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Abstract
In many biological structures, optimized mechanical properties are obtained through complex structural organization involving

multiple constituents, functional grading and hierarchical organization. In the case of biological surfaces, the possibility to modify

the frictional and adhesive behaviour can also be achieved by exploiting a grading of the material properties. In this paper, we in-

vestigate this possibility by considering the frictional sliding of elastic surfaces in the presence of a spatial variation of the Young’s

modulus and the local friction coefficients. Using finite-element simulations and a two-dimensional spring-block model, we investi-

gate how graded material properties affect the macroscopic frictional behaviour, in particular, static friction values and the transi-

tion from static to dynamic friction. The results suggest that the graded material properties can be exploited to reduce static friction

with respect to the corresponding non-graded material and to tune it to desired values, opening possibilities for the design of bio-

inspired surfaces with tailor-made tribological properties.
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Introduction
Materials with a gradient in their physical or elastic properties

are widely found in nature. Several known biological systems

have developed specialized functionalities due to stiffness, den-

sity or composition gradients. Beetles, for instance, display

setae with a graded stiffness that optimises the adhesive perfor-

mance on rough surfaces [1]. Hardness and stiffness gradients

are of fundamental importance in the biomechanics of contacts,

since they allow increased resistance against wear, impact,

penetration and crack propagation [2-7]. Bio-inspired solutions

have thus been proposed for the design of advanced materials

that mimic the hierarchical and graded structures found in

nature, for use in engineering applications [8,9].

https://www.beilstein-journals.org/bjnano/about/openAccess.htm
mailto:nicola.pugno@unitn.it
https://doi.org/10.3762%2Fbjnano.9.229
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Functionally graded materials (FGMs) display a gradient in

their elastic properties along one or more directions and have

recently acquired great interest in technology [10]. Several

authors have studied standard solid mechanics problems consid-

ering FGMs, for example, in the case of various loading condi-

tions [11-13], and in problems involving fracture [14-17] or

fatigue [18].

Recently, FGMs have also been applied to tribological studies,

where it is well known that the behaviour of a system is

governed by multiphysics and multiscale interactions [19]. The

first application of graded materials to contact mechanics was

proposed by Giannakopoulos and Suresh, who presented an an-

alytical study of the indentation of materials with an exponen-

tial or power law variation of the Young’s modulus through the

depth [20,21]. Giannakopoulos and Pallot then extended the

analysis to 2D [22]. Graded substrates have also been consid-

ered in elastohydrodynamic lubrication problems [23]. More

recently, the method of dimensionality reduction [24,25] has

been extended to the axisymmetric frictionless contact of elasti-

cally graded materials [26], and solutions are also provided in

the presence of adhesion [27]. In all these cases, the elastic

gradients are considered with respect to the depth, with an

exponential or a power law variation of the Young’s modulus,

i.e., E(z) = E1eαz or E(z) = E2zβ, respectively, where z is the

depth coordinate and E1, E2, α and β are constants. The first

extension to a lateral elastic gradient, to the best of our know-

ledge, was by Dag et al. who studied the problem both analyti-

cally, by reducing the equation describing the contact of a rigid

flat punch to a singular integral equation, and numerically,

through the finite-element method [28,29].

In this paper, we extend the previous work on 1D composite

surfaces [30] to 2D geometries to show how it is possible to

tune the macroscopic tribological properties through local varia-

tions of material and surface properties, i.e., Young’s moduli

and friction coefficients, reducing static friction compared to

the non-graded case. The results also allow the predictions

of a discrete approach like the spring-block model [31,32] to

be compared to those derived by explicit finite-element

simulations. This provides useful insights to understand the fric-

tional properties of graded materials, with the aim of designing

smart tribo-materials and innovative solutions for sliding inter-

faces.

Methods
Introduction
In this work, we investigate the effect of surface or material

property gradients on the global coefficient of friction. The

system taken into consideration is composed of an elastic plate,

with a square base of side L and height H << L, which is driven

from the top surface at constant velocity over a rigid substrate

and subjected to friction. We study this system by means of two

numerical methods: a 2D spring-block model (SBM) and 3D

finite-element method (FEM) simulations. The two methods are

complementary in many aspects, so that by using both it is

possible to cross-check the results and obtain interesting

insights from different approaches.

The SBM is a two-dimensional approximation of the real

system, so that effects due to the thickness of the layer are

neglected. Specifically, any effect due to the vertical stress dis-

tribution cannot be captured. While these can be minimized in

the case H << L, it is still useful to compare the results with

FEM simulations, which can model this thin layer while main-

taining a 3D approach. As we will show later, the comparison

between the two methods will allow some concurrent effects to

be disentangled that govern the global frictional behaviour. On

the other hand, different formulations of SBM have been used

in many recent studies to describe aspects of the transition from

static to dynamic friction, the nucleation of rupture wave fronts,

and the effects of patterning [32-36]. The SBM method is

usually computationally faster than FEM, thus it is more prac-

tical for a qualitative understanding of these phenomena, but

also includes approximations that must be verified to check

whether all effects are correctly described. Thus, in each

section, we will consider the two models with the same setup,

that is, by choosing the closest conditions and parameter sets for

the two approaches, and we will describe the effects predicted

by them in the presence of graded materials.

2D spring-block model
We adopt the formulation of the 2D spring-block model intro-

duced in Costagliola et al. [32]. The sliding surface is discre-

tised with Nb = 120 blocks in both the x and y directions, placed

at a distance l = L/Nb. The thickness of the layer is set to lz, so

that the block mass is m = ρlzl
2, where ρ is the density of the

material. The spring mesh is arranged as shown in Figure 1. In

order to obtain the equivalent of a homogeneous elastic materi-

al with Young’s modulus E and Poisson’s ratio 1/3, the stiff-

ness of the springs along the axis is set to Kint = 3/4 Elz, and of

the diagonal springs to Kint/2 [37]. Thus, the internal elastic

force exerted on the generic block i by its neighbour j is

Fint
(ij) = kij (rij − lji) (rj − ri) /rij, where ri and rj are the position

vectors of blocks i and j, respectively, rij is the modulus of their

distance, lij is their rest distance and kij is the stiffness of the

spring linking them.

All the blocks are connected to a slider, moving at constant

velocity ν, through a spring with stiffness Ks. The force exerted

on the block i by the slider is Fs
(i) = Ks (νt + ri

0 − ri ), where ri
0

is the initial position of the block and ν is the velocity vector of



Beilstein J. Nanotechnol. 2018, 9, 2443–2456.

2445

Figure 1: Schematic of the numerical models used in this work. Left: 2D discretization in springs and masses used in the SBM approach.
Right: 3D discretization of a deformable plate (green) sliding on a rigid surface (blue), with applied normal pressure and velocity, used in the FEM ap-
proach.

the slider, e.g., ν = (ν,0) when sliding is along the x axis.

Therefore, the total driving force acting on the block i is

Fmot
(i) = Fs

(i) + Σj Fint
(ij).

A damping force  is added to avoid artificial

block oscillations, where γ is the damping coefficient and  is

the velocity vector of the block. The damping coefficient γ is an

arbitrary parameter. The results are independent of its value

provided it is fixed in the underdamped regime: 

[34]. A pressure p is applied on the whole system, so that on

each block there is normal force Fn
(i) = pl2. Hence, the total

normal force is Fn = pL2.

The interaction between blocks and substrate is modelled

through the classic Amontons–Coulomb friction force: each

block has a static µs
(i) and dynamic µk

(i) friction coefficient,

randomly assigned at the beginning of the simulation from a

Gaussian statistical distribution (to account for surface rough-

ness) with mean values denoted with µs
(m) and µk

(m), respec-

tively. The standard deviation on the local coefficients of fric-

tion are denoted with σµs and σµk, respectively.

If the block i is at rest, the static friction force Ffr
(i) opposes the

total driving force, so that Ffr
(i) = −Fmot

(i) , up to the threshold

value Ffr
(i) = µs

(i) Fn
(i). When this threshold is exceeded, a con-

stant dynamic friction force with modulus Ffr
(i) = µk

(i) Fn
(i)

opposes the motion.

Thus, Newton’s equation of motion for the block i can be

written as  The overall system of

equations is solved with a fourth-order Runge–Kutta algorithm.

The simulation is repeated many times, extracting each time

new friction coefficients from the statistical distributions, for

statistical reliability. An integration time step of 10−8 s is suffi-

cient to reduce the time integration error under the statistical

variability. Various observables can be calculated from the

solution, for example, the total tangential force, which is the

modulus of the sum of the forces exerted by the slider and cor-

responds to the macroscopic friction force Ffr = |∑iFs
(i)|.

For further information and the discussions of the influence

of the parameters, we refer the reader to our previous work [32].

3D finite-element model
3D explicit FEM simulations are carried out for a deformable

plate sliding on a rigid flat surface. Each simulation is per-

formed in two steps: first, a constant pressure is applied to the

top surface of the block, increasing linearly from zero to the

nominal value, in order to create the nominal area of contact;

then, a constant velocity is applied instantaneously to the same

top surface of the block. The rigid surface is fixed with a 3D

clamp in order to constrain all its degrees of freedom. The com-

plete setup is schematised in Figure 1.

The sliding block is discretised with 100 elements both in x and

in y directions, and with 5 elements along the thickness, for a

total of 50,000 hexahedral elements. The simulations are per-

formed using Abaqus® (version 6.13, Dassault Systèmes,

France) and employing C3D8I elements, which are 8-node

bricks with 8 points of integration and incompatible modes. The

choice of this element type allows a good representation of the

stress singularities at the edges (see Supporting Information

File 5). A convergence study is carried out by monitoring the

total strain energy of the system, to choose a sufficiently fine

discretization.

We assign a velocity-dependent coefficient of friction to the

contact surfaces, evolving as:

(1)
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Figure 2: Dimensionless friction force  as function of time for the non-graded material: SBM solution for different values of dispersion σμs
of the local static coefficient of friction (black lines) and FEM solution for different block thicknesses H (red lines).

where µs,i and µk,i are the static and dynamic local friction coef-

ficients, respectively, ν is the sliding velocity, and νc is the criti-

cal velocity for the transition [38]. This expression ensures that

the value of the dynamic coefficient of friction is reached only

when the sliding velocity is sufficiently high (i.e., ν >> νc). The

static friction threshold is retrieved for ν = 0, so that the friction

force approximates the classic Amontons–Coulomb friction

force adopted in the SBM model. The contact between the

block and the rigid surface is implemented through a surface-to-

surface formulation using the penalty contact method [39].

Here, as opposed to the SBM, the local coefficient of friction is

constant over the corresponding contact area and no statistical

dispersion is introduced. The global coefficients of friction are

finally calculated by dividing the resulting total lateral force by

the applied normal force.

System parameters
We consider an elastic plate sliding on a rigid flat surface. The

block has a square area of side L = 5 mm and thickness

H = 0.05 mm. We consider a linear elastic material, with densi-

ty ρ = 1.2 g/cm3, Poisson’s ratio 1/3 and a reference Young’s

modulus E = 10 MPa (i.e., the reference value around which the

gradients are implemented). We adopt typical values for the

applied pressure of p = 10 kPa and for the sliding velocity

ν = 1 mm/s, keeping their value constant for all the simulations.

The reference values of the local static and dynamic coeffi-

cients of friction are µs,i = 1.0 and µk,i = 0.6, respectively. In the

SBM model, these are the mean values of the Gaussian distribu-

tion, i.e., µs
(m) and µk

(m), respectively.

In Figure 2, we show the typical time evolution of the tangen-

tial force obtained with the SBM for various σµs. The maximum

of the friction force decreases when increasing the statistical

dispersion, as in the case of the 1D formulation [30]. The time

evolution obtained with FEM is also shown. In this case, the be-

haviour is strongly dependent on the thickness of the block. The

time interval Δts needed to reach the static friction peak can be

estimated starting from the shear stress τ = Gγ, where G is the

shear modulus. If the shear deformation is γ = νΔts/H, the static

friction peak is reached when τL2 = µspL2, i.e. for:

(2)

Simulations indicate that with a standard deviation of

σμs = 2.8% a thickness l = 0.057 mm and H = 0.05 mm, SBM

and FEM results coincide in the case of a uniform non-graded

surface. This parameter set is the reference case for the

following comparisons.

We thus investigate the effects due to a grading of the material

properties. Denoting a generic material property with φ, the cor-

responding linear gradient is described by:
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Figure 3: Examples of stepwise linearly increasing and triangular property gradients considered in this work for the case Δ = 0.2.

(3)

where φ0 is the reference value (i.e., relative to the non-graded

system) and Δ is the maximum variation at the edge.

Discretizing the length into N homogeneous parts, Equation 3

can be written as:

(4)

Therefore, the linear gradient is approximated with a stepwise

function. For simplicity, we study a linear gradient instead of

the power-law variation usually considered in the literature (see,

e.g., [20,22]). This does not entail any loss of generality, since,

as discussed below, the macroscopic frictional behaviour is de-

termined mainly by the overall variation in the considered prop-

erty between the edges and the centre of the plate.

In addition, we also consider triangular gradients, which are de-

scribed by:

(5)

This gradient is therefore positive when φ is larger at the centre

and negative when φ is larger at the borders. Figure 3 shows ex-

amples of the considered stepwise linearly increasing and trian-

gular property gradients.

For convenience, the gradients are implemented for N = 10, so

that the surface is actually divided into bands perpendicular to

the x axis. Simulations with the SBM indicate that the results

were relatively insensitive to N, including in the case N = Nb,

since small variations due to a very fine discretization are

concealed by the statistical dispersion of the local friction coef-

ficients. A reduced influence of N is also found in the FEM

simulations, which are much more sensitive to the variation of

the overall gradient (i.e., Δ), than to the discretization step.

Thus, in each region of the gradient discretization, the value φi

is assumed constant and the model parameters are defined ac-

cording the general definitions given above.

Results and Discussion
Gradient in the local coefficients of friction
We first consider a gradient in the local friction coefficients. In

real systems, this can be realised in two ways. First, the surface

can be polished in a spatially variable manner or using different

processes in order to have a varying roughness and thus varying

local friction coefficients. Secondly, a surface with a gradient in

the frictional properties can be obtained by appropriately fabri-

cating and arranging microscopic structures of variable geome-

tries or sizes, giving rise to variable local friction coefficients

[40,41].
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Figure 4: Effect of a gradient in the local coefficients of friction on the global static coefficient of friction, expressed as percentage variation as a func-
tion of Δ. The shaded blocks schematically represent the value of the local coefficients of friction, which are higher for a darker shading.

Figure 5: Propagation of the detachment front at the static friction threshold (left) and immediately after (right), in units of the dimensionless longitu-
dinal stress σx/p, for a surface with a gradient in the local coefficients of friction, computed using the SBM method for the case Δ = 0.1. The irregulari-
ties of the detachment front are due to the statistical dispersion of the local coefficients of friction introduced in the SBM formulation.

In order to compare the results, we report the variations of the

global static coefficient of friction as function of a grading dis-

tribution Δ in the local coefficient of friction, with respect to the

value of the non-graded surface, using both SBM and FEM. The

variation is computed as , where µs,0 cor-

responds to the case Δ = 0. The absolute values of µs are re-

ported in the Supporting Information File 6.

The results are shown in Figure 4 for both SBM and FEM simu-

lations. In general, in the presence of a gradient, the global

static coefficient of friction of the surfaces in contact decreases

with respect to the non-graded surface, although the mean

values of the local friction coefficients are the same.

The reason for this lies in the progressive detachment of the

contact surfaces, always starting from the side where the criti-

cal value of the local shear stress is reached (i.e., the static fric-

tion threshold). The first detachment of the sliding surface

produces a detachment avalanche propagating towards the

region with higher static friction threshold, as shown in Figure 5
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Figure 6: Dimensionless friction force as function of time for two values of Δ, calculated using the SBM and FEM methods. In both cases a larger
value of Δ leads to the reduction or elimination of the initial force peak.

(see also Supporting Information File 1). Analogous effects on

the propagation of detachment fronts have also been studied ex-

perimentally [42]. Consequently, an increasing absolute value

of Δ reduces the global static coefficient of friction with respect

to the non-graded surface, up to an asymptotic value corre-

sponding to the dynamic friction coefficient value. Thus, the

gradient can completely remove the force peak observed at the

transition from static to dynamic friction (see Figure 2). This is

schematically shown in Figure 6, where the time evolution of

the friction force is reported for two different values of Δ. An

additional effect is the deviation from linearity when

approaching the static friction threshold, observed for the

highest value of the gradient (i.e., Δ = 0.4) and similarly high-

lighted by both the SBM and the FEM simulations.

Unlike the SBM simulations, which give symmetric results with

respect to the case Δ = 0 since they are insensitive to the vertical

stress distribution, FEM simulations display an anisotropic be-

haviour when considering a positive or a negative gradient. This

is equivalent to considering the same sign of the gradient but

with an opposite sliding direction. This result can be attributed

to the vertical stress distribution at the contact interface: when

friction is present, the normal pressure is reduced at the leading

edge of the sliding plate and increased at the trailing edge

[28,43,44]. Since the static friction thresholds depend not only

on the local µs but also on the local value of the normal pres-

sure, due to this effect, a gradient of detachment threshold

already exists. This must be added to the gradient of the local

coefficients of friction. As an example, for Δ > 0, the static fric-

tion thresholds are increased at the leading edge of the surface,

so that the effect of the vertical stress acts as a counterbalance,

and the effective gradient is smaller than Δ. Conversely, for

Δ < 0, the vertical stress accumulates with the gradient. For this

reason, with the same absolute value but different sign of Δ, we

can expect a different behaviour; in particular, that for a posi-

tive Δ value, the global static friction is greater than for the case

of a negative Δ value.

From the results of the FEM simulations, this is reproduced

correctly at least for Δ < 0.3, as can be seen in Figure 4. For

higher values of the gradient, the results are opposite due to the

large difference of friction between the edges. For Δ < 0 at the

leading edge of the surface, static friction is already weak so

that the effect of normal pressure reduction is less influential,

while at the trailing edge, static friction is large due to the com-

bination of a large local friction coefficient and increased pres-

sure. The result is that the detachment process is inhibited with

respect to the same positive Δ value.

The effect of larger values of Δ on the detachment process is

also investigated through the SBM method. As previously ex-

plained, the detachment front nucleates from the edge where the

weakest thresholds are, and the maximum of the friction force

during the time evolution occurs shortly after the detachment

begins. However, when the gradient increases, the time

necessary for the detachment front to propagate across

the surface increases (see Figure 6 and Supporting Information

File 2). For higher values of Δ, the contribution to the total fric-

tion force from the region with higher thresholds is more influ-

ential, so that the maximum of the friction force occurs later
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Figure 7: Effect of a gradient in the local coefficients of friction on the global dynamic coefficient of friction, expressed as percentage variation as a
function of Δ. The shaded blocks schematically represent the value of the local coefficients of friction, which are greater for darker shading.

during the detachment process and not shortly after its begin-

ning.

Thus, while SBM cannot capture anisotropic behaviour

emerging from 3D deformation effects occurring in the materi-

als in contact, it is still useful to disentangle the effects of the

gradient and the vertical stress distribution.

The global dynamic friction coefficient µk does not display any

appreciable variation when calculated with FEM or SBM if

compared to the flat surface, i.e., its variation is limited to

within 1% as shown in Figure 7. Again, the FEM results are

anisotropic with respect to Δ, for the reasons explained

above. However, the effect of the gradient on the dynamic

friction cannot be fully captured by a formulation only

based on an Amontons–Coulomb friction law, as in the

case of the SBM. Therefore, a good match between the two

methods cannot be achieved here and further investigations

are needed.

We have also investigated the effect of changing the sliding

direction with respect to the direction of the gradient, as shown

in Figure 8. Both the SBM and the FEM predict a greater global

static coefficient of friction when switching from the 0° to the

90° direction, and this is evident especially for large values of

Δ. The dependence of µs on the angle, instead, is more complex

for Δ < 0.3, especially for the 3D FEM, where the interaction

with the vertical stress distribution must also be taken into

account, as discussed previously.

Gradient in the Young’s modulus of the
material
The effect of a gradient in the Young’s modulus is qualitatively

similar to that of the graded coefficient of friction discussed

above. As can be seen in Figure 9, the global µs for the graded

material is smaller than that for the case Δ = 0. However, while

in the previous case, the reason for the modification of the

global friction coefficient can be found in a smaller static fric-

tion threshold, in this case, a given lateral strain produces a cor-

responding tangential force that is greater on the side of the ma-

terial with greater local Young’s modulus. Therefore, in this

case, the static friction threshold is reached first where the

Young’s modulus is greater. The detachment of the contact sur-

faces starts from this side and proceeds towards the region with

smaller E, with a propagation similar to that already shown in

Figure 5, but in the opposite direction. Thus, the material

portion of the sliding plate is in tension for Δ > 0 and in

compression for Δ < 0. Qualitatively speaking, a positive

gradient in the Young’s modulus is equivalent to a negative

gradient in the local coefficients of friction.

Again, FEM simulations produce an anisotropic result with

respect to positive and negative gradients, for the reasons dis-

cussed above. The redistribution of normal stresses is again

related to the static friction threshold: when Δ > 0, the tangen-

tial force is greater at the leading edge of the slider, where E is

higher and the thresholds are reduced due to smaller p values,

so that the effective gradient is larger than Δ. Conversely, for

Δ < 0 the gradient of the Young’s modulus is counterbalanced
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Figure 8: Effect of a gradient in the local coefficients of friction on the global static coefficient of friction, expressed as percentage variation as a func-
tion of Δ and for three sliding directions. The shaded square schematically represents the value of the local coefficients of friction, which are greater
for a darker shading, and the considered sliding directions.

Figure 9: Effect of a gradient in the Young’s modulus on the global static coefficient of friction, expressed as variation as function of Δ. The shaded
blocks schematically represent the value of the local Young’s modulus, which is greater for darker shading.

by the effect due to the vertical stress. Thus, for small |Δ|

values, a greater global µs is observed for Δ < 0, while for larger

|Δ| values, this trend is inverted due to the mechanism de-

scribed previously.

It is remarkable that for Δ < 0, the FEM and SBM simulations

predict a very similar behaviour, suggesting that, in this case,

two opposite effects are almost cancelled, so that the 2D SBM

results provide a good approximation of real values. Although

in the previous case, the interplay of effects produced a non-

trivial behaviour by varying the gradient, in this case, for Δ < 0,

the agreement between FEM and SBM simulations suggests

that the reduction of the global static friction with the gradient

is approximately linear.

The interplay of effects between the grading and the vertical

stress distribution, which are both asymmetric with respect to

the sliding direction, causes a non-trivial behaviour of the static
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Figure 10: Effect of a gradient in the Young’s modulus on the global dynamic coefficient of friction, expressed as percentage variation as a function of
Δ. The shaded blocks represent schematically the value of the Young’s modulus, which is greater for a darker shading.

friction as a function Δ. The effect of the vertical stress distribu-

tion can be reduced by designing a triangular grading, accord-

ing to Equation 5, so that for Δ > 0 the detachment begins at the

centre of the surface and propagates towards the edges, and vice

versa for Δ < 0.

As in the previous case, no appreciable variation in the dynamic

coefficient of friction is predicted, as shown in Figure 10. One

difference is that both the SBM and the FEM simulations

predict a higher global µk with respect to the case of non-graded

materials. Again, the FEM results are slightly anisotropic as a

function of Δ and, as in Figure 7, a smaller global dynamic

coefficient of friction is obtained for Δ < 0.

The results presented in Figure 11 show the effect of a trian-

gular gradient in the Young’s modulus on the global static coef-

ficient of friction calculated via SBM and FEM. The SBM

results display a symmetric behaviour. The corresponding

detachment process is shown in Supporting Information File 3

and Supporting Information File 4 for the case Δ > 0 and Δ < 0,

respectively (see also Figure 12 for an example). The FEM

simulations predict a smaller µs in the case of Δ < 0 because the

effect due to the grading is superimposed on the effect of the

vertical stress, so that the static friction thresholds are exceeded

earlier compared to the case Δ > 0. However, in both cases, the

static friction decreases linearly with Δ. When considering the

90° sliding direction, i.e., orthogonal to the grading, the results

of the SBM and the FEM simulations are in good agreement. In

this case, the effects due to the vertical stress are ininfluential,

since the detachment process is symmetric with respect to the

sliding direction. This suggests that with a proper combination

of grading and sliding direction, it is possible to obtain a linear

reduction of the static friction with the grading level, which

would allow the global static friction of a surface to be conve-

niently tuned to a chosen value, reduced with respect to the cor-

responding non-graded surface.

Conclusion
In this paper, we have considered the frictional sliding over a

rigid substrate of an elastic material characterized by a grading

of selected mechanical properties (Young’s modulus and local

coefficients of friction), focusing on the effects on the global

static friction and the detachment process at the onset of sliding.

The system has been investigated by means of numerical simu-

lations using 2D SBM and 3D FEM to verify the results and to

exploit additional insights provided by the two different ap-

proaches, after having tuned the SBM parameters in order to

have a precise match of the frictional force curve obtained by

FEM, in terms of slope and static friction threshold.

The results show that grading of the mechanical properties can

reduce the global static friction with respect to a non-graded

material, due to an anticipated detachment process. In the case

of a graded distribution of local friction coefficients, detach-

ment begins from the region where thresholds on static friction

are smaller, while in the case of a graded Young’s modulus dis-
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Figure 11: Effect of a triangular gradient in the Young’s modulus on the global static coefficient of friction, expressed as variation as function of Δ and
for two sliding directions (0°, i.e., parallel, and 90°, i.e., perpendicular to the gradient). The shaded blocks represent schematically the value of the
local Young’s modulus, which is higher for darker shading.

Figure 12: Propagation of the detachment front at the static friction threshold (left) and immediately after (right), in units of the dimensionless longitu-
dinal stress σx/p, for a material with a triangular gradient in the Young’s modulus, computed using the SBM method for the case Δ = 0.2. The irregu-
larities of the detachment front are due to the statistical dispersion of the local coefficients of friction introduced in the SBM formulation.

tribution, detachment begins from the regions where it is larger.

In both cases, the 2D SBM predicts a linear decrease of the

global coefficient of friction as a function of the relative grading

variation and symmetry with respect to the sliding direction. In

contrast, FEM simulations display an anisotropic behaviour due

to the effect of the vertical stress distribution, which can either

enhance or counterbalance the effect of the grading. Thus, a

greater reduction of static friction can be expected when the

grading on local friction decreases along the sliding direction,

or when a grading of Young’s modulus increases along the

sliding direction. The effect on the global dynamic coefficient

of friction, instead, appears to be underestimated numerically,

and should be the object of further investigations.

These results are not valid when the relative grading variation is

greater than 30% with respect to the average. In this case, the

time evolution of the tangential force changes radically. The

time duration of the detachment phase increases due to the large

variation between edges so that the force peak in the transition

from static to dynamic friction can disappear completely.
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This interplay of effects produces a nonlinear reduction of

static friction with the grading. A quasi-linear decrease can be

obtained in the case of a triangular grading, which is symmetric

with respect to the two edges, so that the anisotropy of the

vertical stress distribution is less influential. In particular, this

outcome can be achieved by setting this type of grading

along the orthogonal direction with respect to the sliding direc-

tion.

We have thus found that the SBM can capture the main effects

of gradings on the static friction coefficient and describe the

detachment process at the interface, with a much smaller

computational cost than that required by FEM simulations.

Therefore, it can be adopted for a rapid, initial estimation of

static friction values.

These results suggest that it is possible to realize bio-inspired

materials with a gradient in the mechanical properties, imitating

the graded Young’s moduli found in nature, or in the local fric-

tional properties, e.g., by controlling the roughness or the

microstructure, for the design of advanced sliding interfaces. A

reduction in the static friction up to almost 30%, with

respect to the corresponding non-graded material, can thus be

achieved.
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distributions.
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friction.

Tables reporting the computed absolute values of the global

static coefficients of friction µs, as function of Δ, obtained
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