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Abstract—This paper introduces the use of a rational polyno-
mial chaos expansions (PCE) for the stochastic macromodeling
of network responses affected by parameter variability, as a
more suitable alternative to classical PCEs. The new formulation
is motivated by the intrinsic form of the response of a linear
and lumped network, which is indeed known to be a rational
function of both frequency and parameters. As a matter of
fact, the proposed representation is exact for lumped circuits,
provided that a suitable expansion order and truncation is used.
Moreover, it is shown that the rational PCE provides a better
approximation also for distributed networks. An iterative and
re-weighed linear least-square regression is used to estimate the
model coefficients. It is also found that their calculation is less
sensitive to the number of regression samples, compared to the
classical PCE. Two application examples, concerning a lumped
and a distributed system, illustrate and validate the advocated
methodology.

Index Terms—Multiport systems, polynomial chaos, rational
modeling, variability analysis, uncertainty quantification.

I. INTRODUCTION

Polynomial chaos expansion (PCE) recently gained wide
popularity in the variability analysis of electrical and electronic
systems because of its higher computational efficiency over
Monte Carlo sampling or other non-stochastic macromodeling
techniques [1]–[3]. In this framework, any stochastic quantity
of interest is represented as an expansion of orthogonal poly-
nomial functions of the random parameters affecting the sys-
tem, which provides fast convergence of statistical moments.
Traditionally, a single PCE is used, and the model coefficients
are computed by either projection [4], [5], interpolation [6],
[7], or regression [8], [9] (see [1], [2] for comparisons between
these classes of approaches).

In other domains, Padé approximants (i.e., rational func-
tions) were proposed for the PCE formalism because of
their improved accuracy in the modeling of discontinuous
functions [10]–[12]. Indeed, the response of a linear and
lumped electrical network (e.g., in impedance, admittance, or
scattering representation) is known to be a rational function
of both frequency and parameters. Therefore, a rational PCE
can model exactly the response of any circuit belonging to this
class, provided that suitable order and truncation are used.

Following the above consideration, this paper introduces
rational PCEs for the stochastic modeling of electrical network
responses, leading to the new paradigm of rational polynomial
chaos (RPC). However, compared to [10]–[12], a different
strategy is used for the PCE truncation, the calculation of

the model coefficients, and bias correction, as discussed in
the following. Furthermore, it is also shown that the proposed
rational stochastic models turn out to be more accurate also for
the important case of distributed networks that include delay
elements, such as transmission lines.

Two numerical examples that consider a lumped and a dis-
tributed network illustrate and validate the proposed method-
ology, showing that the novel RPC model provides better
accuracy than the classical PCE. Moreover, it is shown that
the model coefficients are less sensitive to the number of
regression samples used for their computation.

II. NON-STOCHASTIC MACROMODELING APPROACHES

The proposed model representation turns out to be closely
related to the so-called parameterized Sanathanan-Koerner
(PSK) form [13], which is commonly used for describing
behavioral models whose response depends on frequency and
on additional deterministic parameters. As in the proposed
RPC (see below), the PSK form expands numerator and
denominator of the model response into a set of frequency-
domain and parameter-domain basis functions. The former
are usually partial fractions, whereas the latter can be or-
thogonal [14] or trigonometric polynomials [15], or any other
set of basis functions that provide the desired approxima-
tion properties over frequency and parameter ranges. Similar
rational forms are ubiquitous also in other domains such
as model order reduction (MOR) [16], where interpolation-
based methods like the Loewner framework [17], [18], and
its parameterized version [19], adopt a barycentric rational
structure of the model. Even the widespread vector fitting
(VF) scheme [20] is based on such a model structure. These
premises confirm that rational expansions have been widely
proven to be superior, under many aspects, with respect to
simpler polynomial expansions.

Non-stochastic parameterized macromodeling based on the
PSK representation aims at reproducing in closed form the
true system response through a compact and fast-to-simulate
model, with the main objective of performing model-based
optimization and design centering. The present work considers
the parameters as stochastic variables and uses a rational
PCE to characterize the induced distributions and related
moments of the system responses, with the main objective
of robust design under stochastic conditions and uncertainty
quantification. The proposed iterative re-weighted regression



for estimating model coefficients can be seen as an application
of the PSK iteration, as described in [13], see also [21].

III. VARIABILITY ANALYSIS OF MULTIPORT SYSTEMS

According to the standard framework [8], any stochastic
frequency-domain response S of a linear electrical system
that is affected by d random parameters θ = [θ1, . . . , θd] is
expressed as the following PCE:

S(s,θ) ≈
L∑

`=1

S`(s)ϕ`(θ), (1)

where {ϕ`(θ)}L`=1 are multivariate polynomial functions that
are orthonormal based on the joint distribution of the random
parameters θ, and S` are pertinent model coefficients. The
basis functions are constructed as the product of univariate
polynomials, i.e.,

ϕ`(θ) = φk`,1
(θ1) · · ·φk`,d

(θd), (2)

with φk`,i
(θi) being a polynomial of degree k`,i. The coef-

ficients S` are usually obtained by linear least-square regres-
sion, starting from a set of responses computed for random
realizations of the random parameters θ.

Typically, a total degree truncation is adopted, meaning that
only the multivariate polynomials with degrees summing up
to p at most are retained (i.e.,

∑d
i=1 k`,i ≤ p, ∀`), leading

to a number of terms L = (p + d)!/(p!d!). The regression
problem needs to be overdetermined, and a number of samples
M that is twice the number of expanion terms (i.e., M = 2L)
is often recommended. However, as shown later in this paper,
the accuracy is highly dependent on the sample size, especially
at high frequency.

IV. RATIONAL POLYNOMIAL CHAOS EXPANSION

Despite the common practice of modeling network re-
sponses using a single PCE like (1), it is argued that the form
of network parameters for lumped circuits is rational in both
frequency and parameters, with the latter never appearing with
degree higher than one.

A formal proof is deferred to a future report. As a trivial,
yet illustrative example, consider the equivalent impedance of
a parallel RLC circuit in the Laplace domain:

Zeq(s,θ) =
1

1

R
+

1

sL
+ sC

=
sRC

R+ sL+ s2RLC
(3)

with θ = [R,L,C] and where, indeed, each element value
appears up to linearly in both the numerator and denominator.
If a PCE in the form of (1) is used to model the variability of
Zeq(s) due to stochastic variations of R, L, and C, it would
be unavoidably inexact.

Instead, a ratio of PCEs:

S(s,θ) =

∑L
`=1N`(s)ϕ`(θ)∑L
`=1D`(s)ϕ`(θ)

(4)

can provide an exact model, provided that all multi-linear
terms in (3) are included in the basis functions ϕ`. Table I

shows the maximum degree with which the three RLC pa-
rameters appear in each basis function with two different
truncation strategies, i.e., the total degree truncation discussed
in Section III, and the less common tensor product truncation,
which retains every basis function with univariate degree
k`,i ≤ p, ∀`, ∀i = 1, . . . , d, leading to L = (p + 1)d terms.
The only term appearing at the numerator (linear in R and
C) is highlighted with a red box, whereas the three terms
appearing in the denominator (linear in R, in L, and in R,L,C
simultaneously) are highlighted in blue. It is noted that the
classical total degree truncation contains higher order terms
that are never expected to appear in the response, and requires
a large order (in general, p = d) to capture all terms. On
the contrary, a tensor product truncation with p = 1 already
contains all necessary terms, thus resulting in a more compact
and optimized expansion. Owing to the above consideration,
a tensor product truncation is adopted here, as opposed to
common-practice PCE implementations that mostly use total
degree truncation. As shown in the next section, this model
(exact for lumped networks) turns out to be more accurate
(albeit approximate) also for distributed systems, but a higher
order could be required to improve accuracy.

TABLE I
MAXIMUM DEGREE OF THE PARAMETERS R, L, AND C IN EACH BASIS
FUNCTION WITH TOTAL DEGREE AND TENSOR PRODUCT TRUNCATION.

total degree tensor product
function order degree order degree

` p
k`,1 k`,2 k`,3 p

k`,1 k`,2 k`,3
(R) (L) (C) (R) (L) (C)

1 0 0 0 0 0 0 0 0
2 1 1 0 0 1 1 0 0
3 0 1 0 0 1 0
4 0 0 1 1 1 0
5 2 2 0 0 0 0 1
6 1 1 0 1 0 1
7 1 0 1 0 1 1
8 0 2 0 1 1 1
9 0 1 1

10 0 0 2
11 3 3 0 0
12 2 1 0
13 2 0 1
14 1 2 0
15 1 1 1
16 1 0 2
17 0 3 0
18 0 2 1
19 0 1 2
20 0 0 3

Since (4) is nonlinear in the denominator coefficients D`,
linear regression cannot be directly used to estimate the
coefficients. In [10]–[12], a multidimensional quadrature rule
is used to calculate the coefficients, but its generalization
to high dimensions is non-trivial. An alternative approach is



proposed in this paper. The model is rearranged by multiplying
by the denominator, leading to

L∑
`=1

N`(s)ϕ`(θ)− S(s,θ)
L∑

`=2

D`(s)ϕ`(θ) ≈ S(s,θ), (5)

where D1 has been set to unity to remove indeterminacy. The
new equation (5) is now linear in the coefficients and can
be solved by means of standard linear regression to find the
remaining 2L − 1 unknown coefficients. However, the above
rearrangement introduces a bias in the coefficients. Differently
from [10], in this paper the bias is systematically eliminated
through iterative re-weighting [21]. This iterative regression
problem is solved at each frequency point separately.

V. NUMERICAL RESULTS

As an example of a lumped-component circuit, the first
application test case deals with the seventh-order Chebyshev
low-pass filter whose schematic is depicted in Fig. 1. The
filter is designed to have a cut-off frequency of 2 GHz and a
passband ripple of 0.5 dB. The components values indicated in
Fig. 1 are available on the market and are close to the optimal
design values. The tolerances are taken from the datasheets
provided by the vendor, and they are considered as the standard
deviation of seven independent Gaussian random variables
describing the variability of the component values.

port 1 port 2

2.7± 0.1 pF

0.12 Ω 5.1± 0.2 nH

4.3± 0.25 pF

0.12 Ω 5.8± 0.2 nH

4.3± 0.25 pF

0.12 Ω 5.1± 0.2 nH

2.7± 0.1 pF

Fig. 1. Schematic of the seventh-order Chebyshev low-pass filter.

Fig. 2 shows the resulting variability of the magnitude of the
insertion loss S21. The gray lines are a subset of MC samples.
The colored lines indicate the mean and standard deviation of
S21. The blue lines are the estimations obtained with a MC
analysis. Starting from an initial value of 125, the number of
MC samples is doubled until the maximum relative difference
of the standard deviation over the frequency is less than 1%,
which resulted in 16000 samples to be considered. The dotted
and dashed red lines are the results obtained with classical
PC expansions of total degree p = 2 and p = 3, respectively.
Also in this case, the number of samples for the regression
is doubled until the difference of the standard deviation is
below 1%, starting from an initial value of M = L. The total
number of regression samples is thus 2304 for p = 2 and 1920
for p = 3. Finally, the dotted-dashed green lines are the result
obtained with a first-order RPC model. Owing to the exactness
of the model, there is no need to oversample the regression
problem, and M = 2L− 1 = 255 samples are sufficient. For
this lumped circuit, the iterative re-weighting converges in one
step. For this example, it is possible to conclude that, besides
being more accurate (actually, exact), the proposed RPC is
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Fig. 2. Variability of the insertion loss of the Chebyshev filter.

about 63× more efficient than MC, and at least 7.5× faster
than the classical PC.

The close-up around the standard deviation peak allows
concluding that the second-order classical PC expansion is
not accurate enough, even at convergence of the regression.
The maximum relative error w.r.t. the MC result is 1.9%. The
third-order expansion and the RPC model are accurate within
the convergence criterion adopted for the MC analysis (0.6%
and 0.4%, respectively). It should be noted that the residual
difference between the RPC and the MC results is due to the
finite precision of the MC estimate itself, and not to a modeling
error. A cross-validation in which the same parameter values
as used for the MC analysis are also used to sample the RPC
model (results not shown here) confirms the above conclusion.
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Fig. 3. Schematic of the microstrip transmission line network.

The second validation example concerns the analysis of
a distributed circuit, i.e., the network of Fig. 3. The circuit
includes delay elements, namely seven microstrip transmission
lines having the cross-section shown in the top left corner.
The variability is due to the line width, substrate thickness,
and substrate relative permittivity, which are assumed to be
three independent Gaussian random variables with a standard
deviation of 10%.
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Fig. 4. Variability of the transfer function H(s) in the network of Fig. 3.

Fig. 4 shows the high-frequency stochastic behavior of the
transfer function H(s) = Vout(s)/Vin(s). As in the previous
example, the gray lines are a subset of samples from the
MC analysis. The solid blue lines are the mean and standard
deviation of the MC samples. The dashed red lines are
the same statistical quantities estimated with a classical PC
expansion of total degree p = 5 (56 terms). The calculation of
the PC expansion coefficients required 14336 samples for the
regression to reach the 1% convergence criterion. Despite the
high order and the enormous number of regression samples
used, the error on the standard deviation is still significantly
large, with a maximum relative error of 4.1% w.r.t. the
reference MC result. Finally, the dotted-dashed green lines
are the results obtained with an RPC model of tensor degree
p = 3 (127 terms). The model coefficients are estimated
with 2032 regression samples only, thus highlighting a more
rapid convergence of the regression problem for the RPC
case. A much better accuracy over the classical PC model can
be appreciated. The maximum relative error on the standard
deviation w.r.t. MC is 0.6%, well below the 1% precision of
the MC result itself.

VI. CONCLUSIONS

This paper presented a novel RPC modeling paradigm for
the stochastic responses of linear electrical networks. The
new approach uses a ratio of PC expansions with tensor
product truncation rather than a standard polynomial expan-
sion with total degree truncation. A very interesting feature
of the proposed framework is that a first-order RPC model
is provably exact for any lumped network parameterized by
its component values. In addition, due to the well-known
superiority of Padé rational approximants with respect to
standard polynomial approximations or interpolations, it is
expected that the proposed method leads to far superior
accuracy in uncertainty quantification than standard PCE. The
two application examples analyzed in this work demonstrated
that the novel RPC model provides indeed a better accuracy,
and moreover its coefficients are less sensitive to the number
of regression samples used in the model generation.
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“Polynomial chaos-based Padé expansion in structural dynamics,” Int. J.
Numerical Methods Eng., vol. 111. no. 12, pp. 1170-1191, Sep. 2017.

[12] M. Rossi, S. Agneessens, H. Rogier, D. Vande Ginste, “Stochastic
analysis of the impact of substrate compression on the performance of
textile antennas,” IEEE Trans. Antennas Propag., vol. 64, no. 6, pp. 2507–
2512, Jun. 2016.

[13] P. Triverio, S. Grivet-Talocia, and M. S. Nakhla, “A parameterized
macromodeling strategy with uniform stability test,” IEEE Trans. Adv.
Packag., vol. 32, no. 1, pp. 205-215, Feb. 2009.

[14] S. Grivet-Talocia and R. Trinchero, “Behavioral, parameterized, and
broadband modeling of wired interconnects with internal discontinuities,”
IEEE Trans. Electromagn. Compat., vol. 60, no. 1, pp. 77–85, 2018.

[15] S. Grivet-Talocia and E. Fevola, “Compact parameterized black-box
modeling via Fourier-rational approximations,” IEEE Trans. Electromagn.
Compat., vol. 59, no. 4, pp. 1133–1142, 2017.

[16] P. Benner, A. Cohen, M. Ohlberger, and K. Willcox. Model Reduc-
tion and Approximation: Theory and Algorithms. SIAM Publications,
Philadelphia, PA, 2017.

[17] A. J. Mayo and A. C. Antoulas, “A framework for the solution of the
generalized realization problem,” Linear algebra and its applications, vol.
425, no. 2-3, pp. 634–662, 2007.

[18] S. Lefteriu and A. C. Antoulas, “A new approach to modeling multiport
systems from frequency-domain data,” IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst., vol. 29, no. 1, pp. 14–27, Jan. 2010.

[19] A. Ionita and A. Antoulas, “Data-driven parametrized model reduction
in the Loewner framework,” SIAM J. Sci. Comput., vol. 36, no. 3, pp.
A984–A1007, 2014.

[20] B. Gustavsen and A. Semlyen, “Rational approximation of frequency
domain responses by vector fitting,” IEEE Trans. Power Del., vol. 14,
no. 3, pp. 1052–1061, Jul. 1999.

[21] C. K. Sanathanan and J. Koerner, “Transfer function synthesis as a ratio
of two complex polynomials,” IEEE Trans. Autom. Control, vol. 8, no. 1,
pp. 56–58, Jan. 1963.


