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Barot84, Hai Fang85, Stefano Toppo86, Enrico Lavezzo86, Marco Falda87, Michele Berselli86, Silvio C.E.
Tosatto88,89, Marco Carraro89, Damiano Piovesan89, Hafeez Ur Rehman90, Qizhong Mao91,92, Shanshan Zhang91,
Slobodan Vucetic91, Gage S. Black93,94, Dane Jo93,94, Erica Suh93, Jonathan B. Dayton93,94, Dallas J. Larsen93,94,
Ashton R.Omdahl93,94,Liam J.McGuffin95,Danielle A. Brackenridge95,Patricia C. Babbitt96,98, Jeffrey M. Yunes97,98,
Paolo Fontana99, Feng Zhang100,101, Shanfeng Zhu102,103,104, Ronghui You102,103,104, ZihanZhang102,104, Suyang
Dai102,104, Shuwei Yao102,103, Weidong Tian105,106, Renzhi Cao107, Caleb Chandler107, Miguel Amezola107, Devon Jo
hnson107, Jia-Ming Chang108, Wen-Hung Liao108, Yi-Wei Liu108, Stefano Pascarelli109, Yotam Frank110, Robert Hoeh
ndorf111, Maxat Kulmanov111, Imane Boudellioua112,113, Gianfranco Politano114, Stefano Di Carlo114, Alfredo
Benso114, Kai Hakala115,116, Filip Ginter115,117, Farrokh Mehryary115,116, Suwisa Kaewphan115,116,118, Jari
Björne119,120, Hans Moen117, Martti E.E. Tolvanen121, Tapio Salakoski119,120, Daisuke Kihara122,123, Aashish Jain124,
Tomislav Šmuc125, Adrian Altenhoff126,127, Asa Ben-Hur128, Burkhard Rost129,130, Steven E. Brenner131, Christine A.
Orengo66, Constance J. Jeffery132, Giovanni Bosco133, Deborah A. Hogan6,8, Maria J. Martin9, Claire
O’Donovan9, Sean D. Mooney4, Casey S. Greene134,135, Predrag Radivojac136* and Iddo Friedberg1*

*Correspondence: predrag@northeastern.edu; idoerg@iastate.edu
1Veterinary Microbiology and Preventive Medicine, Iowa State University,
Ames, IA, USA
136Khoury College of Computer Sciences, Northeastern University, Boston, MA,
USA
Full list of author information is available at the end of the article

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-019-1835-8&domain=pdf
http://orcid.org/0000-0002-1789-8000
mailto: predrag@northeastern.edu
mailto: idoerg@iastate.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Consortium Genome Biology          (2019) 20:244 Page 2 of 23

Abstract
Background: The Critical Assessment of Functional Annotation (CAFA) is an ongoing, global, community-driven effort
to evaluate and improve the computational annotation of protein function.
Results: Here, we report on the results of the third CAFA challenge, CAFA3, that featured an expanded analysis over
the previous CAFA rounds, both in terms of volume of data analyzed and the types of analysis performed. In a novel
and major new development, computational predictions and assessment goals drove some of the experimental assays,
resulting in new functional annotations for more than 1000 genes. Specifically, we performed experimental whole-
genome mutation screening in Candida albicans and aeruginosa genomes, which provided us with genome-wide
experimental data for genes associated with biofilm formation and motility. We further performed targeted assays on
selected genes in Drosophila melanogaster, which we suspected of being involved in long-term memory.
Conclusion: We conclude that while predictions of the molecular function and biological process annotations have
slightly improved over time, those of the cellular component have not. Term-centric prediction of experimental anno-
tations remains equally challenging; although the performance of the top methods is significantly better than the
expectations set by baseline methods in C. albicans and D. melanogaster, it leaves considerable room and need for
improvement. Finally, we report that the CAFA community now involves a broad range of participants with expertise
in bioinformatics, biological experimentation, biocuration, and bio-ontologies, working together to improve functional
annotation, computational function prediction, and our ability to manage big data in the era of large experimental
screens.

Keywords: Protein function prediction, Long-term memory, Biofilm, Critical assessment, Community challenge

Introduction
High-throughput nucleic acid sequencing [1] and mass-
spectrometry proteomics [2] have provided us with a del-
uge of data for DNA, RNA, and proteins in diverse species.
However, extracting detailed functional information from
such data remains one of the recalcitrant challenges in the
life sciences and biomedicine. Low-throughput biological
experiments often provide highly informative empirical
data related to various functional aspects of a gene prod-
uct, but these experiments are limited by time and cost. At
the same time, high-throughput experiments, while pro-
viding large amounts of data, often provide information
that is not specific enough to be useful [3]. For these rea-
sons, it is important to explore computational strategies
for transferring functional information from the group of
functionally characterized macromolecules to others that
have not been studied for particular activities [4–9].
To address the growing gap between high-throughput

data and deep biological insight, a variety of computa-
tional methods that predict protein function have been
developed over the years [10–24]. This explosion in the
number of methods is accompanied by the need to under-
stand how well they perform, and what improvements are
needed to satisfy the needs of the life sciences commu-
nity. The Critical Assessment of Functional Annotation
(CAFA) is a community challenge that seeks to bridge the
gap between the ever-expanding pool of molecular data
and the limited resources available to understand protein
function [25–27].

The first two CAFA challenges were carried out in
2010–2011 [25] and 2013–2014 [26]. In CAFA1, we
adopted a time-delayed evaluation method, where pro-
tein sequences that lacked experimentally verified anno-
tations, or targets, were released for prediction. After the
submission deadline for predictions, a subset of these
targets accumulated experimental annotations over time,
either as a consequence of new publications about these
proteins or the biocuration work updating the annotation
databases. The members of this set of proteins were used
as benchmarks for evaluating the participating computa-
tional methods, as the function was revealed only after the
prediction deadline.
CAFA2 expanded the challenge founded in CAFA1. The

expansion included the number of ontologies used for
predictions, the number of target and benchmark pro-
teins, and the introduction of new assessmentmetrics that
mitigate the problems with functional similarity calcula-
tion over concept hierarchies such as Gene Ontology [28].
Importantly, we provided evidence that the top-scoring
methods in CAFA2 outperformed the top-scoring meth-
ods in CAFA1, highlighting that methods participating
in CAFA improved over the 3-year period. Much of this
improvement came as a consequence of novel method-
ologies with some effect of the expanded annotation
databases [26]. Both CAFA1 and CAFA2 have shown that
computational methods designed to perform function
prediction outperform a conventional function transfer
through sequence similarity [25, 26].



Consortium Genome Biology          (2019) 20:244 Page 3 of 23

In CAFA3 (2016–2017), we continued with all types
of evaluations from the first 2 challenges and addition-
ally performed experimental screens to identify genes
associated with specific functions. This allowed us to
provide unbiased evaluation of the term-centric perfor-
mance based on a unique set of benchmarks obtained by
assaying Candida albicans, Pseudomonas aeruginosa, and
Drosophila melanogaster. We also held a challenge follow-
ing CAFA3, dubbed CAFA-π , to provide the participating
teams another opportunity to develop or modify predic-
tion models. The genome-wide screens on C. albicans
identified 240 genes previously not known to be involved
in biofilm formation, whereas the screens on P. aerugi-
nosa identified 532 new genes involved in biofilm forma-
tion and 403 genes involved in motility. Finally, we used
CAFA predictions to select genes from D. melanogaster
and assay them for long-term memory involvement. This
experiment allowed us to both evaluate prediction meth-
ods and identify 11 new fly genes involved in this bio-
logical process [29]. Here, we present the outcomes of
the CAFA3 challenge, as well as the accompanying chal-
lenge CAFA-π , and discuss further directions for the
community interested in the function of biological macro-
molecules.

Results
Topmethods have improved from CAFA2 to CAFA3, but
improvement was less dramatic than from CAFA1 to CAFA2
One of CAFA’s major goals is to quantify the progress
in function prediction over time. We therefore conducted
a comparative evaluation of top CAFA1, CAFA2, and
CAFA3 methods according to their ability to predict
Gene Ontology [28] terms on a set of common bench-
mark proteins. This benchmark set was created as an
intersection of CAFA3 benchmarks (proteins that gained
experimental annotation after the CAFA3 prediction sub-
mission deadline) and CAFA1 and CAFA2 target proteins.
Overall, this set contained 377 protein sequences with
annotations in the Molecular Function Ontology (MFO),
717 sequences in the Biological Process Ontology (BPO),
and 548 sequences in the Cellular Component Ontol-
ogy (CCO), which allowed for a direct comparison of all
methods that have participated in the challenges so far.
The head-to-head comparisons in MFO, BPO, and CCO
between the top 5 CAFA3 and CAFA2methods are shown
in Fig. 1. CAFA3 and CAFA1 comparisons are shown in
Additional file 1: Figure S1.
We first observe that, in effect, the performance of base-

line methods [25, 26] has not improved since CAFA2. The
Naïve method, which uses the term frequency in the exist-
ing annotation database as a prediction score for every
input protein, has the same Fmax performance using both
annotation databases in 2014 (when CAFA2 was held)
and in 2017 (when CAFA3 was held), which suggests little

change in term frequencies in the annotation database
since 2014. In MFO, the BLAST method based on the
existing annotations in 2017 is slightly but significantly
better than the BLAST method based on 2014 training
data. In BPO and CCO, however, the BLAST based on the
later database has not outperformed its earlier counter-
part, although the changes in effect size (absolute change
in Fmax) in both ontologies are small.
When surveying all 3 CAFA challenges, the perfor-

mance of both baseline methods has been relatively sta-
ble, with some fluctuations of BLAST. Such performance
of direct sequence-based function transfer is surprising,
given the steady growth of annotations in UniProt-GOA
[30]; that is, there were 259,785 experimental annotations
in 2011, 341,938 in 2014, and 434,973 in 2017, but there
does not seem to be a definitive trend with the BLAST
method, as they go up and down in Fmax across ontolo-
gies.We conclude from these observations on the baseline
methods that first, the ontologies are in different annota-
tion states and should not be treated as a whole. In fact, the
distribution of annotation depth and information content
is very different across 3 ontologies, as shown in Addi-
tional file 1: Figures S15 and S16. Second, methods that
perform direct function transfer based on sequence sim-
ilarity do not necessarily benefit from a larger training
dataset. Although the performance observed in our work
is also dependent on the benchmark set, it appears that
the annotation databases remain too sparsely populated
to effectively exploit function transfer by sequence simi-
larity, thus justifying the need for advanced methodology
development for this problem.
Head-to-head comparisons of the top 5 CAFA3 meth-

ods against the top 5 CAFA2methods showmixed results.
In MFO, the top CAFA3 method, GOLabeler [23], out-
performed all CAFA2 methods by a considerable margin,
as shown in Fig. 2. The rest of the 4 CAFA3 top methods
did not perform as well as the top 2 methods of CAFA2,
although only to a limited extent, with little change in
Fmax. Of the top 12 methods ranked in MFO, 7 are
from CAFA3, 5 are from CAFA2, and none from CAFA1.
Despite the increase in database size, the majority of func-
tion prediction methods do not seem to have improved
in predicting protein function in MFO since 2014, except
for 1 method that stood out. In BPO, the top 3 methods
in CAFA3 outperformed their CAFA2 counterparts, but
with very small margins. Out of the top 12 methods in
BPO, 8 are from CAFA3, 4 are from CAFA2, and none
from CAFA1. Finally, in CCO, although 8 out of the top 12
methods over all CAFA challenges come fromCAFA3, the
top method is from CAFA2. The differences between the
top-performing methods are small, as in the case of BPO.
The performance of the top methods in CAFA2 was

significantly better than of those in CAFA1, and it is inter-
esting to note that this trend has not continued in CAFA3.
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Fig. 1 A comparison in Fmax between the top 5 CAFA2 models against the top 5 CAFA3 models. Colored boxes encode the results such that (1) the
colors indicate margins of a CAFA3 method over a CAFA2 method in Fmax and (2) the numbers in the box indicate the percentage of wins. a CAFA2
top 5 models (rows, from top to bottom) against CAFA3 top 5 models (columns, from left to right). b Comparison of the performance (Fmax) of Naïve
baselines trained respectively on SwissProt2014 and SwissProt2017. Colored box between the two bars shows the percentage of wins and margin
of wins as in a. c Comparison of the performance (Fmax) of BLAST baselines trained on SwissProt2014 and SwissProt2017. Colored box between the
two bars shows the percentage of wins and margin of wins as in a. Statistical significance was assessed using 10,000 bootstrap samples of
benchmark proteins
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Fig. 2 Performance evaluation based on the Fmax for the top CAFA1,
CAFA2, and CAFA3 methods. The top 12 methods are shown in this
barplot ranked in descending order from left to right. The baseline
methods are appended to the right; they were trained on training
data from 2017, 2014, and 2011, respectively. Coverage of the
methods were shown as text inside the bars. Coverage is defined as
the percentage of proteins in the benchmark that are predicted by
the methods. Color scheme: CAFA2, ivory; CAFA3, green; Naïve, red;
BLAST, blue. Note that in MFO and BPO, CAFA1 methods were ranked,
but since none made to the top 12 of all 3 CAFA challenges, they
were not displayed. The CAFA1 challenge did not collect predictions
for CCO. a: molecular function; b: Biological process; c: Cellular
Component

This could be due to many reasons, such as the quality of
the benchmark sets, the overall quality of the annotation
database, the quality of ontologies, or a relatively short
period of time between challenges.

Protein-centric evaluation
The protein-centric evaluation measures the accuracy of
assigning GO terms to a protein. This performance is
shown in Figs. 3 and 4.
We observe that all top methods outperform the base-

lines with the patterns of performance consistent with
CAFA1 and CAFA2 findings. Predictions of MFO terms
achieved the highest Fmax compared with predictions
in the other two ontologies. BLAST outperforms Naïve
in predictions in MFO, but not in BPO or CCO. This
is because sequence similarity-based methods such as
BLAST tend to perform best when transferring basic
biochemical annotations such as enzymatic activity. Func-
tions in biological process, such as pathways, may not
be as preserved by sequence similarity, hence the poor
BLAST performance in BPO. The reasons behind the
difference among the three ontologies include the struc-
ture and complexity of the ontology as well as the state
of the annotation database, as discussed previously [26,
31]. It is less clear why the performance in CCO is
weak, although it might be hypothesized that such per-
formance is related to the structure of the ontology
itself [31].
The top-performing method in MFO did not have as

high an advantage over others when evaluated using
the Smin metric. The Smin metric weights GO terms by
conditional information content, since the prediction
of more informative terms is more desirable than less
informative, more general, terms. This could potentially
explain the smaller gap between the top predictor and the
rest of the pack in Smin. The weighted Fmax and normal-
ized Smin evaluations can be found in Additional file 1:
Figures S4 and S5.

Species-specific categories
The benchmarks in each species were evaluated individu-
ally as long as there were at least 15 proteins per species.
Here, we present the results from eukaryotic and bacte-
rial species (Fig. 5). We observed that different methods
could perform differently on different species. As shown
in Fig. 6, bacterial proteins make up a small portion of
all benchmark sequences, so their effects on the perfor-
mances of the methods are often masked. Species-specific
analyses are therefore useful to researchers studying cer-
tain organisms. Evaluation results on individual species
including human (Additional file 1: Figure S6), Arabidop-
sis thaliana (Additional file 1: Figure S7) and Escherichia
coli (Additional file 1: Figure S10) can be found in
Additional file 1: Figure S6-S14.
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Fig. 3 Performance evaluation based on the Fmax for the top-performing methods in 3 ontologies. Evaluation was carried out on No knowledge
benchmarks in the fullmode. a–c: bar plots showing the Fmax of the top 10 methods. The 95% confidence interval was estimated using 10,000
bootstrap iterations on the benchmark set. Coverage of the methods was shown as text inside the bars. Coverage is defined as the percentage of
proteins in the benchmark which are predicted by the methods. d–f: precision-recall curves for the top 10 methods. The perfect prediction should
have Fmax = 1, at the top right corner of the plot. The dot on the curve indicates where the maximum F score is achieved

Diversity of methods
It was suggested in the analysis of CAFA2 that ensem-
ble methods that integrate data from different sources
have the potential of improving prediction accuracy [32].
Multiple data sources, including sequence, structure,
expression profile, genomic context, and molecular inter-
action data, are all potentially predictive of the function
of the protein. Therefore, methods that take advantage

of these rich sources as well as existing techniques from
other research groups might see improved performance.
Indeed, the one method that stood out from the rest in
CAFA3 and performed significantly better than all meth-
ods across three challenges is a machine learning-based
ensemble method [23]. Therefore, it is important to ana-
lyze what information sources and prediction algorithms
are better at predicting function. Moreover, the similarity
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Fig. 4 Performance evaluation based on Smin for the top-performing methods in 3 ontologies. Evaluation was carried out on No knowledge
benchmarks in the fullmode. a–c: bar plots showing Smin of the top 10 methods. The 95% confidence interval was estimated using 10,000
bootstrap iterations on the benchmark set. Coverage of the methods was shown as text inside the bars. Coverage is defined as the percentage of
proteins in the benchmark which are predicted by the methods. d–f: remaining uncertainty-missing information (RU-MI) curves for the top 10
methods. The perfect prediction should have Smin = 0, at the bottom left corner of the plot. The dot on the curve indicates where the minimum
semantic distance is achieved

of the methods might explain the limited improvement in
the rest of the methods in CAFA3.
The top CAFA2 and CAFA3 methods are very similar

in performance, but that could be a result of aggregat-
ing predictions of different proteins to one metric. When

computing the similarity of each pair of methods as the
Euclidean distance of prediction scores (Fig. 7), we are not
interested whether these predictions are correct according
to the benchmarks, but simply whether they are similar
to one another. The diagonal blocks in Fig. 7 show that
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Fig. 5 Evaluation based on the Fmax for the top-performing methods in eukaryotic and bacterial species
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Fig. 6 Number of proteins in each benchmark species and ontology

CAFA1 top methods are more diverse than CAFA2 and
CAFA3. The off-diagonal blocks shows that CAFA2 and
CAFA3 methods are more similar with each other than
with CAFA3 methods. It is clear that some methods are
heavily based on the Naïve and BLAST baseline methods.
Participating teams also provided keywords that

describe their approach to function prediction with
their submissions. A list of keywords was given to the
participants, listed in Additional file 1. Figure 8 shows
the frequency of each keyword. In addition, we have
weighted the frequency of the keywords with the predic-
tion accuracy of the specific method. Machine learning
and sequence alignment remain the most used approach
by scientists predicting in all three ontologies. By raw
count, machine learning is more popular than sequence
in all three ontologies, but once adjusted by performance,
their difference shrinks. In MFO, sequence alignment
even overtakes machine learning as the most popular key-
word after adjusting for performance. This indicates that
methods that use sequence alignments are more helpful
in predicting the correct function than the popularity of
their use suggests.

Evaluation via molecular screening
Databases with proteins annotated by biocuration, such
as UniProt knowledge base and UniProt Gene Ontol-
ogy Annotation (GOA) database, have been the primary
source of benchmarks in the CAFA challenges. New to
CAFA3, we also evaluated the extent to which meth-
ods participating in CAFA could predict the results of
genetic screens in model organisms done specifically for
this project. Predicting GO terms for a protein (protein-
centric) and predicting which proteins are associated with

a given function (term-centric) are related but different
computational problems: the former is a multi-label clas-
sification problem with a structured output, while the
latter is a binary classification task. Predicting the results
of a genome-wide screen for a single or a small num-
ber of functions fits the term-centric formulation. To
see how well all participating CAFA methods perform
term-centric predictions, we mapped the results from
the protein-centric CAFA3 methods onto these terms. In
addition, we held a separate CAFA challenge, CAFA-π ,
whose purpose was to attract additional submissions from
algorithms that specialize in term-centric tasks.
We performed screens for three functions in three

species, which we then used to assess protein func-
tion prediction. In the bacterium Pseudomonas aerugi-
nosa and the fungus Candida albicans, we performed
genome-wide screens capable of uncovering genes with
two functions, biofilm formation (GO:0042710) and
motility (for P. aeruginosa only) (GO:0001539), as
described in the “Methods” section. In Drosophila
melanogaster, we performed targeted assays, guided by
previous CAFA submissions, of a selected set of genes and
assessed whether or not they affected long-term memory
(GO:0007616).
We discuss the prediction results for each function

below in detail. The performance, as assessed by the
genome-wide screens, was generally lower than in the
protein-centric evaluations that were curation driven. We
hypothesize that it may simply be more difficult to per-
form term-centric prediction for broad activities such as
biofilm formation and motility. For P. aeruginosa, an exist-
ing compendium of gene expression data was already
available [33]. We used the Pearson correlation over this
collection of data to provide a complementary baseline to
the standard BLAST approach used throughout CAFA.
We found that an expression-basedmethod outperformed
the CAFA participants, suggesting that success on certain
term-centric challenges will require the use of differ-
ent types of data. On the other hand, the performance
of the methods in predicting long-term memory in the
Drosophila genome was relatively accurate.

Biofilm formation
In March 2018, there were 3019 annotations to biofilm
formation (GO:0042710) and its descendent terms across
all species, of which 325 used experimental evidence
codes. These experimentally annotated proteins included
131 from the Candida Genome Database [34] for
C. albicans and 29 for P. aeruginosa, the 2 organisms that
we screened.
Of the 2746 genes we screened in the Candida albicans

colony biofilm assay, 245 were required for the forma-
tion of wrinkled colony biofilm formation (Table 1). Of
these, only 5 were already annotated in UniProt: MOB,
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Fig. 7 Heatmap of similarity for the top 10 methods in CAFA1, CAFA2, and CAFA3. Similarity is represented by Euclidean distance of the prediction
scores from each pair of methods, using the intersection set of benchmarks in the “Top methods have improved from CAFA2 to CAFA3, but
improvement was less dramatic than from CAFA1 to CAFA2” section. The higher (darker red color) the euclidean distance, the less similar the
methods are. Top 10 methods from each of the CAFA challenges are displayed and ranked by their performance in Fmax. Cells highlighted by black
borders are between a pair of methods that come from the same PI. a: Molecular Function; b: Biological Process; c: Cellular Component
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Fig. 8 Keyword analysis of all CAFA3 participating methods. a–c: both relative frequency of the keywords and weighted frequencies are provided
for three respective GO ontologies. The weighted frequencies accounts for the performance of the the particular model using the given keyword. If
that model performs well (with high Fmax), then it gives more weight to the calculation of the total weighted average of that keyword. d shows the
ratio of relative frequency between the Fmax-weighted and equal-weighted. Red indicates the ratio is greater than one while blue indicates the ratio
is less than one. Only the top five keywords ranked by ratio are shown. The larger the ratio, the more difference there is between the Fmax-weighted
and the equal-weighted

EED1 (DEF1), and YAK1, which encode proteins involved
in hyphal growth, an important trait for biofilm for-
mation [35–38]. Also, NUP85, a nuclear pore protein
involved in early phase arrest of biofilm formation [39]
and VPS1, contributes to protease secretion, filamenta-
tion, and biofilm formation [40]. Of the 2063 proteins that
we did not find to be associated with biofilm formation,
29 were annotated with the term in the GOA database in
C. albicans. Some of the proteins in this category highlight
the need for additional information to GO term annota-
tion. For example, Wor1 and the pheromone receptor are
key for biofilm formation in strains under conditions in
which the mating pheromone is produced [41], but not
required in the monocultures of the commonly studied
a/α mating type strain used here.

Table 1 Number of proteins in Candida albicans and
Pseudomonas aeruginosa associated with the GO term “Biofilm
formation” (GO:0042710) in the GOA databases versus
experimental results

GOA annotations

C. albicans

Total, 2308 Unannotated Annotated

CAFA experiments
False 2034 29

True 240 5

P. aeruginosa

Total, 4056 Unannotated Annotated

CAFA experiments
False 3491 25

True 532 9
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We used receiver operating characteristic (ROC) curves
to measure the prediction accuracy. Area under ROC
curves (AUROC) was used to compare the performance.
AUROC is a common accuracy measure for classification
problems where it evaluates how good a model is at dis-
tinguishing between the positive and negative classes. No
method in CAFA-π or CAFA3 (not shown) exceeded an
AUC of 0.60 on this term-centric challenge (Fig. 9) for
either species. Performance for the best methods slightly
exceeded a BLAST-based baselines. In the past, we have
found that predicting BPO terms, such as biofilm forma-
tion, resulted in poorer method performance than pre-
dicting MFO terms. Many CAFA methods use sequence
alignment as their primary source of information (the
“Diversity of methods” section). For Pseudomonas aerug-
inosa, a pre-built expression compendium was available

from prior work [33]. Where the compendium was avail-
able, simple gene expression-based baselines were the
best-performing approaches. This suggests that success-
ful term-centric prediction of biological processes may
need to rely more heavily on information that is not
sequence-based and, as previously reported, may require
methods that use broad collections of gene expression
data [42, 43].

Motility
In March 2018, there were 302,121 annotations for
proteins with the GO term: cilium or flagellum-
dependent cell motility (GO:0001539) and its descen-
dent terms, which included cell motility in all eukary-
otic (GO:0060285), bacterial (GO:0071973), and archaeal
(GO:0097590) organisms. Of these, 187 had experimental

Fig. 9 AUROC of the top five teams in CAFA-π . The best-performing model from each team is picked for the top five teams, regardless of whether
that model is submitted as model 1. Four baseline models all based on BLAST were computed for Candida, while six baseline models were
computed for Pseudomonas, including two based on expression profiles. All team methods are in gray while BLAST methods are in red, BLAST
computational methods are in blue, and expression are in yellow, see Table 3 for the description of the baselines
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evidence codes, and the most common organism to have
annotations was P. aeruginosa, on which our screen was
performed (Additional file 1: Table S2).
As expected, mutants defective in the flagellum or its

motor were defective in motility (fliC and other fli and
flg genes). For some of the genes that were expected, but
not detected, the annotation was based on the experi-
ments performed in a medium different from what was
used in these assays. For example, PhoB regulates motil-
ity but only when phosphate concentration is low [44].
Among the genes that were scored as defective in motility,
some are known to have decreased motility due to over
production of carbohydrate matrix material (bifA) [45], or
the absence of directional swimming due to absence of
chemotaxis functions (e.g., cheW, cheA) and others likely
showed this phenotype because of a medium-specific
requirement such as biotin (bioA, bioC, and bioD) [46].
Table 2 shows the contingency table for the number of
proteins that are detected by our experiment versus GOA
annotations.
The results from this evaluation were consistent with

what we observed for biofilm formation. Many of the
genes annotated as being involved in biofilm formation
were identified in the screen. Others that were annotated
as being involved in biofilm formation did not show up in
the screen because the strain background used here, strain
PA14, uses the exopolysaccharide matrix carbohydrate Pel
[47] in contrast to the Psl carbohydrate used by another
well-characterized strain, strain PAO1 [48, 49]. The psl
genes were known to be dispensable for biofilm formation
in the strain PA14 background, and this nuance highlights
the need for more information to be taken into account
when making predictions.
The CAFA-π methods outperformed our BLAST-based

baselines but failed to outperform the expression-based
baselines. Transferred methods from CAFA3 also did
not outperform these baselines. It is important to note
this consistency across terms, reinforcing the finding that
term-centric prediction of biological processes is likely to
require non-sequence information to be included.

Long-termmemory in D.melanogaster
Prior to our experiments, there were 1901 annota-
tions made in the long-term memory, including 283

Table 2 Number of proteins in Pseudomonas aeruginosa
associated with function motility (GO:0001539) in the GOA
databases versus experimental results

GOA annotations

Total, 3630 Unannotated Annotated

CAFA experiments
False 3195 12

True 403 21

experimental annotations. Drosophila melanogaster had
the most annotated proteins of long-term memory with
217, while human has 7, as shown in Additional file 1:
Table S3.
We performed RNAi experiments in Drosophila

melanogaster to assess whether 29 target genes were asso-
ciated with long-term memory (GO:0007616). Briefly,
flies were exposed to wasps, which triggers a behavior
that causes females to lay fewer eggs. The acute response
is measured until 24 h post-exposure, and the long-term
response is measured at 24 to 48 h post-exposure. RNAi
was used to interfere with the expression of the 29 target
genes in the mushroom body, a region of the fly brain
associated with memory. Using this assay, we identified 3
genes involved in the perception of wasp exposure and 12
genes involved in the long-term memory. For details on
the target selection and fly assay, see [29]. None of the 29
genes had an existing annotation in the GOA database.
Because no genome-wide screen results were available,
we did not release this as part of the CAFA-π and instead
relied only on the transfer of methods that predicted the
“long-term memory" at least once in D. melanogaster
from CAFA3. Results from this assessment were more
promising than our findings from the genome-wide
screens in microbes (Fig. 10). Certain methods performed
well, substantially exceeding the baselines.

Participation growth
The CAFA challenge has seen growth in participation,
as shown in Fig. 11. To cope with the increasingly large
data size, CAFA3 utilized the Synapse [50] online plat-
form for submission. Synapse allowed for easier access
for participants, as well as easier data collection for the
organizers. The results were also released to the individ-
ual teams via this online platform. During the submission
process, the online platform also allows for customized
format checkers to ensure the quality of the submission.

Methods
Benchmark collection
In CAFA3, we adopted the same benchmark generation
methods as CAFA1 and CAFA2, with a similar timeline
(Fig. 12). The crux of a time-delayed challenge is the
annotation growth period between time t0 and t1. All
target proteins that have gained experimental annotation
during this period are taken as benchmarks in all three
ontologies. “No knowledge” (NK, no prior experimental
annotations) and “Limited knowledge” (LK, partial prior
experimental annotations) benchmarks were also distin-
guished based on whether the newly gained experimental
annotation is in an ontology that already have experimen-
tal annotations or not. Evaluation results in Figs. 3 and
4 are made using the No knowledge benchmarks. Evalu-
ation results on the Limited knowledge benchmarks are
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Fig. 10 AUROC of top five teams in CAFA3. The best-performing model from each team is picked for the top five teams, regardless of whether that
model is submitted as model 1. All team methods are in gray while BLAST methods are in red and BLAST computational methods are in blue, see
Table 3 for the description of the baselines

shown in Additional file 1: Figure S3. For more informa-
tion regarding NK and LK designations, please refer to the
Additional file 1 and the CAFA2 paper [26].
After collecting these benchmarks, we performed two

major deletions from the benchmark data. Upon inspect-
ing the taxonomic distribution of the benchmarks, we
noticed a large number of new experimental annotations
from Candida albicans. After consulting with UniProt-
GOA, we determined these annotations have already
existed in the Candida GenomeDatabase long before 2018
but were only recently migrated to GOA. Since these
annotations were already in the public domain before
the CAFA3 submission deadline, we have deleted any
annotation from Candida albicans with an assigned date
prior to our CAFA3 submission deadline. Another major
change is the deletion of any proteins with only a protein-
binding (GO:0005515) annotation. Protein binding is a
highly generalized function description, does not provide

more specific information about the actual function of a
protein, and in many cases may indicate a non-functional,
non-specific binding. If it is the only annotation that a
protein has gained, then it is hardly an advance in our
understanding of that protein; therefore, we deleted these
annotations from our benchmark set. Annotations with
a depth of 3 make up almost half of all annotations in
MFO before the removal (Additional file 1: Figure S15B).
After the removal, the most frequent annotations became
of depth 5 (Additional file 1: Figure S15A). In BPO, the
most frequent annotations are of depth 5 or more, indi-
cating a healthy increase of specific GO terms being
added to our annotation database. In CCO, however, most
new annotations in our benchmark set are of depths
3, 4, and 5 (Additional file 1: Figure S15). This differ-
ence could partially explain why the same computational
methods perform very differently in different ontologies
and benchmark sets. We have also calculated the total

Fig. 11 CAFA participation has been growing. Each principal investigator is allowed to head multiple teams, but each member can only belong to
one team. Each team can submit up to three models
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Fig. 12 CAFA3 timeline

information content per protein for the benchmark sets
shown in Additional file 1: Figure S16. Taxonomic dis-
tributions of the proteins in our final benchmark set are
shown in Fig. 6.
Additional analyses were performed to assess the char-

acteristics of the benchmark set, including the overall
information content of the terms being annotated.

Protein-centric evaluation
Two main evaluation metrics were used in CAFA3, the
Fmax and the Smin. The Fmax based on the precision-recall
curve (Fig. 3), while the Smin is based on the remain-
ing uncertainty/missing information (RU-MI) curve as
described in [51] (Fig. 4), where S stands for semantic
distance. The shortest semantic distance across all thresh-
olds is used as the Smin metric. The RU-MI curve takes
into account the information content of each GO term
in addition to counting the number of true positives,
false positives, etc., see Additional file 1 for the precise
definition of Fmax and Smin. The information theory-
based evaluation metrics counter the high-throughput
low-information annotations such as protein binding, but
down-weighing these terms according to their informa-
tion content, as the ability to predict such non-specific
functions are not as desirable and useful and the ability to
predict more specific functions.
The two assessment modes from CAFA2 were also used

in CAFA3. In the partial mode, predictions were evaluated
only on those benchmarks for which amodel made at least
one prediction. The full evaluation mode evaluates all
benchmark proteins, and methods were penalized for not
making predictions. Evaluation results in Figs. 3 and 4 are
made using the full evaluation mode. Evaluation results
using the partial mode are shown in Additional file 1:
Figure S2.
Two baseline models were also computed for these

evaluations. The Naïve method assigns the term fre-
quency as the prediction score for any protein, regard-
less of any protein-specific properties. BLAST was based
on the results using the Basic Local Alignment Search

Tool (BLAST) software against the training database [52].
A term will be predicted as the highest local align-
ment sequence identity among all BLAST hits annotated
from the training database. Both of these methods were
trained on the experimentally annotated proteins and
their sequences in Swiss-Prot [53] at time t0.

Microbe screens
To assess the matrix production, we used mutants from
the PA14 NR collection [54]. Mutants were transferred
from the− 80 ◦C freezer stock using a sterile 48-pinmulti-
prong device into 200 μl LB in a 96-well plate. The cultures
were incubated overnight at 37 ◦C, and their OD600 was
measured to assess growth.Mutants were then transferred
to tryptone agar with 15 g of tryptone and 15 g of agar
in 1L amended with Congo red (Aldrich, 860956) and
Coomassie brilliant blue (J.T. Baker Chemical Co., F789-
3). Plates were incubated at 37 ◦C overnight followed
by 4-day incubation at room temperature to allow the
wrinkly phenotype to develop. Colonies were imaged and
scored on day 5. To assess motility, mutants were revived
from freezer stocks as described above. After overnight
growth, a sterile 48-pin multiprong transfer device with a
pin diameter of 1.58 mm was used to stamp the mutants
from the overnight plates into the center of swim agar
made with M63 medium with 0.2% glucose and casamino
acids and 0.3% agar). Care was taken to avoid touch-
ing the bottom of the plate. Swim plates were incubated
at room temperature (19–22 ◦C) for approximately 17 h
before imaging and scoring. Experimental procedures
in P. aeruginosa to determine proteins that are associ-
ated with the two functions in CAFA-π are shown in
Fig. 13.
Biofilm formation in Candida albicans was assessed in

single gene mutants from the Noble [55] and GRACE [56]
collections. In the Noble Collection, mutants of C. albi-
cans have had both copies of the candidate gene deleted.
Most of the mutants were created in biological dupli-
cate. From this collection, 1274 strains corresponding to
653 unique genes were screened. The GRACE Collection
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Fig. 13 Experimental procedure of determining genes associated with the functions biofilm formation (a) and motility (b) in P. aeruginosa

provided mutants with one copy of each gene deleted and
the other copy placed under the control of a doxycycline-
repressible promoter. To assay these strains, we used
a medium supplemented with 100 μg/ml doxycycline
strains, when rendered them functional null mutants. We
screened 2348 mutants from the GRACE Collection, 255
of which overlapped with mutants in the Noble Collec-
tion, for 2746 total unique mutants screened in total. To
assess the defects in biofilm formation or biofilm-related
traits, we performed 2 assays: (1) colony morphology on
agar medium and (2) biofilm formation on a plastic sur-
face (Fig. 14). For both of these assays, we used Spider
medium, which was designed to induce hyphal growth
in C. albicans [57] and which promotes biofilm forma-
tion [39]. Strains were first replicated from frozen 96-well
plates to YPD agar plates. Strains were then replicated

from YPD agar to YPD broth and grown overnight at
30 ◦C. From YPD broth, strains were introduced onto Spi-
der agar plates and into 96-well plates of Spider broth.
When strains from the GRACE Collection were assayed,
100 μg/ml doxycycline was included in the agar and
broth, and aluminum foil was used to protect the media
from light. Spider agar plates inoculated with C. albicans
mutants were incubated at 37 ◦C for 2 days before colony
morphologies were scored. Strains in Spider broth were
shaken at 225 rpm at 37 ◦C for 3 days and then assayed
for biofilm formation at the air-liquid interface as follows.
First, broth was removed by slowly tilting the plates and
pulling the liquid away by running a gloved hand over
the surface. Biofilms were stained by adding 100 μl of
0.1 percent crystal violet dye in water to each well of the
plate. After 15 min, plates were gently washed in three
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Fig. 14 a: different phenotypes in response to doxycycline treatment: low growth, smooth, no growth and intermediate. b: adherence phenotypes.
See text for details

baths of water to remove dye without disturbing biofilms.
To score biofilm formation for agar plates, colonies were
scored by eye as either smooth, intermediate, or wrinkled.
A wild-type colony would score wrinkled, and mutants
with intermediate or smooth appearance were considered
defective in colony biofilm formation. For biofilm forma-
tion on a plastic surface, the presence of a ring of cell
material in the well indicated normal biofilm formation,
while low or no ring formation mutants were considered
defective. Genes whose mutations resulted defects in both
or either assay were considered true for biofilm function.
A complete list of the mutants identified in the screens is
available in Additional file 1: Table S1.
A protein is considered true in the biofilm function, if

its mutant phenotype is smooth or intermediate under
doxycycline.

Term-centric evaluation
The evaluations of the CAFA-π methods were based on
the experimental results in the “Microbe screens” section.
We adopted Fmax based on both precision-recall curves
and area under ROC curves. There are a total of six
baseline methods, as described in Table 3.

Discussion
Since 2010, the CAFA community has been the home
to a growing group of scientists across the globe sharing
the goal of improving computational function prediction.
CAFA has been advancing this goal in three ways. First,
through independent evaluation of computational meth-
ods against the set of benchmark proteins, thus providing
a direct comparison of the methods’ reliability and per-
formance at a given time point. Second, the challenge
assesses the quality of the current state of the annota-
tions, whether they are made computationally or not, and
is set up to reliably track it over time. Finally, as described
in this work, CAFA has started to drive the creation
of new experimental annotations by facilitating syner-
gies between different groups of researchers interested in
function of biological macromolecules. These annotations
not only represent new biological discoveries, but simul-
taneously serve to provide benchmark data for rigorous
method evaluation.
CAFA3 and CAFA-π feature the latest advances in

the CAFA series to create advanced and accurate meth-
ods for protein function prediction. We use the repeated
nature of the CAFA project to identify certain trends
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Table 3 Baseline methods in term-centric evaluation of protein function prediction

Model
number

Training data Score assignment

Expression 1 Gene expression compendium for
P. aeruginosa PAO1

Highest correlation score out of all pairwise
correlations

2 Top 10 average correlation score

BLAST 1 All experimental annotation in UniProt-GOA. Sequences from Swiss-Prot

Highest sequence identity out of all pairwise
BLASTp hits

2 All experimental annotation in UniProt-GOA. Sequences from Swiss-Prot
and TrEMBL

blastcomp 1 All experimental and computational annotations in UniProt-GOA.
Sequences from Swiss-Prot

2 All experimental and computational annotations in UniProt-GOA.
Sequences from Swiss-Prot and TrEMBL

via historical assessments. The analysis revealed that the
performance of CAFA methods improved dramatically
between CAFA1 and CAFA2. However, the protein-
centric results for CAFA3 are mixed when compared to
historical methods. Though the best-performing CAFA3
method outperformed the top CAFA2 methods (Fig. 1),
this was not consistently true for other rankings. Among
all 3 CAFA challenges, CAFA2 and CAFA3 methods
inhabit the top 12 places in MFO and BPO. Between
CAFA2 and CAFA3, the performance increase is more
subtle. Based on the annotations of methods (Addi-
tional file 1), many of the top-ranking methods are
improved versions of the methods that have been evalu-
ated in CAFA2. Interestingly, the top-performing CAFA3
method, which consistently outperformed the methods
from all past CAFAs in the major categories (GOLabeler

[23]), utilized 5 component classifiers trained from differ-
ent features; those included GO term frequency, sequence
alignment, amino acid trigram, domains, motifs, and
biophysical properties. It performs best in the Molec-
ular Function Ontology, where sequence features per-
form best. Another method which did not participate in
CAFA3 yet seems to perform well under CAFA parame-
ters is NetGO [58], which utilizes the information from
STRING, a network association database [59] in addition
to sequence information. Taken together, the strong pre-
dictive performance of mRNA co-expression data (Figs. 9
and 15) leads us to hypothesize that including more varied
sources of data can lead to additional large improvements
in protein function prediction. We are looking forward
to testing this hypothesis in future CAFA challenges. It
should be noted that CAFA uses both Fmax and Smin.

Fig. 15 AUROC of top 5 teams in CAFA-π . The best-performing model from each team is picked for the top five teams, regardless of whether that
model is submitted as model 1. All team methods are in gray while BLAST methods are in red, BLAST computational methods are in blue and
expression are in yellow. See Table 3 for description of the baselines
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Fmax’s strength lies in its interpretability, as it is sim-
ply the maximum F1 given for each model. At the same
time, precision/recall-based assessment does not capture
the hierarchical nature of ontologies or the differences
in information content between different GO terms. For
that reason, we also use the Smin score which incorporates
information content, but is somewhat less interpretable
than Fmax and less robust to the problems of incomplete
annotation [60, 61]. Additionally, since the information
content of a GO term is derived from its frequency in the
corpus [62], it is somewhat malleable depending on the
corpus from which it is derived. We therefore use both
measures for scoring, to achieve a more comprehensive
picture of the models’ performance.
For this iteration of CAFA, we performed genome-wide

screens of phenotypes in P. aeruginosa and C. albicans as
well as a targeted screen in D. melanogaster. This not only
allowed us to assess the accuracy with whichmethods pre-
dict genes associated with select biological processes, but
also to use CAFA as an additional driver for new biological
discovery. Note that high-throughput screening for a sin-
gle phenotype should be interpreted with caution as the
phenotypic effect may be the result of pleiotropy, and the
phenotype in question may be expressed as part of a set
of other phenotypes. The results of genome-wide screen-
ings typically lack context for the observed phenotypic
effects, and each genotype-phenotype association should
be examined individually to ascertain how immediate is
the phenotypic effect from the seeming genotypic cause.
In sum, our experimental work identified more than

a thousand new functional annotations in three highly
divergent species. Though all screens have certain limita-
tions, the genome-wide screens also bypass questions of
biases in curation. This evaluation provides key insights:
CAFA3methods did not generalize well to selected terms.
Because of that, we ran a second effort, CAFA-π , in which
participants focused solely on predicting the results of
these targeted assays. This targeted effort led to improved
performance, suggesting that when the goal is to iden-
tify genes associated with a specific phenotype, tuning
methods may be required.
For CAFA evaluations, we have included both Naïve and

sequence-based (BLAST) baseline methods. For the eval-
uation of P. aeruginosa screen results, we were also able
to include a gene expression baseline from a previously
published compendium [33]. Intriguingly, the expression-
based predictions outperformed the existing methods for
this task. In future CAFA efforts, we will include this type
of baseline expression-basedmethod across evaluations to
continue to assess the extent to which this data modal-
ity informs gene function prediction. The results from the
CAFA3 effort suggest that gene expression may be partic-
ularly important for successfully predicting term-centric
biological process annotations.

The primary takeaways from CAFA3 are as follows:
(1) genome-wide screens complement annotation-based
efforts to provide a richer picture of protein func-
tion prediction; (2) the best-performing method was a
new method, instead of a light retooling of an existing
approach; (3) gene expression, and more broadly, systems
data may provide key information to unlocking biologi-
cal process predictions, and (4) performance of the best
methods has continued to improve. The results of the
screens released as part of CAFA3 can lead to a re-
examination of approaches which we hope will lead to
improved performance in CAFA4.
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