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A Novel Framework for Parametric Loewner Matrix
Interpolation

Yi Qing Xiao, Stefano Grivet-Talocia, Fellow, IEEE, Paolo Manfredi, Senior Member, IEEE, Roni
Khazaka, Senior Member, IEEE.

Abstract—The generation of black-box macromodels of passive
components at the chip, package and board levels has become
an important step of the electronic design automation work-
flow. The Vector Fitting scheme is a very popular method for
the extraction of such macromodels, and several multivariate
extensions are now available for embedding external parameters
in the model structure, thus enabling model-based variability
analysis and design optimization. The Loewner matrix inter-
polation framework was recently suggested as an effective and
promising alternative macromodeling approach to Vector Fitting.
In this paper, we propose a parametric version of Loewner in-
terpolation which embeds orthogonal polynomials as an integral
part of the parameterization framework. This approach is shown
to be efficient and accurate, and presents various advantages
with respect to competing multivariate rational interpolation
methods. These advantages include a better control of model
smoothness in the parameter space, and a particularly efficient
implementation of the singular value decomposition, which is
the core of the model extraction scheme. These advantages are
confirmed through several examples relevant for signal and power
integrity applications.

Index Terms—Loewner matrix, macromodeling, model order
reduction, parameterized modeling, orthogonal polynomial basis,
rational approximation, singular value decomposition (SVD),
system identification.

I. INTRODUCTION

Signal and power integrity have recently become one of the
key design bottlenecks for high-speed systems. As a result, it
is now critical to include accurate broadband models of pack-
ages, interconnects, connectors, and other passive elements as
part of the electronic design automation work-flow. Further-
more, it is also important for such models to be parametric
with respect to key geometric and material parameters in order
to enable standard EDA methodologies such as optimization,
design centering, and design space exploration. While it is
possible to obtain the frequency-domain characteristics of
such passive components using measurement or full-wave
simulation, it is usually not possible to construct accurate time-
domain models that are compatible with SPICE-class circuit
simulators by using theoretical physics-based methods. As a
result, a considerable effort has been made in the area of
numerical black-box macromodeling, including parameterized
macromodeling, where a time-domain macromodel is numeri-
cally constructed based on frequency-domain S-parameter data
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obtained from either measurement or simulation. For a detailed
overview on theory and applications, see [1].

While a number of possible approaches have been pro-
posed for black-box time-domain macromodeling of passive
structures [2]–[10], methods based on Vector Fitting (VF) [8]
have emerged as the common approach used in commercial
tools. As a result, a considerable amount of research has been
devoted to developing parametric VF-based models [11]–[22].
The overall goal of these methods is to produce a macromodel
that is a function of the desired design parameter(s), while
at the same time addressing issues of accuracy, robustness,
stability and passivity. In [11], [14], efficient methods were
proposed based on the interpolation of root univariate macro-
models. These methods have the inherent merit of producing
guaranteed stable and passive parameterizations. However,
they assume fixed-pole systems, limiting applicability depend-
ing on the problem being considered. This problem was atten-
uated in [12], which allowed for parameterized poles through
local frequency transformations. The methods in [13], [19],
[20], [22] also allow for parameter dependent poles. However,
they require the solution of computationally expensive linear
matrix inequalities. In general, all above methods assume a
model structure that is derived from some interpolation applied
to non-parameterized models, which in turn are available from
standard VF. The accuracy of the respective parameterizations
depends on the number of these root non-parameterized mod-
els, which may grow very large in case of a high-dimensional
parameter space and large variability. This problem is partly
mitigated by methods based on the Parameterized Sanathanan-
Koerner (PSK) iteration [17], [18], [21], [23], [24]. These
methods are unable to enforce model passivity by construction,
but robust and efficient postprocessing methods exist for this
purpose [25], [26].

Recently, a promising framework based on Loewner Ma-
trix (LM) interpolation has been proposed as an alterna-
tive to VF for broadband time-domain macromodeling [27]–
[40]. The main advantage of the LM approach is a strong
system-theoretical framework, which supports numerical im-
plementation with a guarantee of important properties such
as exact frequency-domain interpolation and optimal model
order. In [41], a parametric method in the Loewner frame-
work was proposed where principal component analysis was
used to obtain continuous macromodels that are suitable for
interpolation. However, this approach is only suitable for
systems where the order is relatively constant with respect
to the parameters [42]. A more direct method for obtaining
Loewner-based parametric macromodels leverages multivari-
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ate LM methods [43], [44], which extend the concept of LM
interpolation to the multivariate case, one variable being the
frequency, and the others being the desired circuit parameters.
Two main issues affect this approach: first, the size of the
LM increases at an exponential rate due to the concurrent
presence of all data samples in the main matrix formulation;
second, the model parameterization may induce non-smooth
approximations due to strict interpolation conditions that are
enforced in the parametric data set. This problem will be
illustrated and discussed later through numerical examples, in
Section IV.

In this paper, we propose a new model structure and related
identification method for parametric macromodeling in the
bluebarycentric form of the LM framework. In contrast to
using higher LM dimensions as in [43], [44], we enrich a
standard univariate LM-based rational function interpolation
by embedding a parameter dependence in the coefficients
through a polynomial expansion. The proposed method has a
number of advantages. First, the transfer function is obtained
directly using a Singular Value Decomposition (SVD) on the
parametric LM, without the need for iterations (as required by
VF and PSK schemes instead). Second, the proposed approach
does not require the repeated generation of univariate root
macromodels along various grid points in the parameter space,
since a parameterized model is obtained in a single pass.
Third, unlike the standard Loewner-based methods [43], the
exact interpolation conditions at the available data points are
relaxed by a least-squares-based polynomial approximation.
This reduces the likelihood of over-fitting and non-smooth
inter-sample behavior. Finally, the proposed structure of the
LM allows us to very efficiently compute the SVD of the
LM matrix, which is the most computationally expensive part
of the Loewner approach. These advantages are illustrated on
several test cases.

II. PRELIMINARIES AND NOTATION

A. Background: Standard Loewner Interpolation

The objective of the standard Loewner method is to inter-
polate a set of given frequency response samples

H = {H(sl); sl ∈ S}, (1)

where H(sl) ∈ C is the (scalar) transfer function of the
underlying system evaluated at sl and

S = {sl}l̄l=1 (2)

is a set of complex frequency samples with no repeated entries;
usually, sl = ωl with ωl ∈ [ωmin, ωmax] being the frequency
band of interest.

The set S is partitioned as S = Λ ∪M, where

Λ = {λ1, · · · , λ̄}, M = {µ1, · · · , µı̄} (3)

with corresponding data set partitions:

HΛ = {H(λj); λj ∈ Λ}, HM = {H(µi); µi ∈M}. (4)

The Loewner method is based on the following rational
approximation in barycentric form

H(s) ≈ H̃(s) =

̄∑
j=1

cjH(λj)

s− λj
̄∑

j=1

cj
s− λj

. (5)

Given a non-trivial choice of coefficients {cj}̄j=1, the rational
model H̃(s) in (5) interpolates HΛ exactly by construction.
The guiding condition in determining a suitable set {cj}̄j=1

is the minimization of the approximation error of data points
in HM. Setting the error H(µi)− H̃(µi) ≈ 0 for all i’s leads
to the condition

̄∑
j=1

cj(H(µi)−H(λj))

µi − λj
≈ 0, i = 1, . . . , ı̄ (6)

which is written in compact matrix form as

L c ≈ 0ı̄×1 (7)

where vector c collects all coefficients cj and

L =


H(µ1)−H(λ1)

µ1−λ1

H(µ1)−H(λ2)
µ1−λ2

· · · H(µ1)−H(λ̄)
µ1−λ̄

H(µ2)−H(λ1)
µ2−λ1

H(µ2)−H(λ2)
µ2−λ2

· · · H(µ2)−H(λ̄)
µ2−λ̄

...
...

. . .
...

H(µı̄)−H(λ1)
µı̄−λ1

H(µı̄)−H(λ2)
µı̄−λ2

· · · H(µı̄)−H(λ̄)
µı̄−λ̄


(8)

is the so-called LM based on the adopted data partition. The
right singular vector associated to one of the smallest singular
values σ? < ε of L, where ε is a predetermined threshold,
can be chosen as a solution for (7). We remark that the
above derivation can be easily extended to the Multi-Input
Multi-Output (MIMO) case. We provide such details while
presenting the proposed parameterized macromodeling method
in the following sections.

The barycentric model (5) is easily converted to an equiva-
lent pole-reside form or realized as a state-space system. The
latter is also readily synthesized in an equivalent lumped cir-
cuit, e.g., for circuit-oriented system-level simulation. See [1]
for details.

B. Problem Statement

Assume an underlying system with m̄ inputs and p̄ outputs,
with an unknown frequency response H(s, θ) that depends
on both frequency s and some external parameter θ, which in
the following we assume to be a scalar variable defined in a
finite range [θmin, θmax]. The system is known through a set
of measurements

H = {H(sl, θq); sl ∈ S, θq ∈ Θ} (9)

where
• H(sl, θq) ∈ Cp̄×m̄ is the transfer function of the system

evaluated at sl and θq;
• Θ = {θq}q̄q=1 is a set of single parameter sam-

ples with no repeated entries spanning the parameter
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range [θmin, θmax], with corresponding index set Q =
{1, · · · , q̄};

and where S and sl are defined as in (2). The goal is to
compute a parameterized model whose frequency response
approximates the data set (9) accurately.

C. Fitting Conditions

Following the standard LM procedure of Section II-A, we
partition the data set H by dividing the frequency samples S
into two mutually exclusive partitions

Λ = {λ1, · · · , λ̄}, M = {µ1, · · · , µı̄} (10)

with Λ∪M = S, Λ∩M = ∅, and with corresponding index
sets J = {1, . . . , ̄}, I = {1, . . . , ı̄}, obtaining

HΛ = {H(λj , θq); λj ∈ Λ, θq ∈ Θ},
HM = {H(µi, θq); µi ∈M, θq ∈ Θ}.

(11)

Note that, differently from [43], we only perform a partition
of the frequency samples, whereas all parameter samples are
considered as a single set. The frequency points in partition
Λ are chosen to be linearly spaced along the bandwidth of
interest. The number of points in Λ determines the order of
the system, and it is chosen according to the greedy method
described in Section III-H.

We want to approximate the data set H by extending
the standard Loewner framework to the parametric case. To
this end, we define the following parameterized barycentric
rational function form

H(s, θ) ≈ H̃(s, θ) =

̄∑
j=1

cj(θ)H(λj , θ)

s− λj
̄∑

j=1

cj(θ)

s− λj

, ∀θ. (12)

It can be easily shown that, by construction, no matter the
choice of non-trivial functions {cj(θ)}̄j=1, the model H̃(s, θ)
in (12) provides an exact interpolation at all points in the first
frequency partition Λ, and uniformly in the parameter space,
as

H̃(λj , θ) ≡H(λj , θ), ∀λj ∈ Λ, ∀θ. (13)

The determination of an appropriate set of functions
{cj(θ)}̄j=1 in (12) will be guided by additional interpolation
conditions, to be enforced at the second frequency partition
points M and at the available discrete parameter points Θ
through

H(sl, θq) ≡ H̃(sl, θq), ∀sl ∈ S, ∀θq ∈ Θ (14)

D. Polynomial Basis

A key part of the proposed algorithm consists of using a
polynomial basis to characterize and approximate the transfer
function dependence on the parameter variable θ. We define a
polynomial basis as {ϕk(θ)}k̄k=1, where ϕk(θ) is a polynomial
of degree k − 1. For now, no further assumptions are made
on the polynomials such as orthogonality and type of poly-
nomials, except linear independence of the basis elements. In

particular, any polynomial basis with bounded support in the
parameter space can be used for this purpose, e.g., Legendre or
Chebyshev polynomials. To avoid any confusion, we remark
that the specific choice of parameter basis functions has no
relation with the derivation of the barycentric representation
in (5), which is well-known to be a reformulation of the
Lagrange polynomial interpolation formula.

III. FORMULATION

This section describes the proposed multivariate LM inter-
polation scheme. We first describe how the parametric depen-
dence of the transfer function is captured using a polynomial
expansion. Then, the fitting conditions for frequency partitions
Λ and M are described and used to derive an appropriate
generalization of the LM, suitable for the parametric case at
hand.

A. Parametric Dependence

The scalar case m̄ = p̄ = 1 is discussed first, followed by a
generalization to the MIMO case. Throughout Sections III-A
to III-C, we denote the underlying scalar system transfer
function with H(s, θ) and the corresponding model (12) as
H̃(s, θ).

Since (12) depends on the continuous variable θ, it cannot
be enforced exactly ∀θ ∈ [θmin, θmax]. Therefore, we per-
form an approximation by expanding the unknown functions
{cj(θ)}̄j=1 using the polynomial basis {ϕk(θ)}k̄k=1 as

cj(θ) ≈
k̄∑
k=1

cjkϕk(θ). (15)

The coefficients cjk, collected in a matrix C ∈ C̄×k̄, will
be our main unknowns in the following. We apply a similar
approximation, using a different set of unknown coefficients
djk collected in a matrix D ∈ C̄×k̄, to the numerator of (12):

cj(θ)H(λj , θ) ≈
k̄∑
k=1

djkϕk(θ). (16)

Combining the expansions (15) and (16) with (12) leads to the
model structure

H̃(s, θ) ≈ Ĥ(s, θ) =

̄∑
j=1

∑k̄
k=1 djkϕk(θ)

s− λj
̄∑

j=1

∑k̄
k=1 cjkϕk(θ)

s− λj

, (17)

which can be interpreted as an approximation to the exact con-
dition (12) based on the adopted polynomial approximation.
For later convenience, we denote the columns of CT and DT ,
respectively, as cj and dj , for any j ∈ J .

B. Interpolating Data in the First Partition

Our objective in this section is to define the conditions that
the coefficients cjk and djk must satisfy so that the model (17)
interpolates all data in HΛ. This is obtained by enforcing

Ĥ(λj , θq) ≡ H(λj , θq), ∀j ∈ J ,∀q ∈ Q (18)
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According to property (13), if the following conditions hold

k̄∑
k=1

djkϕk(θq) ≡ cj(θq)H(λj , θq) (19)

k̄∑
k=1

cjkϕk(θq) ≡ cj(θq) (20)

for ∀j ∈ J and ∀q ∈ Q, then (18) is naturally achieved.
Combining (20) and (19) leads to

k̄∑
k=1

djkϕk(θq) =

k̄∑
k=1

cjkϕk(θq)H(λj , θq) (21)

which can be written in a compact form as

ϕTq dj = H(λj , θq)ϕ
T
q cj . (22)

where

ϕTq =
[
ϕ1(θq) ϕ2(θq) . . . ϕk̄(θq)

]
∈ R1×k̄ (23)

Defining now matrix Φ ∈ Rq̄×k̄ with elements Φqk = ϕk(θq),
and collecting H(λj , θq) for all θq ∈ Θ at each j ∈ J into

Wj = diag{H(λj , θq)}q̄q=1, (24)

we can write (22) for all q’s as

Φdj = WjΦcj . (25)

The exact solvability of (25) for dj depends on the size
of the matrix Φ, which in turns depends on the cardinality
of the polynomial basis k̄ and on the number of available
parameter grid points q̄. Leaving out of our discussion the
unimportant case k̄ > q̄, corresponding to insufficient grid
points (or, equivalently, excessive polynomial order), we have
two possibilities:
k̄ = q̄: the number of polynomial basis functions matches

the number of parameter grid points. Exact interpo-
lation is possible, and coherently matrix Φ is square.

k̄ < q̄: there are more parameter grid points than polynomial
basis functions, so that exact interpolation cannot be
enforced, and only a least-squares type of fitting is
possible.

Both cases can be collectively written as

dj = Φ†WjΦcj , ∀j ∈ J (26)

where Φ† is the Moore-Penrose pseudoinverse of Φ. If k̄ = q̄,
this pseudo-inverse coincides with the actual inverse (which
exists thanks to the linear independence of the adopted poly-
nomial basis) and exact interpolation holds.

C. Interpolating Data in the Second Partition

At this point, we know that, by maintaining the relation
(21) through enforcing (25), we can make sure that Ĥ(s, θ),
as defined in (17), interpolates or approximates the data in the
first partition HΛ. In this sub-section, we define the conditions
for determining the denominator coefficients cjk such that
the model Ĥ(s, θ) approximates also the data in the second
partition HM.

We start by evaluating the model Ĥ(s, θ) at points in M:

H(µi, θq) ≈ Ĥ(µi, θq) =

̄∑
j=1

∑k̄
k=1 djkϕk(θq)

µi − λj
̄∑

j=1

∑k̄
k=1 cjkϕk(θq)

µi − λj

(27)

Multiplying by the denominator leads to

H(µi, θq)

̄∑
j=1

∑k̄
k=1 cjkϕk(θq)

µi − λj
≈

̄∑
j=1

∑k̄
k=1 djkϕk(θq)

µi − λj
(28)

which is rewritten by collecting all terms into a single sum as
̄∑

j=1

∑k̄
k=1[cjkH(µi, θq)− djk]ϕk(θq)

µi − λj
≈ 0, (29)

which needs to be enforced ∀i ∈ I and ∀q ∈ Q. Defining now

Vi = diag{H(µi, θq)}q̄q=1, (30)

and enforcing (29) for all q ∈ Q, leads to the compact form
̄∑

j=1

1

µi − λj
[
Vi −ΦΦ†Wj

]
Φcj ≈ 0q̄×1, (31)

where the relationship (26) between the numerator and de-
nominator coefficients has been used. We can thus define the
following extended Loewner matrix in this scalar case as

L =


L11 L12 . . . L1̄

L21 L22 . . . L2̄

...
...

. . .
...

Lı̄1 Lı̄2 . . . Lı̄̄

 ∈ Cı̄q̄×̄k̄ (32)

with individual blocks

Lij =
1

µi − λj
[
Vi −ΦΦ†Wj

]
Φ ∈ Cq̄×k̄. (33)

Casting (31) for all i ∈ I leads to the compact matrix form

L c ≈ 0ı̄q̄×1. (34)

where the unknown coefficients are collected into a single
vector c = vec{CT }.

D. Enforcing Realness

The frequency response of physically-consistent (parameter-
ized) models should satisfy the appropriate realness condition
Ĥ(s∗, θ) = Ĥ∗(s, θ), where ∗ denotes the complex conjugate,
in order to guarantee a real-valued impulse response. The pro-
posed method is easily modified by enforcing such condition
using the following standard procedure.

Assuming that s = 0 /∈ S (i.e., it belongs neither to first
nor to second partition data), we recast the model (17) as

Ĥ(s, θ) =

̄∑
j=1

[∑k̄
k=1 djkϕk(θ)

s− λj
+

∑k̄
k=1 d

∗
jkϕk(θ)

s− λ∗j

]
̄∑

j=1

[∑k̄
k=1 cjkϕk(θ)

s− λj
+

∑k̄
k=1 c

∗
jkϕk(θ)

s− λ∗j

] . (35)
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This is equivalent to including in the first partition also the
data samples at negative (conjugate) frequencies. Realness is
guaranteed by assigning complex conjugate coefficients c∗jk,
d∗jk in correspondence to the conjugate frequency points λ∗j

Repeating the above derivations and defining

Aij =
1

µi − λj
[
Vi −ΦΦ†Wj

]
Φ = A′ij + A′′ij

Bij =
1

µi − λ∗j

[
Vi −ΦΦ†W ∗

j

]
Φ = B′ij + B′′ij

(36)

where ′ and ′′ denote real and imaginary parts, respectively,
as well as

L̂ij =

[
A′ij + B′ij B′′ij − A′′ij
A′′ij + B′′ij A′ij − B′ij

]
∈ R2q̄×2k̄ (37)

we see that (34) is rewritten as

L̂ ĉ ≈ 02ı̄q̄×1. (38)

where L̂ collects the blocks L̂ij as in (32), and

ĉ =
(
ĉT1 · · · ĉT̄

)T ∈ R2̄k̄, with ĉj =

(
c′j
c′′j

)
(39)

collects the real and imaginary parts of all model coefficients.
We remark that, in this real-valued formulation, increasing the
first partition by one point ̄← ̄+ 1 will lead to a number of
macromodel poles that is increased by two.

E. The MIMO Case

Let us consider now the MIMO case with m̄ inputs and
p̄ outputs, so that H(s, θ) ∈ Cp̄×m̄. The proposed model
structure, after polynomial expansion (17), generalizes to

Ĥ(s, θ) =

̄∑
j=1

∑k̄
k=1Djkϕk(θ)

s− λj
̄∑

j=1

∑k̄
k=1 cjkϕk(θ)

s− λj

, (40)

from which we observe that the denominator remains un-
changed, still being fully characterized by the set of scalar
coefficients cjk. This induces a parameterization of model
poles (the zeros of the denominator) which will be common to
all transfer matrix elements of the model. What differentiates
the various model responses are the numerator coefficients
Djk, which are now p̄× m̄ matrices.

We repeat all derivations of Sections III-B to III-C, but
applied to a single element (p,m) of the MIMO transfer
function Hpm(s, θ), with 1 ≤ m ≤ m̄ and 1 ≤ p ≤ p̄. The
only difference with respect to the scalar case is that the data
matrices Wj , Vi in (24) and (30) should now be indexed by
(p,m):

W p,m
j = diag{Hpm(λj , θq)}q̄q=1, (41)

V p,m
i = diag{Hpm(µi, θq)}q̄q=1, (42)

as well as the numerator coefficients dj → dp,mj , which
collect in column vectors all matrix elements Dp,m

jk for each

fixed (p,m) and j, with k = 1, . . . , k̄. Correspondingly, we
generalize (26) for each (p,m) to

dp,mj = Φ†W p,m
j Φcj , ∀j ∈ J . (43)

All Loewner matrix blocks (33) are thus redefined as

Lp,mij =
1

µi − λj
[
V p,m
i −ΦΦ†W p,m

j

]
Φ ∈ Cq̄×k̄. (44)

as well as the Loewner matrix (32) constructed from these
blocks, which we denote as Lpm. Constraining now the
denominator to be shared among all p̄ × m̄ transfer matrix
elements leads to the following coupled Loewner matrix
problems

Lpmc ≈ 0ı̄q̄×1, 1 ≤ p ≤ p̄, 1 ≤ m ≤ m̄. (45)

This, in turn, is equivalent to stacking all matrices Lpm as
block-rows with any preferred ordering:

L =


L1,1

...
Lpm

...
Lp̄m̄

 ∈ Cı̄q̄p̄m̄×̄k̄. (46)

The denominator coefficients are then found by solving

L c ≈ 0ı̄q̄p̄m̄×1. (47)

If model realness is desired, then the real-valued blocks L̂p,mij ,
as defined in Section III-D, should be used instead of the
complex-valued blocks Lpm.

F. Handling a Large Number of Data Samples and/or In-
put/Output Ports

The MIMO case may lead to a large-size Loewner matrix L
in case the number of input and output ports is large. The fol-
lowing discussion shows that L does not have to be assembled
and stored at once, by exploiting a simple matrix compression
strategy.

We start by casting (47) as a norm minimization problem,
and we expand it in the equivalent form

min
c
‖L c‖22 = min

c

{∑
p,m

‖Lpm c‖22

}
(48)

In common situations, the Loewner matrix blocks Lpm are tall
and thin matrices with significantly more rows than columns,
since ı̄ � ̄ and q̄ � k̄, and thus ı̄q̄ ≫ ̄k̄. This suggests
computing an “economy size” QR factorization of each block

Lpm = QpmRpm, (49)

where the columns of Qpm ∈ Cı̄q̄×̄k̄ are orthogonal,
QHpmQpm = I, and Rpm ∈ C̄k̄×̄k̄ is square and upper-
triangular. Then,

‖Lpm c‖22 = cH LHpm Lpm c = cH RHpm Rpm c = ‖Rpm c‖22.
(50)

Therefore, we conclude that an equivalent formulation to (48)
is provided by

min
c
‖R c‖22 (51)
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where

R =


R1,1

...
Rpm

...
Rp̄m̄

 ∈ C̄k̄p̄m̄×̄k̄, (52)

in which however the row size of R is much smaller than the
row size of L. Matrix R can be assembled directly from the
Lpm blocks, without forming the entire matrix L, thus leading
to a large gain in memory occupation. The above compres-
sion is seamlessly applied to the real-valued formulation of
Section III-D without modifications.

We remark that the above p̄m̄ individual QR factoriza-
tions (49) are independent and can be performed by processing
separately the data samples of each transfer matrix element,
possibly by splitting the workload into parallel threads running
on a multicore processor. Note that the above-described QR
processing is similar to the FastVF algorithm described in [45],
[46], and later adapted to the Fast Parameterized Sanathanan-
Koerner (FastPSK) iteration for data-driven multivariate pa-
rameterized macromodeling [21]. We therefore see that the
proposed LM framework can inherit the good scalability prop-
erties from already well-established macromodeling schemes.

A further possible improvement stems from the fact that the
Qpm matrices in (49) are not needed, which allows the use of
Q-less QR factorizations, providing a significant speed-up with
respect to the standard QR decomposition. We make use of
Q-less QR factorizations throughout our computational runs.

G. Summary

In summary, the proposed algorithm proceeds through the
following steps (obvious modifications apply if the real-valued
formulation is adopted):

1) split the frequency data in first and second partition. The
size ̄ of the first partition defines the number of poles
in the rational barycentric form (12) of the model;

2) construct the matrices Lp,mij in (44);
3) perform the QR factorizations in (49);
4) assemble the blocks Rpm in R as in (52);
5) find the null space of R, which provides the optimal set

of denominator coefficients cjk;
6) reconstruct the numerator coefficients dp,mj using (43).

As in the standard (non-parameterized) Loewner method, exact
interpolation will not hold unless
• the underlying data samples come from the true evalua-

tion of a rational function of frequency with polynomial
coefficients, and

• the number of poles and the degree of the parameter-
dependent polynomials at the numerator and denominator
of the model match those of the original system.

Since the above conditions are generally not true, we seek for
the vector that minimizes the residual ‖L c‖22 or, equivalently,
‖R c‖22. The closed-form solution to this problem is provided
by the (right) singular vector c of R associated to the least
singular value σmin(R). Alternatively, the singular vector c?

associated to any singular value σ∗ < ε can be used, where
ε is a suitable threshold. The actual value of σ? can be used
to assess the quality of the overall model approximation both
in frequency and parameter ranges. In practice, we prefer an
a-posteriori metric to qualify the model, by computing the
overall RMS model error ERMS , defined as

E2
RMS =

1

l̄q̄p̄m̄

l̄q̄p̄m̄∑
l,q,p,m=1

|Ĥpm(sl, θq)−Hpm(sl, θq)|2. (53)

The correlation between ERMS and the selected singular value
σ? will be illustrated through the numerical examples in
Section IV.

H. Order Selection

The above discussion assumes that the dynamical order ̄
and the polynomial order k̄ are given. These two parameters
are however unknown in first place and should be estimated
during the modeling process. Some algorithms exist [39], [40]
that, in the standard (non-parameterized) Loewner framework,
suggest a procedure that iteratively increase an initial order
̄min until a given approximation quality is attained.

Here, we adopt a similar iterative greedy strategy. We set
the orders ̄ = ̄min and k̄ = k̄min to some initial (small)
values, expecting that the resulting approximation error will
be poor. At each iteration, we construct the models based on
the order pairs (̄, k̄) for all permutations of order values in
the ranges ̄ ∈ [̄min, ̄min + 2] and k̄ ∈ [k̄min, k̄min + 2]. The
resulting model characterized by the best approximation error
is retained and used as a starting point for the next iteration.
Iterations are stopped when the overall RMS approximation
error is below a prescribed threshold.

I. Extension to Higher-Dimensional Parameter Spaces

All above derivations assumed that the parameter θ is
a scalar. This is however not a limitation, since the same
formulation is valid also for higher-dimensional parameter
spaces with basically no modifications, as discussed below.

Assume that θ is a vector with individual components θν

for ν = 1, . . . , ν̄. Each component requires its own grid
of measurement points and its own polynomial basis. The
resulting initial dataset becomes a high-dimensional (ν̄ + 1)-
way tensor (the extra dimension is for frequency), and the
set of polynomial basis functions generalizes to a multivariate
polynomial basis defined in a ν̄-dimensional hyper-rectangle.
If this multivariate basis is defined through the Cartesian
product of univariate bases {ϕνkν (θν)}, one for each individual
component θν , then also the multivariate polynomial bases
inherit a ν-way tensor structure. Such tensors are naturally
described through multi-index vectors, k = (k1, . . . , kν̄) for
the basis and q = (q1, . . . , qν̄) for the data points.

A much simpler equivalent approach is to number all
measurement points in the parameter space and all individual
multivariate basis functions using single (scalar) global linear
indices, based on a suitable element ordering of the tensors.
If we keep the same index symbols k, q that we used for
the scalar case, then all derivations of this Section III apply
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without modification. The upper bounds for those global linear
indices can be related to the corresponding multi-indices
through

k̄ =

ν̄∏
ν=1

k̄ν , q̄ =

ν̄∏
ν=1

q̄ν . (54)

J. Stability, Passivity, and Current Limitations

The proposed method extends to the (possibly multivariate)
parameterized case the well-known Loewner framework, in
an alternative way with respect to [43]. As such, the main
limitations of the Loewner method are inherited by our
scheme, including stability and passivity characterization and
enforcement.

The stability of the system represented by the parametric
rational function defined by (17) can be verified by checking
the zeros of the denominator with respect to the frequency
variable s, i.e., the zeros of the rational function

̄∑
j=1

∑k̄
k=1 cjkϕk(θ)

s− λj
, (55)

throughout and uniformly in the parameter domain Θ. This
check can be performed only after the above model denom-
inator is available through its coefficients cjk. A discrete
check at finite points θ̂q is straightforward by computing the
denominator zeros for fixed θ = θ̂q , but
• there is no guarantee that any unstable zeros for other

values of θ are not missed, since only a finite number of
points can be checked, and

• more importantly, there is no way to enforce stability
once unstable poles are detected.

Similar considerations apply for (uniform) passivity, which
would require checking and enforcing that the transfer function
of model (17) is positive or bounded real ∀θ ∈ Θ. For all
documented examples, stability is checked over a fine param-
eter sweep after model construction. Results are discussed in
Section IV.

Some stability-preserving and/or enforcing methods for
multivariate macromodels are available, see e.g. [12], [13],
[22], [23], [47]. Work is in progress to embed stability
constraints similar to [23], so that at least all macromodel
poles are guaranteed to have a negative real part ∀θ ∈ Θ. This
work is not mature yet and will be documented in a future
report. Conversely, passivity enforcement of a guaranteed
stable model is indeed possible by exploiting the multivariate
Hamiltonian characterization presented in [25], [26].

Another important limitation of the presented method comes
from the inevitable curse of dimensionality that occurs when
increasing the number of free variables. In particular, it is seen
from (54) that the number of model coefficients and data points
required for their evaluation, and hence memory and CPU cost,
scale exponentially with the number of parameters ν̄. There-
fore, as most closed-form data-driven parameterized model
order reduction methods that are available in the literature, our
method is limited to a small number of free parameters. In this
work, we document examples with up to 2 free parameters.

IV. EXAMPLES

In this section, the proposed parameterized LM framework
is applied to several test cases. Without loss of generality,
Legendre polynomials are used as basis functions ϕk to
capture the parametric dependence.

A. Chebyshev Filter

The first example considers a seventh-order Chebyshev
low-pass filter, designed to have nominal cut-off frequency
f0 = 2 GHz, passband ripple ε = 0.5 dB, and impedance
Z0 = 50 Ω. The ideal component values for an optimal
design are C1 = C4 = 2.765 pF, L1 = L3 = 5.006 nH,
C2 = C4 = 4.199 pF, L2 = 5.349 nH. However, the
following component values, available from the market, are
considered: C1,4 = 2.7 pF, C2,4 = 4.3 pF, L2 = 5.8 nH. In
addition, a parasitic dc resistance of 0.12 Ω is included in the
inductor models. The parametric variable θ is here the cut-off
frequency, which is swept in the range Θ = [1.5, 2.5] GHz.
This corresponds to rescaling each component value by a
factor f0/θ.
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Fig. 1: Magnitude (top panel) and phase (bottom panel) of S11

for the Chebyshev filter example of Section IV-A, computed
for different parameter values. Original data (thick dashed
lines) are compared against macromodel responses (thin solid
lines).

The two-port S-parameters of the filter are computed for
q̄ = 101 parameter values at l̄ = 501 frequency points from
dc to 4 GHz (both uniformly spaced). All these samples
are used to build a macromodel using the proposed black-
box multivariate LM interpolation. The frequency samples are
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further divided into the two partitions, ̄ = 4 in partition Λ,
and the remaining ı̄ = 496 samples in partition M. Based on
the real-valued formulation, this corresponds to a model order
of 7, matching the one of the actual system. Finally, k̄ = 6
polynomials (thus, up to order five) are used to approximate
the parameter variation.
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S-parameter Phase Plot Over θ
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Fig. 2: Magnitude (top panel) and phase (bottom panel)
of S11 for the Chebyshev filter example of Section IV-A,
computed for different frequency values as a function of the
parameter. Original data (thick dashed lines) are compared
against macromodel responses (thin solid lines).

Approximation Error Magnitude Plot
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Fig. 3: Magnitude of the error on S11 between macromodel
and original data for all the available parameter samples of
the Chebyshev filter example.

Figure 1 shows the magnitude and phase of S11 over
frequency for the minimum, central, and maximum value of
the parameter. Figure 2 shows the variation of S11 with respect

to parameter θ at various frequency points. In both cases, the
original data are compared against the macromodel, highlight-
ing excellent accuracy The accuracy is further demonstrated
by the errors on S11 for each of the 101 available parameter
samples, provided in Figure 3. The maximum absolute error
is below 10−4.
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Fig. 4: Maximum and RMS approximation error against the
singular value σ? used to determine the model coefficients
through the corresponding singular vector.

Figure 4 depicts the error in S11 at θ = 1.52 as a
function of the singular value σ? chosen to identify the model
coefficients. Both the RMS error and the maximum error over
500 frequency points are shown. As expected, a smaller σ?
leads to a more accurate multivariate macromodel. This figure
shows that the choice of model coefficients is in fact not
unique given a desired model accuracy level. The model turns
outs to be uniformly stable over the entire parameter range.
This was verified by a fine parameter sweep, as discussed in
Section III-J.

B. Microstrip over Slotted Ground Plane

This example considers a microstrip (trace width w =
0.035 mm) running from end to end over a slotted ground
plane (size: 10 cm × 10 cm, substrate with relative permittivity
εr = 4.7 and thickness t = 0.3 mm). The slit (total length:
20 mm, width: 0.12 mm) is orthogonal to the microstrip
with equal sidelength to the left and right of the microstrip
longitudinal axis. The free parameter that we consider is the
slit offset from the center of the microstrip, which ranges in
the interval Θ = [1, 15] mm. For a more complete description
of this geometry, see [23].

The initial parameterized frequency responses are computed
using a time-domain field solver combined with an FFT
postprocessing, resulting in 1858 frequency samples of the
2×2 scattering matrix, linearly spaced over the frequency band
[0, 10] GHz. A total of q̄ = 15 sets of scattering responses are
available, corresponding to 1-mm steps in Θ.

Figure 5 reports the evolution of the proposed greedy order
estimation process, by depicting the RMS error minimization
path leading to the final frequency and parameter orders
̄ = 17 and k̄ = 7, respectively. The figure shows that, as
expected, the RMS error decreases both along frequency and
parameter directions almost monotonically. Figure 6 compares
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Fig. 5: RMS error minimization path for the microstrip exam-
ple of Section IV-B.
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Fig. 6: Magnitude of S21 for the microstrip example of Sec-
tion IV-B, computed for different parameter values. Original
data (thick dashed lines) are compared against macromodel
responses (thin solid lines).

the model responses to the original data for the magnitude of
S21 and three parameter values, showing excellent agreement.
The accuracy is confirmed by Figure 7, which provides the
frequency-dependent model-vs-data error for all scattering
matrix elements and for all parameter values. We see that this
error has local minima at those frequencies that correspond to
the frequency points in the first partition Λ. This behavior is
expected and is a common feature of Loewner-based methods
because of the exact interpolation conditions (13). The error
however does not fall to zero exactly owing to our proposed
polynomial approximation of these exact interpolation con-
straints.

The performance of the proposed scheme is compared in
Figure 8 to the multivariate Loewner scheme of [43]. This fig-
ure reports the parameterized model response computed over a
very fine sweep in the frequency and parameter plane, in order
to check the smoothness of the interpolation/approximation at
points that are not in the initial dataset, and for which we
cannot therefore enforce accuracy. We see that our method
(top panel) provides a uniformly smooth response, whereas
the method of [43] (bottom panel) is affected by spurious
oscillations and non-smooth behavior. This is readily ex-
plained by noting that [43] is based on a double rational
barycentric approximation in both frequency and parameter,

Approximation Error Magnitude Plot with ̄ = 17
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Fig. 7: Magnitude of model error over frequency, computed for
all scattering matrix elements and available parameter samples
for the microstrip example of Section IV-B.

which is enforced to interpolate exactly the initial responses
at selected points in the frequency-parameter space. Nothing
in that method prevents the occurrence of model poles in-
between raw data samples, and this is exactly what appears
from Figure 8. Conversely, our proposed method guarantees
smoothness thanks to the overdetermined nature of the pa-
rameter fitting problem (26), whose least-squares formulation
relaxes the exact interpolation constraints and results to be
more robust.

Proposed method

Method of [43]

Fig. 8: Magnitude of model response computed over a fine
sweep in the frequency-parameter space (thin solid blue lines)
with the proposed method (top panel) and the method of [43]
(bottom panel).

Figure 9 depicts the trajectories of the model poles along the
parameter space obtained by a fine parameter sweep, showing
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Poles Trajectories Over Parameter Range
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Fig. 9: Poles trajectories along the parameter space for the
microstrip example from Section IV-B.

continuous and smooth poles shifts as the parameter changes.
Incidentally, the plot shows that the parametric system is stable
throughout the parameter range, as none of the poles have real
poles crossing the imaginary axis.

C. A High-Speed Multiboard Interconnect

This example refers to a high-speed interconnect routed
through two multilayer PCBs [48] and one connector, with
the inclusion of the corresponding via fields. The via diameter
is fixed to 100 µm, whereas the antipad radius is a free
parameter in the range Θ = [400, 600] µm. The number
of ports of this structure is m̄ = p̄ = 2. A parameter
sweep with q̄ = 9 sets of scattering responses, each with
l̄ = 500 linearly distributed frequency samples spanning the
band [0, 10] GHz, were computed with a field solver and used
for model extraction.
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Fig. 10: Normalized singular values of the parametric Loewner
Matrix for the first example of Section IV-C (parametric
variation of antipad radius).

The proposed algorithm led to ̄ = 23 points in the first
frequency partition Λ (resulting in a dynamical order of the
resulting parameterized macromodel equal to 45) and k̄ =
4 polynomial basis functions, corresponding to a third-order
polynomial approximation of the model coefficients.

The normalized singular value plot of the Loewner matrix
is depicted in Figure 10, showing that the least (normalized)
singular value is practically down to machine precision. The
corresponding singular vector is thus a good approximation
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S-parameter Phase Plot
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Fig. 11: Comparison between model and original data for
the magnitude (top panel) and phase (bottom panel) of the
scattering response S11 for the first example of Section IV-C
(parametric variation of antipad radius).

of the LM null space and is used to define the model coef-
ficients. Figure 11 compares the magnitude and phase of S11

obtained from the model versus original data, for three selected
parameter values. These figures show an excellent agreement
between model and data. The accuracy is further confirmed
by Figure 12a, reporting the absolute (RMS) model error for
all available parameter data samples. We see that the error
is uniformly below 10−3, except for the upper frequencies.
A better control of local model accuracy can be obtained
by a dedicated selection of points in the first partition Λ.
For instance, Figure 12b shows that increasing the density
of the first partition points at high frequencies significantly
improves accuracy with respect to a uniform sampling (cfr. top
panel). Note that for this example, after checking for stability,
we determined that the macromodel is stable over the entire
parameter range.

For this example, a parameterized model was also generated
by applying the PSK scheme of [23]. The resulting errors
on all responses are depicted in Figure 12c. Since the latter
method is based on an iterative least squares process, without
explicit exact interpolation constraints as in the proposed
Loewner approach, the error is more uniformly distributed
along frequency, without well-defined “deeps”. In any case,
both methods provide parameterized models of excellent ac-
curacy.

We now consider the same structure, but with a different
parameter. Namely, the via radius spanning the range Θ =



11

(a) Approximation Error (Loewner, uniform)

0 2 4 6 8 10

Freq. (GHz)

-7

-6

-5

-4

-3

-2

-1

S
-p

a
ra

m
 e

rr
o
r 

(L
o
g
1
0
)

(b) Approximation Error (Loewner, nonuniform)

0 2 4 6 8 10

Freq. (GHz)

-7

-6

-5

-4

-3

-2

-1

S
-p

a
ra

m
 e

rr
o

r 
(L

o
g

1
0

)

(c) Approximation Error (PSK)
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Fig. 12: Magnitude of model error over frequency, computed
for all scattering matrix elements and available parameter
samples for the first example of Section IV-C (parametric
variation of antipad radius): (a) proposed Loewner approach
with uniformly distributed points in the first partition Λ; (b)
proposed Loewner approach with a denser distribution of first
partition points at high frequencies; (c) PSK algorithm of [23].

[100, 300] µm, with a fixed antipad radius of 400 µm. All
parameters and model orders are the same as above. Figure 13
and 14 report the model vs data comparison for three selected
parameter values and the cumulative RMS model error plot,
respectively, from which we can confirm the good accuracy of
the proposed parametrized interpolation/approximation. After
performing a fine parameter sweep, it was found that the
marcomodel is stable over 72% of the initial parameter range.
This highlights the issue of non-guaranteed stability mentioned
in Section III-J. However, if we reduced ̄ = 23 to ̄ = 22, we
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Fig. 13: Comparison between model and original data for
the magnitude of the scattering response S11 for the second
example of Section IV-A (parametric variation of via radius).

could achieve 100% stability over the parameter range for a
small loss in accuracy.

Approximation Error Magnitude Plot
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Fig. 14: Magnitude of model error over frequency, computed
for all scattering matrix elements and available parameter
samples for the second example of Section IV-A (parametric
variation of via radius).

D. Node-to-Node Bus

We now turn to a multivariate case with ν = 2 free
parameters. The case study regards the node-to-node bus
described in [49], in which however the length of the single
microstrip lines M1,2 and S1,2,5,6,7 is reduced by half. The
two free parameters are the gap of the coupled lines C1,2, in
the range [40, 120] µm, and the length of line C1, in the range
[80, 120] mm.

The structure was simulated for an evenly-spaced grid of
31 × 31 parameter samples at 501 frequency points from dc
to 5 GHz. Of these frequency samples, ̄ = 50 are used
for partition Λ, and the remaining ı̄ = 450 samples (with
dc excluded) are used for partition M. The model order is
thus 99. As to the parametric dependence, polynomials up to
order six and four are used to model parameters θ1 and θ2,
respectively. The total number of bivariate polynomials is thus
35.

Figure 15 shows the real and imaginary part of the far-
end crosstalk at the termination of the bottom via chip line,
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TABLE I: Loewner matrix sizes and CPU time required by the
SVD computation using the standard SVD and the proposed
approach (QR+SVD), for the considered test cases.

LM size Standard SVD (s) QR+SVD (s)
Ex. A 400768× 48 0.621 0.264
Ex. B 220686× 288 2.790 1.513
Ex. C 34333× 184 0.204 0.097
Ex. D 1729800× 3500 1557 1057
Ex. D′ 259200× 3500 237.4 162.6

denoted as “BLL22” in [49]. Simulation results are compared
against macromodel responses for various samples of the gap,
with the line length constrained to a fixed value, and vice
versa. The accuracy of the proposed macromodeling approach
is confirmed also for this multivariate case. Figure 16 shows
the maximum error over frequency between model and original
data. The error is well below 0.01 except for the highest fre-
quencies. Note that after checking for stability, this two-variate
parametric system is found to be non-stable. This highlights
the fact that stability is not guaranteed by construction as
discussed in Section III-J. Addressing macromodel stability
is an important future direction related to this work.

E. Efficiency

As discussed in Section III-F, the proposed approach has
some inherent advantages with respect to standard Loewner-
based methods for what concerns memory footprint and ef-
ficiency. In order to confirm this statement, we report in
Table I the size of the Loewner matrices for the four examples
discussed in this paper, together with the runtime required
using both the suggested QR+SVD implementation and the
direct approach (plain SVD). The last row, denoted as D′ in
the table, repeats the two-parameter test case D by reducing
the initial dataset. An economy-size SVD was used in all cases
to save memory occupation. Therefore, despite the large size
of the Loewner matrices in some cases, all examples could be
processed also by means of the standard SVD approach. In all
cases, the proposed QR+SVD approach was able to perform
the same computations in less time. Nevertheless, we remark
that the most important advantage is the substantial reduction
in memory occupation provided by operating on the (much)
smaller matrix R.

V. CONCLUSIONS

In this paper, we proposed a parametric black-box macro-
modeling method based on Loewner interpolation. This new
method embeds orthogonal polynomials as an integral part
of the parameterization framework. We validated the method
using several examples relevant for signal and power integrity
applications. The examples illustrate the accuracy of the
proposed method, and its ability to control model smoothness
in the parameter space as compared to existing techniques in
the Loewner framework.
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