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Abstract—We present a general framework for the fully
automated extraction of stable and passive parameterized macro-
models from sampled frequency responses. The proposed itera-
tive algorithm provides an automated selection of the optimal
parameter configurations to be simulated by a field solver, based
on a combination of data-driven and model-driven metrics. The
resulting frequency responses are fitted by a parameterized
rational macromodel, whose uniform stability and passivity are
enforced. We demonstrate the effectiveness of this framework on
a transmission-line network test case.

I. INTRODUCTION

Parameterized macromodels provide a common tool both in
academia and in industry for fast simulation and optimization
of electromagnetic structures [5]. Such reduced-order models
provide an approximation of the response of a given structure
in state-space form, where the response depends both on
frequency and on a number of geometry or material param-
eters. Macromodels can be simulated in time or frequency
domain, and their numerical simulation at the system level is
usually orders of magnitude faster than a full-wave simulation
of the underlying electromagnetic problem. Therefore, after
a suitable identification process, the macromodel provides a
surrogate that is able to replace the original structure in those
optimization and sensitivity studies that are required during
design flows.

Macromodel construction may require a large number of
electromagnetic simulations, since enough information must
be retrieved on the original system response for enabling
an accurate approximation. Here, with simulation we intend
a frequency sweep of the system (scattering) response for
a given parameter configuration, usually based on a dif-
ferential or integral equation frequency-domain solver. This
problem becomes critical when the number of geometrical
parameters increases. A brute-force tensor-product parameter
sweep would lead to an exponential growth in the number of
required simulations, which is of course impractical. Hence the
need of determining the minimal number of field simulations
that are strictly necessary for the extraction of an accurate
macromodel.

The above scenario is further complicated by the essential
requirements on the final parameterized macromodel to be
stable and passive uniformly in the parameter space. If these
requirements are not met, the macromodel will not be reliable
in time-domain simulations since instabilities may occur [2],
[5]. More in general, unstable and/or non-passive macromodels

are physically inconsistent with the underlying system under
modeling, provided that such system is a passive structure,
device or component. This is indeed the main focus of this
investigation.

The starting point of our work is [1], which presented an
automated adaptive sampling process to determine the best
candidate points in the parameter space that enable a reliable
macromodel construction. The approach of [1] is purely data-
driven, since only the characteristics of the original responses
are used to set up the adaptive sampling scheme. Our approach
is different, since also a set of model-driven criteria and
metrics are used to support adaptive sampling. In particular,
we tune the selection of the candidate simulation points based
on the local model approximation error and on the results
of a local passivity characterization. The latter is enabled by
the recent developments documented in [3]. We show that
the introduction of the latter two metrics enables macromodel
construction with a significantly reduced number of simula-
tions, and at the same time drives the iterative identification
process towards a more accurate and uniformly passive and
stable parameterized macromodel.

II. AN ADAPTIVE ALGORITHM FOR POINT SELECTION

We denote as H̆k,q = H̆(j2πfk;ϑq) the response of the
original system obtained from a field solver at frequency fk
with k = 1, . . . , k̄ and parameter configuration ϑq with q =
1, . . . , q̄, where ϑ = (ϑ1, ..., ϑρ)T ∈ Θ ⊂ Rρ is a vector
collecting the free geometry or material parameters of interest.
The objective is here to determine a minimal number q̄ and
the optimal values of parameter configurations ϑq , so that a
parameterized macromodel H(s;ϑ) can be constructed, under
the following constraints

1) the model vs data error is below a prescribed threshold

‖H(j2πfk;ϑq)− H̆k,q‖ < ε ∀k, q

2) the model is uniformly stable and passive, i.e., the
following Uniform Bounded Realness conditions are
satisfied
a) H(s;ϑ) regular for <{s} > 0, ∀ϑ ∈ Θ,
b) H∗(s;ϑ) = H(s∗;ϑ) ∀s ∈ C, ∀ϑ ∈ Θ,
c) I−HH(s;ϑ)H(s;ϑ) ≥ 0 for <{s} > 0, ∀ϑ ∈ Θ.

The idea of employing an adaptive scheme for selecting
simulation points is not new, as a good adaptive sampling
algorithm was already presented in [1]. That approach was



based on two exploration and exploitation criteria, which were
properly combined into a final metric for point selection. The
scheme proposed here is similar, with the addition of two
other model-driven criteria that embed in the point selection
process appropriate metrics related to the actual final objective
of reaching an accurate and passive model, and expressed by
the two constraints 1) and 2) above.

The algorithm starts with a set of initial points, which cor-
respond to a set of q̄0 system responses Q0 = {ϑ1, . . . ,ϑq̄0}
scattered in the parameter space Θ. Each simulation point
ϑq = (ϑ1

q, ..., ϑ
ρ
q) is associated to a specific combination of

scalar values assumed by the parameters. At any subsequent
ν-th iteration, with ν > 0, a new set of points Pν is added to
the already existing sets, so the total set of simulation points,
composed of q̄ν elements, becomes Qν = Qν−1∪Pν . Figure 1
illustrates the adaptive addition of points (green dots) through
iterations on a test case. At each iteration, the parameter
space is partitioned into disjoint cells Cνq , with each cell
associated to a single ϑq with q ∈ Qν . The cells are defined
through a Voronoi tessellation supported by the current point
distribution, as in [1]. Then, the cells are ranked based on
a metric that combines four independent criteria, which are
itemized and discussed below. The cells with highest rank will
host the new points ϑq with q ∈ Pν to be added for the next
iteration.

A. Exploration

The exploration criterion aims at positioning new points
in such a way that the entire design space is explored [1].
Based on this criterion, new points will be added in those
regions with a coarser sampling density. This can be achieved
by ranking each cell Cq (iteration index ν is omitted from
now on) based on its normalized volume V (Cq). Therefore,
we define as in [1] the exploration metric as

Λ1(ϑq) =
V (Cq)∑q=q̄
q=1 V (Cq)

(1)

B. Exploitation

The exploitation criterion aims at placing new points in the
regions where the system response undergoes a large variation,
based on the assumption that rapid variations should require a
finer sampling density. Also this criterion was already defined
and used in [1] and is briefly summarized below.

The variation of the response at each point ϑq is evaluated
with respect to a set of L = 2ρ properly selected neighbouring
points N (ϑq) = {ϑq,`}L`=1, which surround the central
point in all directions. Exploitation is obtained in practice by
calculating an approximation of the gradient ∇H̆(sk;ϑ) for
each frequency sk, which is used to compute the best local
linear approximation H̄(sk;ϑ) ≈ H̆(sk;ϑ) at any point ϑq .
The distance between such local linear approximation and the
true response H̆(sk;ϑ) at the neighbouring points ϑq,`, after
a proper normalization, constitutes the exploitation metric

Λ2(ϑq) =
E(ϑq)∑q̄
q=1E(ϑq)

(2)

where

E(ϑq) = max
k

(
L∑
`=1

∥∥∥H̄(sk;ϑq,`)− H̆(sk;ϑq,`)
∥∥∥) (3)

C. Data-model relative error

At each iteration, after a set of new additional points
has been selected, an intermediate macromodel H(s;ϑ) is
generated. The main engine that we use here for macromodel
construction is the Parameterized Sanathanan-Koerner (PSK)
iteration, see e.g. [7], [8], which seeks for a model in form

H(s;ϑ) =
N(s;ϑ)

D(s;ϑ)
=

∑n̄
n=0

∑¯̀

`=1 Rn,` ξ`(ϑ)ϕn(s)∑n̄
n=0

∑¯̀

`=1 rn,` ξ`(ϑ)ϕn(s)
(4)

where ϕn(s) and ξ`(ϑ) are frequency-domain and parameter-
space basis functions and Rn,`, rn,` are the model coefficients
that are numerically found through an iterative process. An
equivalent form of this model is the parameterized state-space
(descriptor) form [7]

H(s;ϑ) = C(ϑ) (sE−A(ϑ))
−1

B (5)

with

A(ϑ) =

¯̀∑
`=1

A` ξ`(ϑ), C(ϑ) =

¯̀∑
`=1

C` ξ`(ϑ). (6)

The relative error between such model and original data
at each simulation point is used as a third metric for point
selection, based on the assumption that more samples are
needed where the current model is not accurate enough. Note
that an automated model order estimation is embedded in our
implementation of the PSK iteration, so that model accuracy is
maximized automatically by choosing the proper model orders.
Therefore, an inaccurate intermediate model is likely due to
an insufficient sampling density. The error-based metric is thus
expressed as

R2(ϑq) =

∑
k ||H(sk;ϑq)− H̃(sk;ϑq)||

2∑
k ||H̆(sk;ϑq)||

2 (7)

and then properly normalized as

Λ3(ϑq) =
R(ϑq)∑q̄
q=1R(ϑq)

. (8)

D. Passivity violations

The final target of the presented approach is an accurate, sta-
ble and passive macromodel. Even assuming that data retrieved
from a field solver are passive, the inevitable approximations
of the fitting process can lead to a non-passive model at
any stage of proposed iterative model construction. Although
passivity on the model must always be checked and (if needed)
enforced, the selection of new simulation points can be driven
by sampling more densely the regions of the parameter space
where the intermediate model is not passive. This is achieved
by means of a dedicated metric, which measures the extent of
model passivity violations.



Considering condition 3) of Sec. II, we see that the model is
passive at any point (s,ϑ) when the maximum singular value
of the model response does not exceed one, σmax(H(s;ϑ)) ≤
1. Therefore, the extent of a local passivity violation can be
measured in terms of the maximum singular value as

S(ϑq) = max
ω∈R

σmax(H(s;ϑq)) (9)

This maximum is obtained by launching a Hamiltonian passiv-
ity check on the model instantiated at ϑq , using the procedure
of [2], [3]. The Skew-Hamiltonian/Hamiltonian (SHH) matrix
pencil (MS(ϑq),KS) defined as

MS(ϑq) =

(
A(ϑq) BBT

−CT(ϑq)C(ϑq) −AT(ϑq)

)
(10)

KS =

(
ET 0
0 E

)
is constructed, and its eigenvalues are computed. The fre-
quency bands (ωi(ϑq), ωi+1(ϑq)) where local passivity vio-
lations are present are obtained by postprocessing this eigen-
spectrum. Combination of this test with a Hamiltonian eigen-
value perturbation process at each ϑq leads to a precise
tracking of the boundaries that separate the regions in Θ where
the model is passive/non-passive. Such regions are depicted
with green and red dots, respectively, in Fig. 3, see also [3].
The maximum singular value required in (9) is easily obtained
by a local fine sampling in each detected non-passive band of
the local model H(s;ϑq).

As a result, the cells Cq are ranked based on the normalized
passivity violations as

Λ4(ϑq) =
S(ϑq)∑q̄
q=1 S(ϑq)

. (11)

E. Adaptive selection of new points

The four metrics Λi, i = 1, . . . , 4 are combined into a single
global metric

Λ(ϑq) =

4∏
i=1

[1 + αiΛi(ϑq)] (12)

where the coefficients αi > 0 can be further used to tune the
importance of each individual criterion. This global metric is
used to rank data points and their associated Voronoi cells: the
new points will be finally placed inside the Voronoi cells with
higher ranking, as in [1]. As already mentioned, the algorithm
works iteratively, so the addition of new points is repeated
until a sufficiently accurate model is obtained. At each iteration
ν, a fraction of β = |Pν |/|Qν−1| samples are added, where
0 < β < 1. We have observed that β = 1/3 provides a good
trade-off between number of added points at each iteration and
number of required iterations.

III. PASSIVITY ENFORCEMENT

After a sufficient number of simulation points has been
selected and an accurate model has been obtained, its passivity
(and thus also its stability) is checked and, if necessary,
enforced. The procedures used both for stability/passivity
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Fig. 1: Voronoi diagram of the parameter space at different
iterations for the distributed network example. The scale used
to color each cell represents the model-data error at the
corresponding sample point.
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Fig. 2: Comparison between passive model and original data
of the distributed network for a selected set of responses.

check and enforcement are those presented in [2], [3], [6],
which the Reader is referred to for further details.

IV. EXAMPLES

We illustrate the effectiveness of our adaptive macromod-
eling framework on a distributed network. The structure is
composed of four cascaded segments of a lossy transmission
line, with three internal loaded stubs. In this case we param-
eterize the internal line lengths, here denoted as ϑ1 = L ∈
[9, 10] mm, and the load terminating the central stub by
means of its reflection coefficient ϑ2 = Γ ∈ [0.5, 0.9]. The
remaining lengths are set to a fixed value of 7 mm, the
stubs to 1 mm, while the reflection coefficients of the non
parameterized loads are set to 0.5. We seek for a lumped



Fig. 3: Passivity check on the distributed network models
costructed by driving adaptive sampling with (left) and without
the passivity violation metric (right). Each green (red) dot
denotes a parameter configuration for which the parameterized
model is passive (non-passive).

(rational) parameterized macromodel of this structure, based
on the adaptively determined frequency responses selected by
proposed scheme. The frequency responses are obtained by a
field solver.

The proposed adaptive sampling process terminates in 5
iterations, with a total of q̄5 = 56 simulation points in the
two-dimensional parameter space. Figure 1 depicts the Voronoi
tessellation of the design space at four selected iterations.
Each cell is colored with a color scale that corresponds to the
relative error (metric Λ3) of the intermediate macromodel built
with the current set of points. Note that the global metric is
used to refine the grid, although only model error is displayed
in the four figure panels. As Fig. 1 shows, the few red cells
present at the first iterations, corresponding to regions where
the model is still not enough accurate, progressively turn to
blue, up to the final iteration where the model is uniformly
accurate all over the space.

After the last iteration, passivity and stability of the model
must be checked and, if necessary, enforced. In this case
the model turns out to be already stable, but not passive.
Therefore, we apply the parameterized passivity enforcement
scheme of [3] to remove the residual passivity violations while
preserving model accuracy. A comparison between data and
final (passive) model responses is reported in Fig. 2, where
the uniform model accuracy is confirmed.

In order to test the effectiveness of the passivity metric,
which is one of the main novel aspects of this paper, the
procedure has been repeated without including Λ4 in the global
metric (12). In this case the final model results unstable, so that
also a postprocessing stability enforcement is necessary before
enforcing passivity. All details of this process are reported
in [3]. It turns out that the resulting model is not acceptable
due to the excessive perturbation that is required to compensate
for both stability and passivity violations. A comparison of
the passivity checks on the final models (before enforcing
passivity) is reported in Fig. 3.

We conclude this example by noting that applying the
adaptive sampling method of [1], i.e., removing the model-

based metrics Λ3 and Λ4 requires a total of q̄ = 74 points
in order to reach the same model accuracy (here verified a
posteriori, since not embedded in the identification loop), with
a 25% saving. Running the proposed algorithm on several
other test cases (not reported here) led to savings up to 80%
in the number of required samples. Moreover, considering the
cumulative runtime required to obtain the final passive model
by means of the proposed adaptive algorithm, approximately
3% of the overall time is used for the point selection process
of the algorithm, while the remaining 97% is due to the
field solver. Therefore, we see that the introduction of the
proposed model-driven metrics provides better models with
reduced computational effort and runtime.

V. CONCLUSIONS

We presented a fully automated algorithm for the genera-
tion of stable and passive parameterized macromodels. The
proposed approach is able to select, based on the combination
of four different metrics, a quasi-minimal set of simulation
points in the parameter space which lead to a uniformly
accurate model through an identification process based on
the Parameterized Sanathanan-Koerner iteration. Each of these
points corresponds to a combination of the parameters that
instantiates a well-defined geometry, whose frequency re-
sponses are determined on-demand by calling an external field
solver. New points are iteratively added until the model results
uniformly accurate throughout the parameter space. Stability
and passivity of the model at intermediate iterations are used
to drive the adaptive sampling process, and are enforced a-
posteriori on the final model using a perturbation approach.
The effectiveness of the proposed framework is illustrated on
a distributed network test case.
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