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1. Introduction 30 

Acoustic metamaterials are composites 31 

with an engineered structure governing 32 

remarkable functionalities, e.g. acoustic 33 

cloaking, transformation acoustics, and 34 

subwavelength-resolution imagining [1, 35 

2]. Apart from unusual effective 36 

properties, the metamaterials offer 37 

various possibilities to control 38 

propagation of sound or elastic waves at 39 

deep sub-wavelength scales [3, 4, 5]. This 40 

can be achieved by incorporating heavy 41 

resonators [3], Helmholtz resonators [6, 42 

7], tensioned membranes [8, 9], or sub-43 

wavelength perforations or slits [10, 11, 44 

12, 13] into a material structure. A class 45 

of acoustic metamaterials with internal 46 

slits is also known as “labyrinthine”. 47 

They have recently attracted considerable 48 

attention due to an exceptionally high 49 

refractive index and the ability to 50 

efficiently reflect sound waves, while 51 

preserving light weight and compact 52 

dimensions [13, 12, 14]. 53 

Labyrinthine metamaterials enable to 54 

slow down an effective speed of acoustic 55 

waves due to path elongation by means of 56 

folded narrow channels [15, 13]. Their 57 

high efficiency in manipulating low-58 

frequency sound has been experimentally 59 

demonstrated for various channel 60 

geometries. For example, Xie et al. [16] 61 

have shown the negative effective 62 

refractive index at broadband frequencies 63 

for labyrinthine metastructures with zig-64 

zag-type channels. For the same 65 

configuration, Liang et al [15] have 66 

demonstrated extraordinary dispersion, 67 

including negative refraction and conical 68 

dispersion for low-frequency airborne 69 

sound. Frenzel et al. have used the zig-70 

zag channels to achieve broadband sound 71 

attenuation by means of three-72 

dimensional labyrinthine metastructures 73 

[17, 18]. The issue of poor impedance 74 

matching for labyrinthine metamaterials 75 

has been addressed by exploiting tapered 76 

and spiral channels [19] and 77 

hierarchically structured walls [20]. 78 
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Cheng et al. have proven almost perfect 79 

reflection of low-frequency sound by 80 

sparsely arranged unit cells with circular-81 

shaped channels that can induce artificial 82 

subwavelength Mie resonances [12]. In 83 

our previous work, we have proposed a 84 

simple modification to the later design 85 

(by adding a square frame) to achieve a 86 

tunable functionality [14]. Moleron et al. 87 

have emphasized the importance of 88 

thermo-viscous effects on the 89 

performance of labyrinthine structures 90 

with sub-wavelength slits [21]. 91 

Most of the mentioned studies analyze 92 

metamaterials with curved channels, in 93 

which the direction of wave propagation 94 

coincides with that for incident waves. In 95 

this case, a folded channel behaves as a 96 

straight slit of effective length ����, 97 

which approximately equals to the 98 

shortest path taken by the wave to pass 99 

through the structure [13, 21]. Thus, a 100 

channel tortuosity appears to play no role. 101 

Possible effects of the path tortuosity, 102 

when a wave is allowed to propagate in 103 

an opposite direction relative to that of 104 

the incident field, remain not investigated 105 

yet. A few papers have analyzed 106 

labyrinthine metamaterials of such a type 107 

of channels. In [19], Xie metamaterials 108 

with spiral channels have been 109 

investigated to enable tunability of 110 

effective structural parameters, such as 111 

refractive index and impedance. 112 

Hierarchically organized channel walls 113 

have shown to achieve a broadband wave 114 

absorption [20]. These works are focused 115 

on experimental validation of the 116 

mentioned features, and lack a theoretical 117 

analysis of wave behavior in a tortuous 118 

channel. 119 

The goal of this work is to investigate 120 

numerically dispersion and propagation 121 

properties of low-frequency airborne 122 

sound in labyrinthine metamaterials with 123 

channels, which allow changing the 124 

direction of wave propagation. To this 125 

purpose, we design sub-wavelength paths 126 

in metamaterial unit cells along a fractal 127 

curve of various iteration levels. In 128 
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particular, we consider a space-filling 129 

curve for the channel design due to its 130 

self-similar organization, clear algorithm 131 

for the length elongation, and the ability 132 

to fill in an occupied area. We provide a 133 

complete theoretical analysis of the wave 134 

dispersion in the designed metamaterials 135 

complemented by the study of acoustic 136 

transmission, reflection, and absorption 137 

for a monoslab in the absence or presence 138 

of thermos-viscous losses. Our results 139 

demonstrate that, when a wave inside a 140 

narrow channel is allowed to propagate in 141 

the opposite (relative to the incident wave 142 

front) direction, the wave dynamics is not 143 

equivalent to that in a straight slit of an 144 

effective length. The peculiar channel 145 

tortuosity allows opening wide sub-146 

wavelength band gaps. At band gap 147 

frequencies, total broadband wave 148 

reflection occurs that is not influenced by 149 

the presence of losses in air. Therefore, 150 

the proposed labyrinthine metamaterials 151 

have a great potential as efficient 152 

reflectors for low-frequency airborne 153 

sound. Moreover, to facilitate practical 154 

exploitation of these metamaterials, we 155 

propose to assemble reconfigurable 156 

structures from equi-thickness thin 157 

panels (sheets) that is a cheap alternative 158 

to an additive manufacturing technique. 159 

2. Space-filling curves 160 

As mentioned above, the wave path is 161 

elongated by exploiting the fractal 162 

structure of space-filling curves [22]. 163 

First space-filling curves were 164 

discovered by Peano [23] (later named 165 

after him), and since then many other 166 

curves were proposed [24]. An attractive 167 

property of these curves is that they go 168 

through every point of a bounding 169 

domain for an unlimited number of 170 

iterations. After initially being studied as 171 

a curiosity, nowadays space-filling 172 

curves are widely applied, e.g. for 173 

indexing of multi-dimensional data [25], 174 

transactions and disk scheduling in 175 

advanced databases [26], building 176 

routing systems [27], etc. 177 
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Among various space-filling curves, we 178 

have chosen the Wunderlich two-179 

dimensional curve filling a square [22], 180 

which is constructed as follows. At the 1st 181 

iteration level, one draws an “S”-shaped 182 

curve starting at the bottom-left corner of 183 

a bounding square and ending at the top-184 

right corner. At the nth (n≥ 2) iteration 185 

level, 3 copies of the (n -1)th-level curve 186 

are arranged along each side of a square 187 

with every copy being rotated by 90° 188 

relative to the previous one. The curves 189 

are joined into an N-shaped route starting 190 

from the up-direction for the left column, 191 

then down for the middle column, and 192 

finally again up for the right column. At 193 

every iteration level �, the length of the 194 

Wunderlich curve is �3	 − 1 3	⁄ , while 195 

that of e.g. Hilbert’s curves is �2	 −196 

1 2	⁄  [22]. Faster length elongation 197 

enables more compact channel folding in 198 

a labyrinthine structure (and thus, 199 

increases the tortuosity effect, as will be 200 

shown later) that justifies the choice of 201 

the Wunderlich curve for this study. 202 

3. Models and analysis 203 

methods 204 

Figure 1 presents square labyrinthine unit 205 

cells with an internal channel shaped 206 

along the Wunderlich curve of one of the 207 

three iteration levels, i.e “unit cell 1” 208 

(UC1), “unit cell 2” (UC2), and “unit cell 209 

3” (UC3). The structural material is 210 

aluminum with mass density ��� = 2700 211 

kg/m3 and speed of sound ��� =212 

5042 m/s. The thickness of bounding 213 

walls is fixed for all the unit cells and 214 

equals �=0.5mm.  215 

The channel width is �, and the size of a 216 

square domain occupied by a single 217 

labyrinth is � = 3	 ∙ �� + � + �, 218 

where � is the iteration level. We 219 

preserve an interconnecting cavity of 220 

width � between adjacent labyrinths. 221 

Thus, the metamaterials unit cell size is 222 

��� = � + � (see Fig. 1a). 223 

We analyze plane waves propagating in 224 

the plane of a unit cell cross-section. The 225 

metamaterial geometry is assumed to be 226 
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constant in the out-of-plane direction 227 

without a possibility to excite a 228 

momentum in this direction. Hence, the 229 

pressure field is always constant in the 230 

out-of-plane direction, and the wave 231 

dynamics can be analyzed by considering 232 

a two-dimensional (2D) geometry. The 233 

validity of this assumption is proven by a 234 

good agreement with the results of three-235 

dimensional (3D) simulations given in 236 

the “Results and Discussion” section. 237 

First, we analyze sound wave dispersion 238 

in the labyrinthine metamaterials that are 239 

infinite in both in-plane directions. By 240 

neglecting any losses in air, small-241 

amplitude variations of harmonic 242 

pressure �� , " = �� #$%& (with 243 

angular frequency ' = 2(), where ) the 244 

frequency in Hz) are governed by the 245 

homogeneous Helmholtz equation: 246 

∇ ∙ +− ,
-.

∇�/ − %01
-.�.0

= 0 (1) 247 

with air density �2 = 1.225 kg/m3 and 248 

speed of sound �2 = 343 m/s at 249 

temperature 4 = 20℃. Since 250 

characteristic acoustic impedance of 251 

aluminum is around 3e4 times larger than 252 

that of air, we assume the structural walls 253 

being motionless and apply sound-hard 254 

boundary conditions at air-structure 255 

interfaces. The pressure distribution at 256 

opposite unit cell boundaries is constraint 257 

by the Floquet-Bloch periodic 258 

conditions: 259 

�� + 6 = �� #$7∙6  (2) 260 

with 6 = ���� , ��� , 0 and wave vector 261 

7 = �89 , 8: , 0. More details about the 262 

dispersion analysis can be found in [14]. 263 

Next, we evaluate homogeneous wave 264 

propagation through a metamaterial 265 

monolayer. The analyzed model is given 266 

in Fig. 2. Plane wave radiation occurs at 267 

the left domain boundary at distance 268 

10auc from the slab. At the right 269 

boundary, a perfectly matched layer of 270 

width 2auc is attached to eliminate 271 

unnecessary wave reflection. At the 272 

bottom and top boundaries, the Floquet-273 

Bloch periodic boundary conditions (2) 274 
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enable to artificially extend the air 275 

domain in the vertical direction. The 276 

reflection ; = |�= �$⁄ |>, transmission 277 

4 = |�& �$⁄ |>, and absorption ? = 1 −278 

; − 4 coefficients are evaluated by 279 

averaging incident �$, reflected �=, and 280 

transmitted �& pressure fields along the 281 

lines located at distance auc from the 282 

metastructure. 283 

In order to analyze how the length and 284 

tortuosity of a labyrinthine channel 285 

influences sound wave characteristics, 286 

we compare 4 and ? values for the 287 

metastructures with those for straight slits 288 

of width � in solid blocks of length 289 

L=Leff or L=a, which are distributed at 290 

distances � along the vertical direction. 291 

In the case of L=a, the blocks act as solid 292 

scatterers of the same size as labyrinthine 293 

structures, but without internal channels. 294 

The effective channel length Leff is 295 

approximately equal to the shortest wave 296 

path from the input to the output through 297 

a labyrinthine channel (as shown e.g. by 298 

green line in Fig. 1a). 299 

If a channel width is small compared to 300 

the wavelength of a propagating wave, 301 

thermal and viscous boundary layers near 302 

solid walls cause loss effects (lossy air). 303 

The thickness of these layers decreases 304 

with increase of frequency. The thickness 305 

of thermal boundary layer @&A is 306 

evaluated as follows: 307 

@&A = B C
D�-.EF,  (3) 308 

where 8 = 25.8 mW/(m∙K) is thermal 309 

conductivity, and H1 = 1.005 kJ/(m3∙K) 310 

is heat capacity at constant pressure. The 311 

thickness of viscous boundary layer @I$J 312 

is  313 

@I$J = B K
D�-.,   (4) 314 

with dynamic viscosity L = 1.814e-5 315 

Pa˖s. The graphical representation of the 316 

relations (3), (4) is given in Fig. 3. At 317 

20°C and 1 atm, the viscous and thermal 318 

boundary layers’ thicknesses are 0.22mm 319 

and 0.26mm at 100 Hz, respectively. 320 

As the designed labyrinthine channel are 321 

relatively easy to model, we directly 322 
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include thermal conduction and viscous 323 

attenuation into the governing equations. 324 

Thus, the linearized system composed of 325 

Navier-Stokes equation, a continuity 326 

equation, and an energy equation is 327 

solved for acoustic pressure variations �, 328 

the fluid velocity variations M, and the 329 

acoustic temperature variations 4. The 330 

mentioned variations describe small 331 

harmonic oscillations around a steady 332 

state. The corresponding equations are 333 

given in [28] and implemented in 334 

Thermoacoustic interface of Comsol 335 

Multiphysics [29]. 336 

The dispersion and transmission analyses 337 

are performed by means of the finite-338 

element method as eigenvalue and 339 

frequency domain simulations in Comsol 340 

Multiphysics [29]. Acoustic domains are 341 

discretized with the maximum element 342 

size of NO$P/12, where NO$P = �2 )OR9⁄ , 343 

and )OR9 is the maximum analyzed 344 

frequency. This mesh resolves the 345 

smallest wavelength of the study with 12 346 

elements. To properly capture the wave 347 

field variations within the viscous and 348 

thermal boundary layers, we 349 

implemented a frequency-varying mesh 350 

with 3-5 boundary layers along the 351 

thickness of a viscous layer. 352 

4. Results and discussion 353 

We consider the described labyrinthine 354 

metamaterials of two dimensions. In the 355 

first case, defined as a “fixed channel” 356 

case, we imply a constant channel width, 357 

� = �STU", at each iteration step. 358 

Thereby we aim at evaluating effects of 359 

the path tortuosity on sound propagation 360 

with the increase of the path length. For 361 

�=4 mm, the metamaterial unit cell sizes 362 

��� are 18 mm for UC1, 45 mm for UC2, 363 

and 126 mm for UC3. For another case, 364 

called “fixed unit cell” case, we assume a 365 

fixed unit cell size, ��� = �STU", with the 366 

channel width becoming smaller at each 367 

iteration. In particular, we fix ��� = 14 368 

mm that corresponds to the channel width 369 

� = 3 mm for UC1 and 0.9mm for UC2. 370 

For UC3, the internal channel is 371 
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eliminated for the wall thickness 372 

d=0.5 mm. For the specified value of ���, 373 

the channel width in the “fixed unit cell” 374 

case is smaller than that in the “fixed 375 

channel” case for the same iteration level. 376 

Thus, by comparing wave propagation 377 

for these two cases, we can evaluate how 378 

different amount of thermo-viscous 379 

losses influences wave propagation in 380 

similar structured labyrinthine channels. 381 

In the both cases, an internal unit cell 382 

channel is shaped along the Wunderlich 383 

curve. However, the channel length is 384 

different from the length of the 385 

Wunderlich curve due to deviations in the 386 

construction approaches. In particular, 387 

the algorithm of the Wunderlich curve 388 

construction assumes that the curve is a 389 

compressing mapping from a low-390 

dimensional space into a 2D domain, the 391 

area of which is the same at each iteration 392 

level [22]. For our unit cells, we assume 393 

a constant thickness of the solid walls that 394 

incurs variations in the channel length 395 

relative to that of the Wunderlich curve. 396 

Hence, in the “fixed channel” case, when 397 

the area of a bounding square increases at 398 

each iteration step (in contrast to original 399 

construction approach of the Wunderlich 400 

curve), the channel length is elongated by 401 

a factor of 3	 relative to �. In the “fixed 402 

unit cell” case, the channel length 403 

increases as 3	� − 1. 404 

4.1 “Fixed-channel” case 405 

Figure 4 shows calculated dispersion 406 

relations for homogeneous waves 407 

propagating in UC1, UC2, and UC3 408 

along ΓX direction in the reciprocal k-409 

space. The horizontal axis indicates 410 

normalized wavenumber 8∗ = ���8, and 411 

the vertical axes depict frequencies f in 412 

kHz and normalized frequencies )∗ =413 

)��� �2⁄ . Note different frequency 414 

ranges for each unit cell. The analyzed 415 

frequencies are limited to a sub-416 

wavelength range, i.e. up to about 417 

)��� �2⁄ = 0.5. For UC1, we consider 418 

modes forming the lowest band gap and 419 

extending up to 9 kHz; for the UC2 and 420 
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UC3, the frequency range is restricted to 421 

first 4 band gaps, and thus, it is limited to 422 

4 kHz and 500 Hz, respectively. 423 

The dash-dot lines represent phase 424 

velocities of sound waves in lossless air 425 

for the lowets fundamental mode within 426 

a unit cell and in homogeneous air (when 427 

a unit cell is removed). As can be 428 

expected, the velocity slows down when 429 

a wave propagates through a labyrinthine 430 

channel. The velocity decreases by 431 

factors 1.63, 2.91, and 5.28, as compared 432 

to homogeneous air. 433 

The dispersion relations in Fig. 2 are 434 

characterized by several frequency band 435 

gaps in the sub-wavelength region. All of 436 

them are located below )�/�2 = 0.45. 437 

Hence, we conclude that the designed 438 

labyrinthine metamaterials can control 439 

sound waves at subwavelength scales. As 440 

N increases, the band gaps are shifted to 441 

lower frequencies. These shifts are 442 

directly related to the path elongation. 443 

For example, the 1st band gap starting 444 

from )�/�2 = 0.21 for UC1, is shifted to 445 

about 3 times lower frequency, )�/�2 = 446 

0.069, for UC2, since the channel length 447 

in UC2 is 3 times longer than that in UC1. 448 

The band gaps bounds are formed by flat 449 

parts of dispersion bands that describe 450 

localized modes. The corresponding 451 

pressure distribution are given in the 1st 452 

and 3rd columns of Table 1 for the 1st 453 

band gaps and Table 2 for the 2nd and 3rd 454 

band gaps. As green color indicates 455 

(almost) zero pressure, one can observe 456 

strong pressure localization within the 457 

labyrinthine channel. It is easy to find out 458 

that regardless of the iteration level, these 459 

localized modes correspond to Fabry-460 

Perot resonances in a straight slit of width 461 

� and length ���� [21, 13]: 462 

)�WX = Y�2 2����⁄ ,  (5) 463 

whwre Y is a positive integer. In the “fixed 464 

channel” case, ���� equals 2.305��� for 465 

UC1; ���� = 5.667��� for UC2, and 466 

���� = 16.642��� for UC3, where 467 

��� = ���√2. Note that odd values of Y 468 

correspond to the lower band gap bounds, 469 
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while even values of Y allow evaluating 470 

the upper band gap bounds in Fig. 2.  471 

The fact that multiple harmonics of the 472 

Fabry-Perot resonances form the band 473 

gap bounds, explains a similar structure 474 

of the dispersion relation at various 475 

frequencies with close values of phase 476 

and group velocities for dispersion bands. 477 

The pressure distributions in Tables 1 and 478 

2 are also similar to those of the artificial 479 

monopole, dipole and multipole 480 

resonances [12]. For example, the 481 

patterns at lower bound of the 1st band 482 

gap (the 1st column in Table 1) resemble 483 

that of a monopole, when the pressure is 484 

concentrated in the central part of a 485 

channel and equally radiates along two 486 

propagation directions [12, 14]. Since an 487 

effective dynamic bulk modulus (not 488 

evaluated for our unit cells) is typically 489 

negative in a limited frequency range 490 

above the monopole resonance, one can 491 

expect a high wave reflectance at these 492 

frequencies [12]. The wave reflection and 493 

transmission characteristics for the 494 

labyrinthine structures are analyzed later 495 

in this section. 496 

Apart from the Fabry-Perot resonances, 497 

wave dispersion in our labyrinthine 498 

metamaterials is also characterized by the 499 

presence of bands at the band gap 500 

frequencies. These bands can be found 501 

within each band gap for every analyzed 502 

unit cell (see Fig. 4). The pressure 503 

distributions at these modes (the 2nd 504 

column in Tables 1 and 2) resemble those 505 

for the dipole resonance and its higher 506 

harmonics (compare to 3rd column of 507 

Tables 1 and 2), but the pressure is not 508 

localized inside a channel. Thus, these 509 

modes do not represent standing waves of 510 

localized pressure, but are propagating 511 

ones with very slow (and often negative) 512 

group velocities. They are analogous to 513 

slow modes inside phononic band gaps 514 

for elastic waves [30, 31]. The 515 

mechanism of the slow mode excitation 516 

and its dynamics will be investigated in 517 

more detail in our future work. Here, we 518 

leave these modes within the band gaps 519 
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(instead of separating a band gap into two 520 

parts), since we have not detected the 521 

presence of these modes in the 522 

frequency-domain simulations, even for a 523 

very fine frequency step (see Figs. 5 and 524 

7). 525 

Frequency-domain simulation results are 526 

given in Figures 5 and 6 in terms of 527 

transmission and absorption coefficients 528 

for lossless and lossy air. We analyze 529 

wave propagation through a monolayer 530 

composed of the labyrinthine unit cells 531 

(Figs. 5a, 6a, 6c) and straight slits of 532 

length ���� (Fig. 5b, 6b, 6d) and ��� (Fig. 533 

5c). (Note that at certain very low 534 

frequencies in lossy air, the transmission 535 

and absorption coefficients appeared to 536 

be mesh-dependent, and hence, are not 537 

shown as unreliable.) 538 

When losses in air are neglected, for all 539 

the structures, incoming waves are either 540 

transmitted or reflected, and thus, the 541 

absorption coefficient is zero (not shown 542 

in the graphs). Total transmission is 543 

achieved at frequencies of the Fabry-544 

Perot resonances (5). As can be seen, this 545 

effect is independent of the channel 546 

tortuosity and occurs in folded 547 

labyrinthine channels of any iteration 548 

level at almost the same frequencies as 549 

for straight slits. For the slit of length ���, 550 

the first Fabry-Perot resonance appears to 551 

be higher than the analyzed frequency 552 

range. This structure acts as a rigid 553 

scatterer at sub-wavelength frequencies, 554 

and thus, it will be not considered further. 555 

When thermos-viscous losses are 556 

included, the transmission peaks decrease 557 

in magnitude and are shifted to lower 558 

frequencies compared to the lossless 559 

case. The later occurs due to slowing 560 

down of the wave velocity in dissipative 561 

air, as confirmed by experimental 562 

measurements in [21]. 563 

The striking differences in wave 564 

dynamics of straight and fractal-shaped 565 

channels occur between the frequencies 566 

of Fabry-Perot resonances. In case of 567 

straight slits, the main part of incoming 568 

waves is reflected, while about 15-20% 569 
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of the wave energy is transmitted through 570 

a slit. For the labyrinthine metamaterials, 571 

the same behavior is observed in the 572 

propagating frequency range, while 573 

within the band gaps total wave reflection 574 

occurs with zero transmission coefficient. 575 

If we remember, that the lower band gap 576 

bounds are formed by the monopole 577 

resonance and its higher harmonics, then 578 

total reflectance is justified by a negative 579 

values of effective dynamic bulk 580 

modulus at the band gap frequencies. 581 

Note that 100% wave reflection is 582 

preserved even if thermos-viscous losses 583 

are taken into account. In contrast to the 584 

total transmission effect at Fabry-Perot 585 

resonances, which is eliminated by the 586 

loss mechanism, the total reflection is not 587 

affected by dissipation. As the iteration 588 

level increases, the band gaps, i.e. the 589 

total reflection frequencies, are shifted to 590 

lower frequencies and decrease in size 591 

(compare Figs. 5a, 6a, and 6c). However, 592 

the amount of transmitted energy at 593 

frequencies of propagating modes also 594 

decreases, that is not the case for the 595 

straight slits (compare e.g. Figs. 6c and 596 

6d). 597 

To summarize the results, we can derive 598 

two key conclusions. First, the wave 599 

characteristics of labyrinthine meta-600 

materials with fractal-structured channels 601 

differ from those for straight slits of the 602 

effective length due to the tortuosity 603 

effect, which becomes important, when a 604 

wave is allowed to propagate in the 605 

opposite (to the main wave field) 606 

direction. Therefore, the derivation of 607 

effective characteristics for this type of 608 

metastructures should take into account 609 

the tortuosity effects. Second, the 610 

designed labyrinthine metamaterials can 611 

be used as broadband low-frequency 612 

sound reflectors of compact size, since 613 

100% wave reflection can be achieved by 614 

using a single unit cell.  615 

The circular markers in Fig. 5a represent 616 

the transmission values for the 617 

corresponding 3D domain, which is 618 

obtained by extruding the 2D model in 619 
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Fig.2 in the out-of-plane direction by 620 

height 4���. An excellent agreement 621 

between the 3D and 2D results justifies 622 

the introduced assumption on the two-623 

dimensional character of the analyzed 624 

problem. 625 

Finally, we note that the designed 626 

labyrinthine metamaterials can be 627 

considered as tortuous open-porous 628 

materials. The porosity level, evaluated 629 

as ratio of the area of air inside a unit cell 630 

to the total area of a unit cell, is 0.901 for 631 

UC1, 88 % for UC2, and 89 % for UC3, 632 

which is rather low compared to porosity 633 

of typical foams that is very close to 1 634 

[32]. However, the main difference 635 

between the porous materials and the 636 

designed labyrinthine metastructures is 637 

the physical mechanism of the wave 638 

control. Porous materials attenuate waves 639 

due to thermos-viscous losses with the 640 

absorption coefficient close to 1 for 641 

broadband frequencies. In contrast, the 642 

designed structures mainly reflect 643 

incident waves with absorption hardly 644 

approaching 0.5 for single frequencies 645 

(see Figs. 6 a,c). In the next section, we 646 

evaluate the metamaterial performance 647 

for increased level of thermo-viscous 648 

losses. 649 

4.2 “Fixed-unit-cell” case 650 

Dispersion relations for UC1 and UC2 651 

for the “fixed unit cell” case, when ��� =652 

14 mm, are shown in Fig. 7 for 653 

homogeneous waves along ΓX direction. 654 

The dimensional frequency ranges are the 655 

same as those for the corresponding unit 656 

cells in the “fixed channel” case (see 657 

Figs. 4 a,b).  658 

The structure of the dispersion relation in 659 

Fig. 7a is similar to that in Fig. 4a, except 660 

that the dispersion bands are shifted to 661 

higher frequencies due to a shorter length 662 

of the labyrinthine channel. From the first 663 

sight, more differences can be found by 664 

comparing the dispersion relations for 665 

UC2 in Fig. 4b and Fig. 7b. While in Fig. 666 

4b there are four band gaps, the relation 667 

in Fig. 7b is characterized by the presence 668 



A.O. Krushynska 
 

16 
 

of a single wide band gap. This happens 669 

because the unit cell area, ?��$9\] = 14> 670 

mm2, in the second case is about 3 times 671 

smaller than that for the “fixed channel 672 

case”, ?��$9^ = 41>mm2. This causes 673 

shift of the monopole, dipole and 674 

multipole resonances, and thus, the 675 

related band gaps, to 3 times higher 676 

frequencies. However, for the non-677 

dimensional frequencies, the band gaps 678 

remain unchanged. In general, it can be 679 

expected, that the dispersion relations for 680 

the two considered cases must be the 681 

same for non-dimensional frequencies, 682 

since the metamaterial structure is 683 

preserved. In contrast to this, we should 684 

observe differences in the transmission 685 

and absorption coefficients for lossy air 686 

in the two cases due to various amount of 687 

thermo-viscous losses in the channels of 688 

a different width.  689 

Figure 8 shown the transmission and 690 

absorption coefficients for the labyrithine 691 

monoslabs of “fixed unit cell” case and 692 

those for straight slits of the 693 

corresponding length. In general, the 694 

features found by analyzing the “fixed 695 

channel” case are also observed in the 696 

present case. Namely, the wave 697 

propagation in the labyrinthine channels 698 

is not equivalent to that in the straight 699 

slits due to the presence of 100% 700 

reflection within band gap frequencies, 701 

which is independent of dissipation in air. 702 

However, as the channel in the “fixed unit 703 

cell” case is more than 4 times narrower 704 

relative to that in the “fixed channel” 705 

case, the influence of thermos-viscous 706 

losses is more pronounced that can be 707 

seen in larger absorption values at the 708 

Fabry-Perot resonant frequencies. 709 

Therefore, wave attenuation within 710 

labyrinthine channels can be obviously 711 

increased by decreasing the channel 712 

width. In contrast to this, the porosity of 713 

the metamaterial decreases. Thus, for 714 

UC2, the structural porosity is 0.647 for 715 

the “fixed unit cell” case versus 0.88 for 716 

the “fixed channel” case. Thus, one can 717 

approach the functionality of the 718 
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designed labyrinthine metamaterials to 719 

that of tortuous porous materials by 720 

decreasing the structural external 721 

dimensions and porosity. 722 

5. Conclusions 723 

In this work, we theoretically analyzed 724 

the possibilities of labyrinthine acoustic 725 

metamaterials with sub-wavelength 726 

channels shaped along a space-filling 727 

curve to control airborne homogeneous 728 

sound waves. We demonstrated that, if an 729 

internal channel allows wave propagation 730 

in the opposite (to the incident pressure 731 

field) direction, the dynamics of the 732 

folded channel is not equivalent to that of 733 

a straight slit of an effective length. In 734 

particular, we found out that Fabry-Perot 735 

resonances of a straight slit correspond to 736 

the monopole, dipole and multipole 737 

resonances in folded channels and govern 738 

the generation of band gaps. Within the 739 

band gaps, total wave reflection occurs 740 

that is not influenced by the presence of 741 

dissipation in air. Moreover, by 742 

increasing the channel tortuosity and 743 

further elongating a wave path, one can 744 

achiev 100% reflection outside band 745 

gaps. Despite the fact that for higher 746 

iteration levels, the designed labyrinthine 747 

metamaterials resemble tortuous porous 748 

structure, they control wave propagation 749 

due to wave interference effects, in 750 

contrast to thermos-viscous dissipation in 751 

porous structures. This results in a low 752 

wave attenuation within a metastructure. 753 

We show that the absorption can be 754 

increased by decreasing the channel 755 

width and the structural dimensions. 756 

This is the first time that a fractal space-757 

filling curve has been considered for 758 

designing wave paths in labyrinthine 759 

metamaterials, and thus, further more in-760 

depth analysis is required to analyze the 761 

influence of various factors, e.g. number 762 

of turns or an angle of turn, as well as the 763 

performance for inhomogeneous waves, 764 

on wave dynamics in channels of such a 765 

complex form. This studies will be 766 

performed in our future work. In 767 

conclusion, we believe that the proposed 768 
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structures could be of use as a new type 769 

of broadband low-frequency sound 770 

reflectors that can be inexpensively 771 

assembled from thin equal sheets by 772 

arranging them along indicated paths. 773 
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List of figures 

 

Figure 1. (a) Unit cell of the 1st iteration level (UC1) with dimensions. Labyrinths with air channels 

shaped according to the Wunderlich space-filling curve of the first three iteration levels 

incorporated into UC1, UC2, and UC3. Solid walls of constant thickness, d = 0.5mm, are indicated 

in blue. The wave propagation direction is shown by blue arrows in (b). 

 

Figure 2. Schematic of the frequency domain model. Green area corresponds to an air domain, 

green dashed lines indicate locations, at which reflection and transmission coefficients are 

evaluated. The plane wave radiation condition is applied along the bold red line. 

 

Figure 3. Thickness of viscous δ`ab and thermal δcd boundary layers according to relations (3) and 

(4). 

 

Figure 4. “Fixed channel” case: Dispersion relations for the labyrinthine unit cells of the 3 

iteration levels with a fixed channel width, w=4 mm. Band gaps are shown by shaded rectangles. 

The slope of the green and red dash-dot lines indicates phase velocities of the fundamental mode 
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within a unit cell and in homogenous air (when a unit cell is removed). Bold points designate 

frequencies with the pressure distributions given in Table 1 and 2. 

 

Figure 5. “Fixed channel” case: Transmission (T) and absorption (A) coefficients for acoustic 

waves in lossless (dashed line) and lossy (solid line) air through (a) a labyrinthine metamaterial 

UC1; (b) a straight slit of width w = 4 mm and length Leff = 45.6 mm; (b) a straight slit of width 

w = 4 mm and length auc = 18 mm. Shaded regions indicate frequency a band gap shown in Fig. 

4a. Circular markers in (a) indicate transmission coefficient values in lossless air for the 

corresponding 3D model of height 4auc.  

 

Figure 6. “Fixed channel” case: Transmission (T) and absorption (A) coefficients for acoustic 

waves in lossless (dotted line) and lossy (solid line) air through (a) a labyrinthine metamaterial 

UC2 and (b) a straight slit of width w = 4 mm and length Leff = 328.5 mm; (c) a labyrinthine 

unit cell UC3 and (d) a straight slit of width w = 4 mm and length Leff = 2.871 m. Shaded 

regions indicate frequency band gaps shown in Fig. 4. 

 

Figure 7. “Fixed unit cell” case: Band structure diagrams for the unit cells UC1 and UC2 of fixed 

size a=14 mm with the channel width of 3 mm and 0.9 mm, respectively. Band gap frequencies 

are shaded. The slopes of the green and red dash-dot lines indicate the phase velocities of the 

fundamental pressure wave inside a unit cell and in homogeneous air (when a unit cell is removed). 
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Figure 8. “Fixed unit cell” case: Transmission (T) and absorption (A) coefficients for acoustic 

waves in lossless (dotted line) and lossy (solid line) air through (a) a labyrinthine unit cell UC1 

and (b) a straight slit of width w = 3 mm and length Leff = 34.6 mm; (c) a labyrinthine unit cell 

UC2 and (d) a straight slit of width w = 0.9 mm and length Leff = 107 mm. Shaded regions indicate 

frequency band gaps shown in Fig. 7. 

 

List of tables 

Table 1. “Fixed channel” case (“Fixed unit cell” case): Pressure distributions around the 1st band 

gap for the labyrinthine metamaterial unit cells of the 3 iteration levels. Red and blue colors 

represent maximum and minimum pressure, while green color indicates (almost) zero pressure. 

The frequencies in brackets are referred to the “fixed unit cell” case. 

 

Table 2. “Fixed channel” case: Pressure distributions around the 2nd and 3rd band gaps for the 

labyrinthine metamaterial unit cells of the 2nd and 3rd iteration levels. Red and blue colors 

represent maximum and minimum pressure, and green color indicates (almost) zero pressure. 
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(a) UC1 (c) 2nd iteration 

(b) 1st iteration (d) 3rd iteration 

Figure 1. (a) Unit cell of the 1st iteration level (UC1) with dimensions. (b-d) Labyrinths with air 

channels shaped according to the Wunderlich space-filling curve of the first three iteration levels 

incorporated into UC1, UC2, and UC3. Solid walls are indicated in blue. The shortest path taken 

by a wave within UC1 is shown by blue arrows in (b).  
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Figure 2. Schematic of the frequency domain model. Green area corresponds to an air domain, 

green dashed lines indicate locations, at which reflection and transmission coefficients are 

evaluated. The plane wave radiation condition is applied along the bold red line. 

 

Figure 3. Thickness of viscous ���� and thermal ��� boundary layers according to relations (3) 

and (4). 
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(a) 

Figure 4. “Fixed channel” case: Dispersion relations for the labyrinthine unit cells of the 3 

iteration levels with a fixed channel width, w=4 mm. Band gaps are shown by shaded rectangles. 

The slope of the green and red dash-dot lines indicates phase velocities of the fundamental mode 

within a unit cell and in homogenous air (when a unit cell is removed). Bold points designate 

frequencies with the pressure distributions given in Table 1 and 2.  
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Table 1. “Fixed channel” case (“Fixed unit cell” case): Pressure distributions around the 1st 

band gap for the labyrinthine metamaterial unit cells of the 3 iteration levels. Red and blue colors 

represent maximum and minimum pressure, while green color indicates (almost) zero pressure. 

The frequencies in brackets are referred to the “fixed unit cell” case. 
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Table 2. “Fixed channel” case: Pressure distributions around the 2nd and 3rd band gaps for the 

labyrinthine metamaterial unit cells of the 2nd and 3rd iteration levels. Red and blue colors 

represent maximum and minimum pressure, and green color indicates (almost) zero pressure. 
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Figure 5. “Fixed channel” case: Transmission (T) and absorption (A) coefficients for acoustic 

waves in lossless (dashed line) and lossy (solid line) air through (a) a labyrinthine metamaterial 

UC1; (b) a straight slit of width � � 4 mm and length Leff = 45.6 mm; (b) a straight slit of width 

� � 4 mm and length auc = 18 mm. Shaded regions indicate frequency a band gap shown in Fig. 

4a. Circular markers in (a) indicate transmission coefficient values in lossless air for the 

corresponding 3D model of height 4auc.  
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Figure 6. “Fixed channel” case: Transmission (T) and absorption (A) coefficients for acoustic 

waves in lossless (dotted line) and lossy (solid line) air through (a) a labyrinthine metamaterial 

UC2 and (b) a straight slit of width � � 4 mm and length Leff = 328.5 mm; (c) a labyrinthine 

unit cell UC3 and (d) a straight slit of width � � 4 mm and length Leff = 2.871 m. Shaded 

regions indicate frequency band gaps shown in Fig. 4.  
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(a) (b) 

Figure 7. “Fixed unit cell” case: Band structure diagrams for the unit cells UC1 and UC2 of fixed 

size a=14 mm with the channel width of 3 mm and 0.9 mm, respectively. Band gap frequencies are 

shaded. The slopes of the green and red dash-dot lines indicate the phase velocities of the 

fundamental pressure wave inside a unit cell and in homogeneous air (when a unit cell is removed). 
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Figure 8. “Fixed unit cell” case: Transmission (T) and absorption (A) coefficients for acoustic 

waves in lossless (dotted line) and lossy (solid line) air through (a) a labyrinthine unit cell UC1 

and (b) a straight slit of width � � 3 mm and length Leff = 34.6 mm; (c) a labyrinthine unit cell 

UC2 and (d) a straight slit of width � � 0.9 mm and length Leff = 107 mm. Shaded regions indicate 

frequency band gaps shown in Fig. 7. 
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