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Abstract

This paper presents a novel numerical framework to simulate the progressive delamination in lam-

inated structures based on 1D component-wise models. The proposed numerical tool is a part of

the virtual testing platform built within the Carrera Unified Formulation, a hierarchical, higher-

order structural framework to generate theories of structures via a variable kinematic approach.

Formulated within the Lagrange polynomial CUF models, the component-wise approach models the

components of a complex structure through 1D CUF models at reduced computational costs and

3D-like accuracies. The effectiveness of CUF-CW models to capture accurate 3D transverse fields

are of interest to solve delamination problems by integrating a class of higher-order cohesive el-

ements to simulate the cohesive mechanics among the various components of the structure. The

present framework adopts a bilinear constitutive law based on the mixed-mode delamination propa-

gation and an efficient arc-length solver based on an energy-dissipation constraint. The numerical

results aim to verify the accuracy and computational efficiency of CUF-CW models through bench-

mark composite delamination problems including multiple delamination fronts and comparisons

with reference literature solutions and standard 3D FEM models. The outcomes show multi-fold

improvements in the analysis times, good matches with experimental results, and promising en-

hancements of the meshing process due to the absence of aspect ratio constraints.

Keywords: Delamination, FEM, Carrera Unified Formulation, Laminated composites, higher-

order models



1 Introduction

The delamination is one of the most dominant forms of failure in laminated composites. It often

arises due to events leading to barely visible damages, such as run-way debris impact or tool-drop

during maintenance [1, 2]. Also, high inter-laminar stresses lead to through-the-thickness failures

triggered by high localized effects due to geometric - e.g., stiffener terminations, free-edges - or

material discontinuities - such as ply drop-off [1]. Since delamination can result in significant

alterations of the load-bearing capacity of composite structures, especially under compression, un-

derstanding and predicting the onset and propagation of delamination events is crucial.

Within the finite element method (FEM), cohesive zone based models are common tools for the

interface modeling in composites. Originally conceived by Dugdale [3] and Barenblatt [4], the

cohesive fracture concept assumes the existence of a zone around a crack tip which separates the

undamaged and delaminated zones of the interface. Hillerborg et al. first introduced the con-

cept of cohesive zone modeling within FEM by developing a traction-separation law for estimating

the strengths of unreinforced concrete beams [5]. Since then, several contributions addressing

the cohesive zone modeling technique have followed including applications for ductile metals [6],

bio-mechanics [7] and mixed-mode delamination in composites [8, 9, 10, 11]. The Virtual Crack

Closure Technique (VCCT) is another approach based on the linear elastic fracture mechanics

often introduced within FEM [12, 13] requiring a predefined initial crack [14].

A precise delamination analysis involves the accurate resolution of the transverse stress field.

Nowadays, the standard approach exploits computationally intensive three-dimensional (3D) or

layer-wise two-dimensional (2D) FE models, thereby limiting their applicability at early design

stages and simple geometries. Also, cohesive-based FE analyses have some shortcomings includ-

ing the requirement of extremely refined meshes near the cohesive zone and convergence issues,

specifically along the descending branch of the equilibrium path. Turon et al. proposed a set of en-

gineering solutions to overcome some of the issues of the cohesive modeling within standard FEM,

including a closed-form expression for the penalty stiffness estimation and cohesive strength based

on the mesh density [15]. Such a formulation is scalable for large-scale progressive delamination



problems. Xie and Waas proposed a discrete cohesive zone model (DCZM) to model delamination

effectively [11]. DCZM uses rod elements to enforce the cohesive law, unlike the traditional con-

tinuum cohesive elements. FE within the scheme of the isogeometric analysis using B-splines and

NURBS can model delamination [16, 17, 18]. Nguyen and coworkers demonstrated the effectiveness

and robustness of higher-order FEM built within the isogeometric framework for various 2D and

3D delamination problems [16, 17]. In recent years, several authors have contributed towards the

development of 1D FE coupled with refined zig-zag theory (RZT) for problems accounting for the

delamination onset and propagation [19, 20]. Eijo et al. presented a numerical tool based on RZT

to simulate the mode II delamination in laminated beams. Groh and Tessler introduced a class of

computationally efficient beam models using a mixed form of RZT to capture the displacement and

stress fields for composite laminates around embedded delaminations [20]. A 2D FE formulation

for multi-layered beams under mixed-mode delamination problem is in Škec et al. [21].

Some of the attempts related to convergence issues include the introduction of a viscous regular-

ization technique [22] and development of new classes of arc-length based solvers catering to the

needs of fracture problems [23, 24]. Alfano and Crisfield introduced a new class of local arc-length

methods in combination with a line search technique to significantly improve the robustness and

efficiency of FE delamination solutions [23]. A numerically efficient solver based on the LaTIn

domain decomposition method is of Allix et al. for problems involving multiple simultaneous

delaminations [25]. A dissipation-based arc-length scheme by Gutiérrez is a tool for the robust

simulation of fracture, in which the arc-length constraint uses the total energy-release rate [24].

Since the dissipated energy is a global quantity, no a priori selection of the zone or degree of

freedom (DOF) is necessary, and the scheme provides stable convergence behaviors [26]. Such a

scheme proved its validity for delamination and multiscale analyses of heterogeneous structures

[16, 27].

The aim of this is to use a new class of higher-order 1D structural models for the progressive

delamination analysis of laminated composites. The interface modeling capabilities stem from the

Carrera Unified Formulation (CUF), a hierarchical formulation that provides a structured basis



for generating different classes of structural theories by varying the kinematic definitions [28]. The

component-wise (CW) approach [29] efficiently models the cohesive kinematics and simulate the

interface behavior. The ability of CUF-CW models to accurately describe in-plane and transverse

stress fields is the tool to model the onset and propagation of delaminations together with a bilinear

mixed-mode cohesive constitutive model. The current work is an extension to the applications of

CUF models for a class of nonlinear problems including bucking and post-buckling analyses [30],

physically nonlinear models for metals and composites [31, 32], and micromechanical progressive

failure analysis in composites [33].

The remainder of the paper is organized as follows: Section 2 elaborates on the 1D cohesive for-

mulation within CUF. The section also discusses details of the mixed-mode cohesive constitutive

law and dissipation-based arc length implementations. Numerical results are presented in Section

3 and conclusions are drawn in Section 4.

2 1D cohesive formulation

1D CUF models provide theories of structures via cross-sectional expansion functions Fτ (x, z) [28],

u = uτ (y)Fτ (x, z), τ = 1, ....,M (1)

where M is the number of terms in the expansion function. The choice of the expansion and its

order does not affect the governing equations of the formulation. For instance, various classes of

expansion functions are implementable, such as Taylor, Lagrange and Legendre polynomials, and

trigonometric or exponential functions, but no formal modifications of the equations are necessary.

This works adopted Lagrange polynomials, henceforth referred to as LE models, leading to a purely

displacement-based higher-order model. Based on the original work by Carrera and Petrolo on

LE models [29], the present paper exploits the modeling approach referred to as the CW to model

various components of the problem.



2.1 Cohesive kinematics
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Figure 1: Description of the cohesive formulation

Let us consider a solid domain Ω bounded by Γ and containing a cracked zone Γc, as shown in

Fig. 1. The essential boundary conditions act along the boundary Γu and prescribed tractions ti

act along Γn. The domain Ω has two sub-domains, Ω+ and Ω−, along the crack boundary Γc, as

depicted in Fig. 1. The governing equilibrium equations for the quasi-static problem are

σij,j + bi = 0 in Ω (2)

ui = ū in Γu, σijnj = ti in Γn

σijn
+
j = τ+

i = −τ−i = −σijn−
j n

−
j in Γc

where σij is the Cauchy stress field within the domain due to the external loading ti with normals

to Ωn denoted by ni. Ωn is the boundary along which traction force ti is prescribed and Ωmathrmc

in the boundary surface between the two sub-domains. bi are the body forces, ū are the prescribed

displacements along the Dirichlet boundary Γu and τ+
i , τ−i are the closing tractions acting along

the crack domain Γc. Via the the Principle of Virtual Displacements (PVD) and accounting for



the additional contributions due to the cohesive crack,

δLint + δLcoh − δLext = 0 (3)

δLint =
∫

Ω
δε : σ dV

δLcoh =
∫

Γc
δ[[u]] · τdΓc

δLext =
∫

Ω
δu · bdΩ +

∫
Γn
δu · t dΓn

where δ indicates the virtual variation, Lint, Lcoh and Lext refer to the bulk strain energy, work

due to the cohesive crack and the external loading, respectively, and [[u]] denotes the displacement

jump across the cohesive surface. The kinematics of the interface stems from the displacement

jump across the interface boundary [34],

[[ui]] = u+
i − u−i (4)

where u+
i and u−i denote the displacements in direction i on the upper (Ω+) and lower surface

(Ω−) of the interface. As depicted in Fig. 2, a six-node cohesive Lagrange cross-section elements
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Figure 2: Six-node cohesive Lagrange cross-section elements (CS6)



is introduced with expansion function expressed as:

u+ = F1u4 + F2u5 + F3u6

u− = F1u1 + F2u2 + F3u3

F1 = 1
2ξ(1− ξ)

F2 = −(1− ξ)(1 + ξ)

F3 = 1
2ξ(1 + ξ)



ξ1 = −1

ξ2 = 0

ξ3 = 1

(5)

2.2 Cohesive constitutive modeling

This work adopted the mixed-mode cohesive constitutive modeling of Camanho and his coworkers

[10, 35]. Formulated within the scheme of damage mechanics, the cohesive constitutive law relates

the cohesive traction tj to the displacement jump ∆j in the local coordinate system as follows:

tj = (1− d)D0
ij∆j − dD0

ijδ3j < −∆3 > (6)

where d is the damage variable, < · > the MacAuley bracket and D0
ij the initial stiffness tensor

defined as a function of the penalty parameter K and Kronecker delta δij,

D0
ij = δijK (7)

The second term in Eq. 6 prevents non-physical post-decohesion interfacial penetrations. The

damage variable d makes use of a damage criterion built within the equivalent displacement jump

space,

F (λt, rt) = G(λt)−G(rt) ≤ 0 ∀ t ≥ 0 (8)

where t denotes the quasi-static time and rt is the damage threshold for the current time. Based

on the mixed-mode bilinear constitutive formulation, G is

G(λ) =
∆f(λ−∆0)

λ(∆f −∆0)
(9)

dt = G(rt) ∀ rt = max
s

{
r0, λ

}
0 ≥ s ≥ t (10)



where ∆0 and ∆f are the equivalent displacements at the damage onset and complete failure (d=1)

respectively, which are functions of mode I (GIc) and mode II (GIIc) fracture toughness, mode

mixity and an experimentally obtained parameter η. λ is the current equivalent non-negative

displacement jump. As depicted in Fig. 3, the propagation criteria stems the formulation by

Benzggagh and Kenane [36],

Gc = Gc
I + (Gc

II −Gc
I)

(
Gc

I

GT

)η
, GT =

GII

GI +GII

(11)

The displacement jump criterion is

t
t

t
t

t
t

1 2

3

Figure 3: Bilinear mixed-mode cohesive criteria [36]

∆0 =
√

∆2
3 + (∆2

shear −∆2
3)Bη (12)

B =
Gshear

GT

, ∆shear =
√

∆2
I + ∆2

II, Gshear = GI +GII (13)



The tangent constitutive matrix derives by the differentiation of the traction-displacement relation

in Eq. 6 [35],

ṫ = Dtan
ij ∆̇j (14)

Dtan
ij =


{
Dij −K

[
1 + δ3j

<−∆j>

∆j

] [
1 + δ3j

<−∆i>
∆i

]
H∆i∆j, r < λ < ∆f

}
Dij, r > λ or ∆f < λ

where H is the scalar parameter defined as

H =
∆f∆0

(∆f −∆0)λ3
(15)

2.3 Finite Element Formulation

The 3D displacement vector reads

u(x, y, z) = {ux uy uz}T (16)

The stress and strain states are

ε = {εxx εyy εzz εyz εxz εxy}T σ = {σxx σyy σzz σyz σxz σxy}T (17)

With small strain assumptions, the linear strain-displacement relations and stress-strain law are

ε = bu, bT =


∂x 0 0 0 ∂z ∂z

0 ∂y 0 ∂z 0 ∂x

0 0 ∂z ∂y ∂x 0

 ; σ = C ε (18)



where b is the differential operator and C is the matrix of the material elastic properties. By

employing standard FE shape functions, the generalized displacement field is

u (x, y, z) = Ni(y) Fτ (x, z) uτi(y) ∀ τ = 1, 2, . . . ,M i = 1, 2, . . . p+ 1 (19)

uτi = [uxτi uyτi uzτi ] (20)

where Ni is the beam shape function of order p and uτi is the nodal displacement vector. The

choice of the shape function order p and the order of the expansion function terms M remain

independent and are input of the analysis. Similarly, the displacement field on the upper and

lower face of the CS element is

u+ = FτNiu
+
τi u− = FτNiu

−
τi [[u]] = FτNi (u+

τi − u−
τi) (21)

where u+ and u− are the displacements along the upper and lower edges of the CS element,

respectively. Therefore, the equilibrium equations (Eq. 3) in terms of FE matrices become

kbulk
ijτsuτi + kcoh

ijτs[[uτi]]− pτi = 0 (22)

where kbulk
ijτs and kbulk

ijτs refer to the Fundamental Nuclei (FN) of the bulk and cohesive stiffness matrix,

respectively, and the FN for the external loading is pτi. For the sake of conciseness, readers may

use the book by Carerra et al. for detailed information on the derivation and implementation of

FNs for the bulk stiffness matrix and external loading [28]. Based on Eq. 3, FN of cohesive forces

are

f+
cohτi

=

∫
Γc

FτNi u
+
τi t

+dΓc f−
cohτi

=

∫
Γc

FτNi u
−
τi t

−dΓc (23)

To formulate the fundamental nuclei of the cohesive tangent matrix, the rate form of the cohesive

constitutive law is (Eq. 14)

ṫc = QDtan QT[[u̇]] = QDtan QT FτNi (u+
τi − u−

τi) (24)



where Q is the orthogonal transformation matrix used for the transformation between the local and

global system for cohesive elements. FN for the cohesive tangent matrix stems from the linearizion

of the cohesive force vector (Eq. 23),

kcoh
ijτs =

∫
Γc

FτNiQDtan QTFsNjdΓc (25)

The integration of cohesive elements via the standard Gauss quadrature leads to responses with

spurious oscillations, especially when large stress gradients are present across a cohesive element

[37]. The present work made use of the Newton-Cotes integration scheme for integrating the FN

tangent stiffness matrix and internal force vector. The discrete equation in weak form is

f int + f coh − f ext = 0 (26)

where f int , f coh and f ext denote the global vectors for internal, cohesive and external forces,

respectively.

Based on the works of Gutiérrez, this paper adopted an arc-length solver with a path-following

constraint based on the energy release rate [24, 26]. Therefore, the global system of equation reads

f int(u)− λf ext

g(u, λ)

 = 0 (27)

where f int(u) includes contributions from bulk as well cohesive finite elements and g is the energy-

release constraint equation expressed as

g =
1

2
fT
ext(λ0∆u−∆λu0)−∆τ (28)

where fT
ext is the global unit external force vector, ∆τ is the dissipation path parameter, λ0 and

u0 are the last converged load factor and displacement vector, respectively. The amount of energy

dissipated during a given load increment is always a monotonically increasing quantity. To avoid



numerical issues in non-dissipative regions - such as pure elastic loading - the implementation

used a switching algorithm via threshold values. The algorithm switches to displacement/force

controlled loading during non-dissipative regions and to dissipation-controlled according to the

energy threshold. In addition, the path parameter, ∆τ , varies during the course of computation

to limit the number of steps required to minimum without any cut-backs. Given the optimal value

of iterations per increment kopt, the path parameter for a given increment i is [24]

∆τ i = ∆τ i−1 kopt

ki−1
(29)

where ki−1 refers to the number of iterations required in the last converged load step.

3 Numerical results

This section presents three study cases, namely, the End Notch Flexure test (ENF) with a pure

mode II delamination propagation, the mixed-mode bending test (MMB) with two mode-mix

ratios, and a composite specimen with multiple delamination fronts. Unless otherwise specified,

the results from 1D and 3D FE were obtained from in-house codes.

3.1 ENF test

This section aims to verify the accuracy and performance of the implemented cohesive model.

The material is isotropic as in the analytical solution from [9], see Table 1. Figure 4 illustrates

the geometry and boundary conditions of the specimen. Contact elements along the initial crack

surface avoid the inter-penetration. The solution scheme made use of the energy-based arc-length

method with an initial lambda λ0 of 50 and a unit force applied as P. The final displacement, uz is

3.5 mm. CUF models for this case have 4L9-2CS6 and 6L9-3CS6 cross-section discretizations,

as shown in Fig. 5. 3D FEM models served as verification tools via standard linear brick elements,

see Table 2 showing also DOF and the total analysis time for all models.

Figure 6a depicts the comparison of equilibrium curves from 3D FEM models, 4L9-2CS6, and the
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Figure 4: Geometry and loading for ENF

Table 1: Material properties for ENF

Bulk material Cohesive material

E ν τ1 K GIIC

(GPa) (-) (MPa) (Nmm-3) Nmm-1

150.0 0.25 80.0 106 1.45

4L9-2CS6 6L9-3CS6

Bulk element (L9)

Coheisve element (CS6)

Figure 5: Cross-section meshes for ENF
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Figure 6: ENF, comparison of equilibrium curves for (a) 4L9-2CS6 and 3D FEM models and (b)
4L9-2CS6 and 6L9-3CS6



Table 2: Model information for ENF specimen test

Model Description DOF Analysis time (s)

4L9-2CS6
Cross-section has 4L9 bulk elements with 2 CS6 co-
hesive elements, see Fig. 5. The beam has 80 B4
elements.

21690 383

6L9-3CS6
Cross-section has 6L9 bulk elements, i.e., three per
layer, with 3 CS6 cohesive elements, see Fig. 5. The
beam has 80 B4 elements.

30366 666

3DFEM - Coarse
Linear brick elements with a mesh density of 4 × 240
× 4 and 4 × 240 cohesive elements.

21690 420

3DFEM - Refined
Linear brick elements with a mesh density of 4 × 360
× 4 and 4 × 360 cohesive elements.

32490 893

(a)

(b)

(c)

Figure 7: ENF, σyy (MPa) for 4L9-2CS6 model at various load values, (a) P = 30.08 N, (b) P =
228.4 N and (c) P = 280.3 N



analytical solution developed by Mi et al. [9]. The paths from Different CUF cross-section models

are in Fig. 6b. The deformed configuration along with σyy are Fig. 7 for the 4L9-2CS6. The

results suggest that

1. The comparison with the analytical solution proved the accuracy of the present 1D formula-

tion.

2. The coarse and refined 1D models provide almost identical results matching the refined 3D.

The coarse 3D, on the other hand, tends to overestimate the equilibrium curve.

3. The coarse 1D model and the refined 3D provide the same accuracy, but the former requires

half the computational time. The absence of aspect ratio constraints in the 1D formulation

permits to use coarser meshes than 3D and with higher-order expansions. Therefore, locally,

the displacement and stress fields have higher resolutions than the 3D models.

3.2 MMB test

The MMB is a widely adopted standardized testing method (ASTM-D5528) for characterizing the

mixed-mode fracture toughness in laminated composites for any mixed-mode ratio [38]. Different

mode ratios stem by varying the loading arm length c with the Double Cantilever Beam test (DCB)

and ENF as border cases. The present investigation exploited the experimental and numerical

investigations of Camanho et al. [10] for verification purposes. Figure 8 depicts the geometry and

boundary conditions. The material is a unidirectional AS4/PEEK carbon-reinforced composite

with fibers oriented along the beam direction, see Table 3 for properties. The mode-mix ratios

Pm,um

L = 102 mm

w = 25.4 mm 

t = 3 .02mm 

Initial crack (with contact)Cohesive elements

Pe,ue

a0

y

z

x

Figure 8: Geometry and loading for MMB

are 0.5 and 0.8. Table 4 enlists the geometric properties and applied loading conditions for each



Table 3: Material properties for MMB

E11 E22=E33 G12=G13 G23 ν12 = ν13 GIC GIIC τ3 τ2 K0

(GPa) (GPa) (GPa) (GPa) (-) (Nmm-1) (Nmm-1) (MPa) (MPa) (Nmm-3)

122.7 10.1 5.5 3.7 0.25 0.969 1.719 80 100 106

ratio. As in Table 5, the numerical results used two CUF models. Similar to the previous numerical

case, contact elements avoided the inter-penetration of the initial crack surface. Based on the rigid

body motion assumption for the loading arm, the load-point displacement u is [10, 39]:

u =
2c+ L

L
um −

2c

L
ue (30)

where um and ue are the displacements obtained at the middle and end of the specimen, see Fig.

8. The energy-based arc length method was the solution scheme with an initial lambda λ0 of 10

and 25 for mode-mix ratios of 0.5 and 0.8, respectively. The analysis ended at 6.5 mm and 6.1

mm. Balzani used 3D FE models mixed-mode delamination [39] whereas Camanho 2D ones

Table 4: Geometric properties and load values for different mode-mix ratio for MMB test [10, 39]

GII/GT Gc a0 c Pm Pe

(Nmm-1) (mm) (mm) (N) (N)

0.5 1.131 34.1 44.4 1.87P 0.87P

0.8 1.376 31.4 28.4 1.56P 0.56P

Table 5: Model information for MMB test

Model Description DOF

8L9-4CS6-40B4
Cross-section has 8L9, 4 per each layer, and 4CS6 cohesive elements. The
beam has 40B4 elements.

19602

8L9-4CS6-60B4
Cross-section has 8L9, 4 per each layer, with 4CS6 cohesive elements. The
beam has 60B4 elements.

29322

[10]. Figure 9(a) compares equilibrium curves obtained using the 8L9-4CS6-60B4 model against

experimental and numerical results. Convergence of equilibrium curves for different 1D models are

in Fig. 9(b). Table 6 compares the maximum load obtained by 1D CUF and experimental and



numerical reference models. The analysis times required for all the numerical models are in Table

7. The results suggest that
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Figure 9: Equilibrium curves for mixed-mode bending test: (a) Results from 1D CUF using 8L9-
4CS6-60B4 and experimental and numerical results from the literature and (b) convergence of 1D
CUF models for the 0.8 mode-mix ratio

Table 6: Comparison of maximum loads obtained using 8L9-4CS6-60B4 model for MMB against
experimental and numerical models

GII/GT Experimental [10] Camanho et al. [10] Balzani et al. [39] CUF-CW

Value Error Value Error Value Error

(N) (N) (%) (N) (%) (N) (%)

0.5 275.35 236.6 14.1 251.2 8.8 261.0 5.2

0.8 518.66 479.9 7.5 438.3 15.5 494.5 4.7

1. 1D models detected the equilibrium curves with a good agreement if compared to experi-

mental and numerical results from the literature.

2. The refinement of the 1D mesh led to marginal improvements of the solution.



Table 7: Costs of the analyses for the MMB test

Model Analysis time (hh:mm)

8L9-4CS6-40B4 0:27

8L9-4CS6-60B4 0:45

3. The present models improved the accuracy to experimental results concerning the peak load

if compared to previous numerical models.

3.3 Multiple delaminations of composite specimens

Robinson et al. investigated multiple mixed-mode delaminations in a carbon-fiber laminate through

numerical as well experimental studies [40]. As illustrated in Fig. 10, the problem consists of two

initial cracks. The first crack is along the mid-plane on the left-end of the specimen and the second

one is two plies below and right of the first initial crack. The problem is common in literature as it

exhibits a complex equilibrium path and, therefore, serves as a benchmark [23, 16]. The material

properties of the specimen are in Table 8. Figure 11 illustrates the modeling technique adopted

using CUF approach. According to the position of the initial crack, the model has various cross-

section configurations. The modeling approach preserves the node compatibility at the interfaces

of different sets of beams indicated by the two-colored beam nodes in Fig. 11. Verifications used

three additional models based on standard linear brick elements with linear 3D cohesive elements

and varying mesh density as in Table 9. The energy-based arc-length method solved the numerical

problem with an initial lambda λ0 of 1 and a force applied as P, and a termination condition

of ∆ equal to 24 mm. Alfano and Crisfield performed the multiple delamination analysis us-

P+,u+

L = 180 mm

w = 20 mm 

Initial crack

Cohesive elements

Initial crack (with contact)

P-,u-

40 mm 20 mm 20 mm

 = u+- u-

12 plies (1.590 mm

10 plies (1.325 mm
 2 plies (0.265 mm

Figure 10: Geometry and boundary conditions for multiple delaminations

ing 2D standard FEM elements equipped with local arc-length and a line-search based numerical



Table 8: Material properties for multiple delaminations [40, 16]

E1 E2=E3 G12 ν12=ν13 GIC GIIC τ3 τ1 K

(GPa) (GPa) (GPa) (-) (Nmm-1) (Nmm-1) (MPa) (MPa) (Nmm-3)

115.0 8.5 4.5 0.29 0.33 0.8 8.0 3.3 2.5×105

Figure 11: CUF models for multiple delaminations

Table 9: Model descriptions for multiple delaminations

Model Description DOF

12L9-4CS6
Cross-section has 12L9 elements with a combination of 4CS6/8CS6 cohe-
sive elements inserted between the layers based on the position of cracks,
see Fig. 11. The beam has 77B4 elements.

56376

3DFEM - Coarse
Linear brick elements with a mesh density of 8x230x6. The mesh density
is equivalent to that of 12L9-4CS6 configuration, amounting to similar
DOF

56133

3DFEM - Medium
Linear brick elements with a mesh density of 8x458x6 with twice the
mesh density along the beam as compared to the 3DFEM - Coarse

111537

3DFEM - Refined
Linear brick elements with a mesh density of 8x619x6 with three times
the mesh density along the beam as compared to the 3DFEM - Coarse

150660



solver [23]. Nguyen and Nguyen-Xuan developed a 2D higher-order Bèzier element along with an

energy-based arc-length method and efficiently solved the multiple delamination analysis of com-

posite specimens [16]. Figure 12a compares the equilibrium curves obtained using CUF with the

experimental and numerical results available from the literature [16, 40, 23]. Equilibrium curves

obtained from CUF and 3D FEM models with varying mesh density are in Fig. 12. Table 10

enlists the information pertaining the total analysis time of various models. Figure 13 depicts the

equilibrium curve from CUF along with the deformation state at specific load instances. Contour

plots for delaminated zones in the top and bottom surfaces of the specimen at various instances

are in Fig. 14. The results suggest that
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Figure 12: Equilibrium curves for multiple delaminations: (a) Comparison of CUF with exper-
imental and literature results [40, 23, 16] and (b) comparison between CUF and 3D FEM with
varying mesh density

1. As verified via reference solutions, CUF accurately captures the complex equilibrium curve

for multiple delaminations. The use of the energy-based arc-length method was effective in

capturing all the branches of the curve.

2. The refining process of 3D models converges to CUF. In particular, although the size of the



Table 10: Analysis times for multiple delaminations

Model Analysis Time (hh:mm)
12L9-4CS6 1:47
3DFEM- Coarse 1:25
3DFEM - Medium 4:44
3DFEM - Refined 7:15
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Figure 13: Equilibrium curves and deformed states via CUF for multiple delaminations
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Figure 14: Contour plots of the delamination index - 0: intact, 1: fully delaminated - at the top
and bottom cohesive surfaces via CUF for multiple delaminations



problem for 12L9-4CS6 and 3D FEM - Coarse configurations is similar, the 3D FEM - Coarse

model presents visible differences in the equilibrium path.

3. CUF models have multi-fold better efficiency regarding the analysis times than standard 3D

FEM.

4. The present formulation can capture the progressive delamination propagation along multiple

fronts.

5. From a modeling standpoint, the CUF modeling improves the meshing process by assigning

various cross-section configurations to individual beams whereas the discretization and in-

sertion of cohesive elements within a 3D FEM model may lead to a cumbersome process due

to the high number of FE elements.

4 Conclusion

The paper extends 1D higher-order FE models to the delamination modeling to increase the

computational efficiency. Cohesive modeling capabilities make use of the CUF approach to exploit

refined displacement field along the cross-section and obtain complete and accurate 3D stress and

displacement fields. The approach makes use of the mixed-mode cohesive constitutive law and a

global dissipation energy-based arc -length method, and verified via various numerical examples

including the end-notch flexure test, mixed-mode bending test, and multiple delamination fronts.

The analysis of the results suggest that

• CUF tends to outperform standard 3D FEM with multi-fold efficiency regarding the analysis

times. Such an outcome stems from the lower amounts of DOF required by CUF models.

• The absence of aspect ratio constraints in 1D models permits to enrich the modeling capa-

bilities only by adopting refined structural theories instead of re-meshing.

• In the MMB test, CUF models provided significant improvements concerning the prediction

of peak loads if compared to other numerical tests and experimental results.



• The use of cohesive elements within CUF may lead to more efficiency in the modeling as the

elements are cross-section features and non-homogeneous 1D elements and compatibilities

are enforceable straightforwardly.

Future extensions include the implementation of more advanced delamination models and the

application to delamination problems in large-scale structures such as a skin-stringer debonding

simulation. Within the view of multi-fold efficiency, the present models may be of great advantage

within concurrent multiscale frameworks.
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