardware is still able to perform at line rate for whatever packet 

size, while the software is still very much beyond that throughput. It is worth noting that the line rate cannot 

be reached even in case of a more powerful CPU, as this component is connected to the switching hardware 

with a maximum aggregated bandwidth of 5Gbps, given by the two FMAN ports. Instead, the physical ports 

connected to the switch account for 8 Gbps of bidirectional traffic, i.e., 16Gbps, which is almost three time 

the capacity of the internal paths. 

Figure 6c and 6d compares the CPU load between the xDPd GNU/Linux pure software implementa- 
tion and the same values using the implemented driver. In the second experiment, where all ports receive frames 

at the maximum rate, the software xDPd implementation consumes almost all available CPU in the platform 

(4.0 on a quad core represents 100% utilization), given that every flow is handled by the system CPU. 

Comparing this result with the L2switch hardware driver confirms that, the use of the hardware device to 

perform the packet switching does not involve the CPU, which can be utilized by the other system 

processes. Of course, there are optimized OpenFlow switch implementations (OvS-DPDK or xDPd-DPDK) 

that use a software approach to obtain significant values of throughput. However, these technologies require 

too many resources (i.e., CPU cores) that would be prohibitive in a residential CPE, whose cost is a very 

important parameter to consider. 
 

 

  
(a) 

 

(b) 

  
(c) (d) 

 

Figure 6. Performance comparison between xDPd with the hardware pipeline and software pipeline 
(Simple Switch OpenFlow application), (a) Forwarding between 2 ports, (b) Forwarding on all ports, 

(c) CPU consumption hardware pipeline, (d) CPU consumption software pipeline 
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5.1.4. Firewall REST application: hybrid hardware-software processing 
In this second set of tests we have deployed the Ryu firewall rest.py application, which con- sists in 

a simple firewall that filters flows based on different type of matches on the packet headers (e.g., desti- nation 

IP address, Ethernet protocol type, TCP/UDP port). In particular, we evaluated two different scenarios where 

(i) the number of flow entries installed by the OpenFlow controller is equal to the maximum number of 

entries supported by out switch hardware tables (i.e., 2K) and (ii) the number of entries installed by 

the controller (i.e., 4K) exceeds the maximum number of supported flows in the hardware switch tables. 

In the latter case, only a specific set of rules is offloaded in the hardware switch, while the remaining ones are 
processed by the software switch pipeline. Moreover, it worth noting that in the fist scenario where  

the number of entries is equal to 2K, the number of offloaded rules can vary depending on the complexity of 

matches required by the OpenFlow controller since they will be offloaded in the hardware ACL table of  

the switch. 

Figures 7 (a and b) show respectively the throughput achieved by our xDPd driver implementation  

(i.e., xDPd HW) against the software-only implementation (i.e., xDPd SW). Compared to the previous 

scenario, the forwarding throughput of this application is not equal to the maximum achievable throughput, 

since not all the rules can be offloaded into the hardware device; as consequence, the remaining rules will be 

handled by the software switch that is running in the device’s CPU. This performance degradation is more 

evident when the number of installed rules increases; in this case, the slower processing in the software 

pipeline impacts more on the overall performance. Nevertheless, the advantages of exploiting the hardware 

pipeline are still conspicuous compared to the software pipeline both in terms of throughput and CPU 
consumption, as shown in Figure 7 (c and d). 

 

 

  
(a) (b) 

  
(c) (d) 

 

Figure 7. Performance comparison between xDPd with the hardware pipeline and software pipeline  

(Firewall REST OpenFlow application), (a) Forwarding with 2K OpenFlow firewall rules, (b) Forwarding with 

4K OpenFlow firewall rules, (c) CPU consumption hardware pipeline (4K rules),  

(d) CPU consumption software pipeline (4K rules) 

 

 

5.2.  IPSec hardware acceleration 
In this test, we evaluate the capability of the device to handle IPSec traffic at high speed, given 

the hardware accelerations available in the device. In fact, a network administrator is usually connected 

to a CPE via an IPSec tunnel to safety the connection; IPsec encrypts IP payload and prevents the malicious 

party sniffing or manipulating the tunnel traffic. However, it introduces a non negligible overhead to 
the device that has to encrypt and decrypt the traffic, which is a costly operation. We demonstrate that this 

overhead can be significantly reduced by exploiting the hardware acceleration available within the device,  

in order to handle the IPSec tunnel in hardware without the intervention of the switch CPU that is free to 

handle other tasks. 
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5.2.1. Experiment scenario 
The scenario used in this test is similar to the one depicted in Figure 5; the only difference is that 

two different home gateways (with our Selective Offloading architecture) were used. The first one receives 

the traffic from PC1, which acts as packet generator (using Pkgen-DPDK) and produces a stream of 

packets at different sizes, then it encrypts the traffic and forwards it through an IPSec ESP tunnel to 

the second T1040 device, which decrypts the traffic and forwards it back to the packet generator, which 

counts the total number of packets received. The Ryu controller is used to setup the tunnel between the two 

SDN-enabled CPEs. 
 

5.2.2. Results 
Figure 8 shows the maximum throughput achievable for the IPSec ESP tunnel scenario without 

the hardware acceleration (Figure 8a) and with the hardware acceleration (Figure 8b) available in 

the platform. As expected, the hardware acceleration provides a considerable improvement in the IPSec 

forwarding perfor- mance. In fact, we can notice that for packets larger than 256Bytes, the hardware 

acceleration can bring to line rate forwarding, while for smaller packets (i.e., 64 and 128Bytes) there is still 

a performance loss even with the acceleration enabled. 

 
 

  
(a) (b) 

 

Figure 8. UDP Throughput comparison for IPSec tunnel encapsulation when using the hardware acceleration 

available in the device, (a) IPSec forwarding performance without acceleration, 

(b) IPSec forwarding performance with hardware acceleration 

 

 

6. RELATED WORK 

While OpenFlow is an evolving technology, a lot of attention has been paid to improve 

the OpenFlow switching performance using hardware components. Several works [16-21] focused on 
the idea of offloading OpenFlow packet processing from the host CPU level to onboard NIC hardware using 

FPGAs or Network Processors (NPs). Tanyingyong et al. [22] used a different approach based on a regular 

commodity Intel NIC rather than specialized NICs with FPGAs or NPs. In particular, they used the Intel 

Ethernet Flow Director component in the NIC [23], which provides filters that redirect packets, according to 

their flows, to queues for classification purposes, so as to be subsequently sent to a specific core into the host 

CPU for further processing. Although these works improved the lookup performance of the OpenFlow 

switching, they focused more on the software-based OpenFlow switching, as the only hardware-based feature 

used in the above prototypes was the hardware classifier available on selected network interface cards 

(NICs). During years, several companies tried to bring OpenFlow on their switch ASIC. The OpenFlow Data 

Plane Abstraction (OF-DPA) software defines and implements a hardware abstraction layer that maps 

the pipeline of Broadcom silicon switches to the OpenFlow 1.3.4 logical switch pipeline, utilizing 

the multiple device tables available in physical switches. This requires the controller to parse the hardware 
description contained in the Table Type Pattern (TTP) [24] to understand the capabilities and availability of 

hardware resources. Our work is based on a different concept. We expose to the controller a fully 

programmable OpenFlow switch, moving to our switch implementation the task of deciding which rules can 

be offloaded into the hardware. A similar idea has been presented by Netronome [25], which accelerates 

a software OpenFlow implementation (Open vSwitch) using a programmable network processor (NPU). 

However, being NPUs programmable, do not have the many limitations that we can encounter in existing 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 10, No. 3, June 2020 :  2668 - 2681 

2680 

hardware switching ASICs. Finally, several commercial solutions are now available that transform selected 

hardware switch ASICs into OpenFlow-compatible devices. However, at the time of writing, no open source 

implementations are available that provide an insight about how this translation is done internally 

and how the OpenFlow messages (e.g. Packet-In, Packet-out,...) can be implemented in presence of  

an hardware pipeline. 

 

 

7. CONCLUSION 
In this paper we proposed an architecture to transparently offload OpenFlow rules into a traditional 

home gateway, allowing this device to receive SDN commands from a centralized controller and export 

the statistics of the matched traffic. This is done without upgrading the existing hardware and using 

a platform without SDN support. Our solutions is able to select the correct set of OpenFlow rules that can be 

offloaded into the hardware device, taking into account the different hardware pipeline of the L2-switch 

integrated into the platform. We perform a static analysis on the ruleset in order to keep the same priority and 

rule semantic of the original ruleset; if the result of the analysis is negative, the rule is not offloaded and 

continues to be handled into the software pipeline running on the device CPU. 

We present the implementation details of an userspace driver for xDPd, a multi-platform OpenFlow 

switch, that accesses to the hardware switch registers to implement (when possible) forwarding decisions 

directly in the hardware pipeline, although the latter is not OpenFlow compliant. We illustrate the design 

choices to implement all the core functionalities required by the OpenFlow protocol (e.g., Packet-in, 
Packet-out mes- sages), and then we present an experimental evaluation of the performance gain we can 

achieve with the hard- ware switching and classification compared with the software-only counterpart. 

As expected, our driver imple- mentation shows a net performance advantage in terms of throughput and 

CPU consumption compared to the software-only implementation, thanks to its capability to exploit 

the existing non-OpenFlow hardware avail- able in the platform. Of course, the capability to exploit 

the hardware available depends also on the type of rules installed in the OpenFlow switch; in fact, 

if the OpenFlow ruleset contains a set of rules that cannot be offloaded into the device, our driver 

implementation redirects the conflicting packets into the software pipeline, where they will be processed by 

the slower CPU of the system. This can impact on the overall performance of the system, although it still 

retains better efficiency compared to the software-only approach. Moreover, we demonstrated that our 

architecture is also able to exploit other hardware speedup available in the traditional home gateway such as 
the IPSec encryption and decryption hardware module, which is transparently exploited when the OpenFlow 

controller sets up the appropriate tunnel. This performance gain is significant particularly in residential 

gateways where the limited resources can be a barrier for providing flexible network services, and that are so 

widely deployed in the nowadays Internet as home/business gateways that looks economically challenging to 

replace them with a new version with native OpenFlow support in hardware. 
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[22] Tanyingyong, V., Hidell, M., and Sjödin, P., "Using hardware classification to improve pc-based openflow 
switching. In High Performance Switching and Routing (HPSR), 2011 IEEE 12th International Conference,  
pp. 215-221, 2011. 

[23] Intel Corporation, "Intel ethernet flow director and memcached performance White Paper," Intel Corporation, 2014. 
[Online]. Available: https://intel.ly/2nQ4m2i 

[24] Nabil Damouny, et al., "Simplifying OpenFlow Interoperability with Table Type Patterns (TTP)," Open 
Networking Foundation (ONF), 2015. 

[25] Rolf Neugebauer, "Netronome. Selective and transparent acceleration of OpenFlow switches," Netronome, 2013. 

 

 

BIOGRAPHIES OF AUTHORS  

 

  

Sebastiano Miano is pursuing his Ph.D. degree at Politecnico di Torino, Italy, where he received 
his Master’s degree in Computer Engineering in 2015. His research interests include 
programmable data planes, software defined networking and high-speed network function 
virtualizations. 

  

 

Fulvio Risso received the M.Sc. (1995) and Ph.D. (2000) in computer engineering from 
Politecnico di Torino, Italy. He is currently Associate Professor at the same University.  
His research interests focus on high-speed and flexible network processing, edge/fog computing, 
software-defined net- works, network functions virtualization. He has co-authored more than 100 
scientific papers 
 

  

 

https://web.archive.org/web/20191219112812/https:/bisdn.github.io/rofl-core/rofl-common/index.html

