
29 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Convolutional neural networks for on-board cloud screening / Ghassemi, S.; Magli, E.. - In: REMOTE SENSING. - ISSN
2072-4292. - ELETTRONICO. - 11:12(2019), p. 1417. [10.3390/rs11121417]

Original

Convolutional neural networks for on-board cloud screening

Publisher:

Published
DOI:10.3390/rs11121417

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2772113 since: 2020-01-16T14:05:36Z

MDPI AG

remote sensing

Article

Convolutional Neural Networks for On-Board

Cloud Screening

Sina Ghassemi * and Enrico Magli

Electronics and Telecommunication Department, Polytechnic University of Turin, 10129 Turin, Italy;
enrico.magli@polito.it
* Correspondence: sina.ghassemi@polito.it

Received: 8 May 2019; Accepted: 12 June 2019; Published: 14 June 2019
!"#!$%&'(!
!"#$%&'

Abstract: A cloud screening unit on a satellite platform for Earth observation can play an important
role in optimizing communication resources by selecting images with interesting content while
skipping those that are highly contaminated by clouds. In this study, we address the cloud screening
problem by investigating an encoder–decoder convolutional neural network (CNN). CNNs usually
employ millions of parameters to provide high accuracy; on the other hand, the satellite platform
imposes hardware constraints on the processing unit. Hence, to allow an onboard implementation,
we investigate experimentally several solutions to reduce the resource consumption by CNN while
preserving its classification accuracy. We experimentally explore approaches such as halving the
computation precision, using fewer spectral bands, reducing the input size, decreasing the number
of network filters and also making use of shallower networks, with the constraint that the resulting
CNN must have sufficiently small memory footprint to fit the memory of a low-power accelerator
for embedded systems. The trade-off between the network performance and resource consumption
has been studied over the publicly available SPARCS dataset. Finally, we show that the proposed
network can be implemented on the satellite board while performing with reasonably high accuracy
compared with the state-of-the-art.

Keywords: cloud screening; deep learning; convolutional neural networks

1. Introduction

In recent years, the rapid advance of remote sensing technology has allowed acquiring
high-resolution images over a large geographical scale which can be employed in a broad range of
applications such as environmental monitoring, agriculture, land-use analysis and so on. Nevertheless,
clouds are estimated to cover about 66% of the Earth surface [1], potentially contaminating a large
portion of the captured images. Such contamination masks objects on the Earth surface making the
affected images useless for analysis. Therefore, onboard cloud screening can in principle be applied on
the satellite platform as a pre-processing step before image compression and transmission, selecting
images with a low cloud cover percentage and discarding the others, thereby avoiding processing and
transmitting the images which are covered by clouds.

A very well-known cloud detection algorithm is F1-mask [2], which is employed on Landsat
imagery and employs top-of-atmosphere reflectance and brightness temperature for all Landsat bands,
detecting cloudy pixels through a series of spectral tests. Similarly, authors in [3] report that the
EO-1 spacecraft employs calculation of top-of-atmosphere reflectance followed by a few threshold
tests in order to perform onboard cloud screening. While this is the first demonstration of cloud
screening, screening a 1024 ⇥ 256 image requires about 30 min, which is far too much for real-time
processing. In addition, as many traditional remote sensing approaches make use of handcrafted
features such as pixel shape index [4] or morphological functions [5–8], such features are also found

Remote Sens. 2019, 11, 1417; doi:10.3390/rs11121417 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-5046-3842
https://orcid.org/0000-0002-0901-0251
http://www.mdpi.com/2072-4292/11/12/1417?type=check_update&version=1
http://dx.doi.org/10.3390/rs11121417
http://www.mdpi.com/journal/remotesensing

Remote Sens. 2019, 11, 1417 2 of 14

to be an effective tool to detect clouds as described by authors in [9] over images acquired by SPOT
Earth observation satellites. More recently, cloud detection has been addressed by employing machine
learning techniques including Bayesian statistical techniques [10,11], decision-tree classifier [12],
support vector machine [13] and also random forest [14]. Finally, authors in [15] study a combination
of machine learning approaches such as linear, quadratic and nonparametric discriminant analysis,
principal component and independent component discriminant analysis to handle the cloud detection
over MODIS images.

The recent decade has witnessed rapid development in the area of deep learning leading to
outstanding performance in many fields including computer vision. Well-known convolutional
neural networks (CNNs) have advanced the state-of-the-art in many computer vision tasks such
as image classification and semantic segmentation [16–21]. Not an exception to such trend, remote
sensing has been also enjoying the benefits of deep learning algorithms in achieving state-of-the-art
performance in many tasks such as land-use classification and segmentation [22–27]. CNNs usually
consist of thousands of filters with millions of learnable parameters which are trained to detect semantic
representations useful for a particular task and over a large amount of annotated images. Regarding
cloud detection, recent studies have been carried out to make use of CNNs also in performing such
detection task [28–31]. For instance, in [28], to perform cloud detection, satellite images first undergo a
simple linear iterative clustering process in which homogeneous pixels are clustered into superpixels;
then, a four-layer CNN is employed to extract features and, finally, two fully connected layers predict
the superpixels class. In [29], authors show that a similar CNN architecture with six convolutional
layers operating on 32 ⇥ 32 patches when combined with superpixel clustering can perform cloud
detection with reasonably high accuracy on SPOT 6 images. A very well-known CNN architecture
that is widely used in many segmentation tasks is U-net. U-net is originally proposed to address
biomedical image segmentation [32] and it employs a simple yet effective architecture consisting of an
encoder and a decoder network which are connected through a number of skip connections. The use of
skip connections contributes to finer segmentation results alleviating the need of post-processing steps,
as the early spatial information of encoders is concatenated with feature maps in decoders providing
higher resolution feature maps in the process of generating segmentation outputs. Authors in [33]
address cloud detection over Landsat 8 images proposing an architecture similar to U-net. To train
such network, first, a snow/ice removal framework that is based on gradient-based identification is
applied over Quality Assessment (QA) band of Landsat images, then this layer is used as ground
truth in the course of training. A lightweight convolutional encoder–decoder network is proposed
in [31] to address cloud screening, whose input features are not the pixel values, but their wavelet
coefficients. Authors construct experiments over the SPARCS (Spatial Procedures for Automated
Removal of Cloud and Shadow) dataset [34,35] using 4 out of 11 bands and the proposed architecture
outperforms common machine learning techniques such as AdaBoost, random forest and SVM by a
considerable margin. The same architecture is used in [36] for high-resolution videos.

Cloud screening differs from cloud detection in that the outcome of the detection process is not
used for scientific applications, but just to decide whether an image or part thereof has to be discarded.
However, satellite board imposes hardware constraints on the cloud screening unit in terms of memory
and power consumption. Additionally, in order to be useful, a cloud screening algorithm should be
able to process an image in a near real-time manner with high precision.

In this study, we consider the cloud screening problem as a binary pixel-based segmentation
problem where the image pixels are divided into cloud and non-cloud classes. We focus on
multispectral images as such images do not contain finely-grained spectral information about the
wavelengths at which clouds can be detected. Conversely, in hyperspectral images, one can pick a few
wavelengths and efficiently detect the presence of clouds using very simple methods—see, e.g., [11].

To tackle such a problem, we also employ an encoder–decoder CNN inspired by U-net in which
the encoder extracts visual representations (i.e., feature maps) over the input image, then the decoder
takes as input such representations and generates segmentation maps. However, unlike previous

Remote Sens. 2019, 11, 1417 3 of 14

work and original U-net architecture, we take into account the hardware limitations imposed by
satellite platforms, by designing and testing several variants of this encoder–decoder network having
different representation power, classification accuracy, memory footprint, and complexity. Since most
state-of-the-art CNNs include millions of parameters, such limitations introduce unique challenges
which require being addressed carefully. In particular, we study the trade-off between the resource
consumption and the network performance in terms of classification accuracy by investigating several
approaches such as limiting the number of network filters, decreasing the network depth, reducing the
input size both in spatial and spectral domains and also operating on half-precision floating points.
We provide our experimental results over the SPARCS publicly available dataset, and we show that
the proposed network can perform close to the state-of-the-art CNNs, while consuming much fewer
resources. In terms of resources, we consider that a low-power accelerator for embedded systems such
as the Intel Myriad family typically provides 500 MB of memory to accommodate the neural network
and input data, so we target the design of neural networks whose memory footprint is around this
value or lower.

This paper is organized as follows. First, we describe the proposed methodology including the
proposed network architecture, the sample generation procedure, and training process in Section 2;
then, the experimental results over the SPARCS dataset are provided in Section 3 and finally we draw
our conclusions in Section 4.

2. Methodology

In this section, first, we detail the architecture of the proposed network which we use as a baseline
in our experiments. Then, the procedure used to generate training samples is described in detail. Next,
the cost function used to optimize the network parameters and the related training process are defined.

2.1. Network Architecture

The proposed network as depicted in Figure 1 includes encoder and decoder networks.
The encoder utilizes a sequence of convolutional layers to extract feature maps which can be seen
as semantic representations of the input image. Then, the decoder takes as input such feature maps
and, through deconvolutional layers, it generates the segmentation map which labels the pixels into
cloud and non-cloud classes. In the following, we describe separately the architecture of encoder and
decoder networks in detail.

Figure 1. Network architecture: the encoder (bottom) and the decoder (top) are illustrated in dashed
boxes. Number of input and output channels (i.e., feature maps) as well as the size of filter, stride and
padding are provided for each layer.

2.1.1. Encoder

The encoder network includes five convolutional layers illustrated as gray blocks in Figure 1.
Each convolutional layer is followed by a batch normalization layer and employs a rectified linear

Remote Sens. 2019, 11, 1417 4 of 14

unit (ReLU) as activation function, except for the last convolutional layer before the output which
employs sigmoid activations and performs the final classification as explained in the following section.
Note that, in Figure 1, for simplicity, batch normalization layers and activation functions are omitted.

Each convolutional layer in the encoder extracts feature maps from the input image using a
number of filters. In Figure 1, the number of input and output feature maps (i.e., channels), the filter
size, stride and padding size are provided for each layer accordingly. An important aspect of CNNs
that should be addressed in a segmentation task is the field of view of the network. Each generated
feature map in the network has a specific field of view which is defined as the number of input pixels
that are used to compute a pixel in that feature map. Therefore, the field of view of a specific feature
map defines the window size on the input image over which each feature is computed. The field of
view in the networks can expand by proceeding to the deeper layers or using a large filter size or even
using larger stride size. In our proposed network, all encoder layers, except the first layer, have 3 ⇥ 3
convolutional filters. Nevertheless, in the first encoder layer, the filter size is chosen to be 7 ⇥ 7 to
increase the field of view in the first layer. Moreover, to better handle the memory consumption and
also in order to further expand the field of view of encoder layers, all convolutions have a stride of
two. Therefore, each layer outputs feature maps whose resolution is halved with respect to the feature
maps taken as input. On the other hand, as we proceed to the deeper layers in the encoder, the number
of output feature maps is increased by a factor of two starting with 16 feature maps in the first layer
and ending with 256 feature maps at the last encoder layer.

To exemplify, let us consider the input image with a size of 256 ⇥ 256 with four spectral channels,
the first encoder layer takes as input such 256 ⇥ 256 image and outputs 16 feature maps with a size of
128 ⇥ 128. Then, the second layer takes as input 16 feature maps with a size of 128 ⇥ 128 and outputs
32 feature maps with a size of 64 ⇥ 64. Therefore, by proceeding into deeper layers in the encoder,
the generated feature maps resolution decreases as their number increases. At the end, the last encoder
layer output 256 feature maps with the resolution of 8 ⇥ 8 pixels.

2.1.2. Decoder

The decoder network includes five layers paired to the five encoder layers as shown in Figure 1 by
blue blocks. Each decoder layer consists of one deconvolutional layer followed by batch normalization
layer and ReLU activation function. Deconvolutional layer (backward convolution) was originally
proposed to address the loss of mid-level cues caused by pooling operators used in convolutional
networks [37]. In our proposed decoder, we also make use of deconvolutional layers to upsample the
feature maps generated by the encoder, in order to be able to recover the spatial resolution of the input
image. A deconvolutional layer operates in two stages: first, the pixels over the input image (or input
feature map) are interleaved with zeros, thus the input is upsampled and a sparse output is generated.
Then, by applying a convolution filter to such sparse image, a dense output is finally produced. As a
result, a deconvolutional layer can be seen as an upsampling layer which consists of learnable filters
that attempt to reverse the sub-sampling operation performed by convolutional layers in the encoder.

Skip connections are also employed between the encoder and decoder layers to generate more
precise and finer predictions as the spatial information of early layers in the encoder is used also in
the decoder. Therefore, the output feature maps by each encoder layer are concatenated with the
feature maps which are output by the corresponding layer in the decoder. In addition, in our design,
we chose the number of filters in each decoder layer so that the number of feature maps coming
from skip connections matches the number of feature maps generated by previous decoder layer.
We experimentally verified that such condition is necessary to prevent one group of feature maps from
dominating the other when they are concatenated and forwarded to the next decoder layer.

For the sake of clarity, we exemplify the operations of the decoder network using the same
example as provided in the previous section for the encoder. Thus, let us consider the input image with
a size of 256 ⇥ 256, the 1st decoder layer takes as input the 256 feature maps sized 8 ⇥ 8 generated by
the 5th encoder layer. The feature maps are then scaled up by a factor of two by the 128 deconvolutional

Remote Sens. 2019, 11, 1417 5 of 14

filters, reaching a 16 ⇥ 16 resolution. Such 128 feature maps are then concatenated with the identically
sized 128 feature maps generated by the 4th encoder layer. The resulting 256 concatenated 16 ⇥ 16
feature maps are provided as input to the 2nd decoder layer, and so forth. The 5th decoder layer finally
outputs eight feature maps with the size of 256 ⇥ 256 matching the input size. Next, the decoder
output is processed by a convolutional layer with 1 ⇥ 1 filters generating two feature maps with size
256 ⇥ 256 pixels: the i-th pixel in the k-th feature map oi,k represents the relative confidence that such
pixel in the input image belongs to the k-th class, where in our case of binary segmentation k = 2. At
the end, a sigmoid activation is applied over resulting feature maps squeezing the numbers in the
interval (0,1): yi,k = 1/(1 + eoi,j).

In the end, to compare our proposed network with the original U-net, we would like to highlight
some of the differences which result in more efficient implementation. In our architecture, we do
not utilize the pair of stride-one convolutional layers in each encoder and decoder layer as used in
the original U-net architecture, which significantly reduces the number of network parameters (see
Table 1). Moreover, since in our design each encoder layer includes a convolutional layer with a stride
of two, the max pooling layers that are used in the original U-net architecture have been omitted.
Another difference is the use of larger convolutional filters in the first encoder layer with the size of
7 ⇥ 7 instead of 3 ⇥ 3 as in original U-net. Such design enlarges the field of view of the network at this
layer as well as subsequent layers. Additionally, unlike the U-net architecture, the output feature maps
are not cropped in our architecture, since the spatial domain of concatenated feature maps is identical.
Finally, the number of convolutional filters and hence the output feature maps with respect to original
U-net have been decreased by a factor of four which considerably reduces the memory usage (see
Table 1).

Table 1. The proposed network performance is provided (top) with different encoder networks,
encoder depths, computation precision, input spatial and spectral sizes. Moreover, the performance of
state-of-the-art CNN, namely DeepLab V3+, is provided as well (bottom) with two different encoders.

Encoder
Precision

Input Input Size Number of Inference Overall F1-Score mIOU

Type Depth Bands [Pixels] Parameters Memory [MB] Accuracy [%] [%] [%]

Plain 5 full R,B,G,IR 256 ⇥ 256 1,269,018 15.52 95.24 90.36 83.53
Plain 5 full R 256 ⇥ 256 1,266,666 14.72 94.51 87.99 80.37
Plain 5 full B 256 ⇥ 256 1,266,666 14.72 94.36 88.27 80.55
Plain 5 full G 256 ⇥ 256 1,266,666 14.72 94.06 87.25 79.30
Plain 5 full IR 256 ⇥ 256 1,266,666 14.72 92.38 85.15 76.08
Plain 5 full All 256 ⇥ 256 1,273,722 17.11 95.15 90.22 83.49
Plain 5 full R,B,G,IR 1000 ⇥ 1000 1,269,018 188.60 95.18 90.01 83.43
Plain 5 full R,B,G,IR 128 ⇥ 128 1,269,018 10.20 95.46 90.06 83.55
Plain 5 full R,B,G,IR 64 ⇥ 64 1,269,018 9.20 95.27 89.16 82.39
Plain 5 half R,B,G,IR 256 ⇥ 256 1,269,018 8.05 85.06 75.45 55.49

Plain * 5 full R,B,G,IR 256 ⇥ 256 318,478 7.03 95.28 90.08 83.09
Plain + 5 full R,B,G,IR 256 ⇥ 256 80,232 3.87 94.79 88.90 81.37
Plain ** 5 full R,B,G,IR 256 ⇥ 256 1,264,946 11.83 95.05 89.40 82.39
ResNet 18 full R,B,G,IR 256 ⇥ 256 16,550,722 132.56 96.24 92.59 86.85

ResNet 34 full R,B,G,IR 256 ⇥ 256 26,658,882 267.23 96.42 92.39 86.45
ResNet 50 full R,B,G,IR 256 ⇥ 256 103,629,954 889.29 96.23 91.77 85.62

U-net 9 full R,B,G,IR 256 ⇥ 256 39,402,946 315.36 96.08 91.01 84.89
FMask - full All 1000 ⇥ 1000 - - 86.81 70.11 62.01

Deeplab V3+

ResNet 101 full R,B,G,IR 256 ⇥ 256 59,342,562 503.7 94.87 89.47 82.07
Xception - full R,B,G,IR 256 ⇥ 256 54,700,722 481.69 89.85 83.58 73.51

* number of filters divided by two; + number of filters divided by four; ** the last decoder block is omitted.

2.2. Generating Training and Test Samples

Given a dataset of annotated satellite images, the dataset is first subdivided into training and
test sets as follows. The training set refers to images used for optimizing the network parameters.
The test set refers to images used to validate the training procedure by measuring the trained network
performance over such images.

Remote Sens. 2019, 11, 1417 6 of 14

The remote sensing datasets are usually provided in the form of very large images where each
image side contains thousands of pixels. However, due to memory constraints, to be able to train
the network, we first subdivide the image into smaller tiles. Therefore, as shown in Figure 2, first,
each image in the training set is subdivided into tiles of size 364 ⇥ 364. Notice that we consider
the network input size to be 256 ⇥ 256; however, we extract larger tiles to be able to apply a set of
augmentation transformations in the course of training as follows. From each tile, with 50% probability,
a 256 ⇥ 256 patch is cropped at a random position. Otherwise, a 256 ⇥ 256 patch is cropped from the
center of the tile that has been rotated using a bilinear transformation with a random angle drawn
from a uniform distribution in the interval [0, 2p]. Next, horizontal and vertical flips each with the
probability of 50% are applied independently over the extracted patch. Such augmentation techniques
are necessary to prevent the network from being overfitted on the training set.

Concerning test images, since no augmentation is planned during the evaluation, we extract tiles
of size 256 ⇥ 256 with partially overlapping samples from each test image. Averaging the network
outputs over overlapped areas and on the neighboring patches helps to avoid artifacts.

Figure 2. Patch extraction and data augmentation during training.

2.3. Cost Function and Optimization

After the training and test samples are generated, the network is trained end-to-end in a fully
supervised manner minimizing the binary cross-entropy loss function. To be precise, letting ti, k be the
one-hot target vector corresponding to class k, i.e., only the element corresponding to the correct class
is equal to one, whereas all the other elements are equal to zero, then the binary cross-entropy loss
function is computed as follows:

L(q, y, t) = �
H⇥W

Â
i=1

2

Â
k=1

(ti,k log (yi,k))� ((1 � ti,k) log (1 � yi,k)), (1)

where H and W are the input image width and height, respectively, and q represents the network
parameters. In addition, in order to prevent the network from overfitting on the training samples, the
final cost function we actually optimize at training time is:

J(q, y, t) = hL(q, y, t) + lR(q), (2)

where R(q) is a regularization term defined as the squared L2 norm of all the weights in the network,
and h and l are the learning rate and regularization factor.

We train the network via stochastic gradient descent with the momentum of 0.9 and with the
mini-batch size equal to 8. Concerning the learning rate adaptation strategy, we chose a base learning
rate of h = 0.05 that is divided by a factor of 10 every 100 epochs and we trained the network for a
total of 300 epochs. Moreover, L2 regularization with l = 0.001 is applied during training.

Remote Sens. 2019, 11, 1417 7 of 14

3. Results

In this section, first we describe the dataset used in this study, then we define the evaluation
metrics used to measure the performance; finally, the experiential results are provided.

3.1. Dataset

The dataset used in this study has originally been created by Hughes et al. [34] and is obtained
manually from Landsat 8 Operational Land Imager (OLI) scenes. Its purpose was to validate cloud
and cloud shadow masking derived from the Spatial Procedures for Automated Removal of Cloud
and Shadow (SPARCS) algorithm. The dataset includes 10 spectral bands; however, in most of our
experiments, we use only four bands corresponding to red, green, blue and infrared. The annotations
are given for seven classes including shadow, shadow over water, water, snow, land, cloud, and flooded
areas. In our experiments, we convert such annotations to the binary case of clouds and non-clouds
pixels. Eighty images with the size of 1000 by 1000 pixels are provided which we use 80% for training
and the remaining 20% for testing. The training and test sets are chosen so that they cover different
scenes over different geographical locations. The training set includes 64 images from which 1024
patches (16 patches over each image) of size 364 ⇥ 364 have been extracted, and test set includes 16
images from which 256 patches (16 patches over each image) of size 256 ⇥ 256 have been extracted.

3.2. Test Metrics

In our experiments, we measure network performance by measuring the following metrics:

• F1-score is defined as the harmonic mean of precision and recall: F1 = 2 · (precision ·
recall)/(precision + recall), where Precision is defined as the ratio of correctly predicted pixels
to all predicted pixels regarding a segmentation class: Precision = tp/(tp + f p), and Recall is
defined as the ratio of correctly predicted pixels to all pixels that belongs to a segmentation class:
Recall = tp/(tp+ f n). Moreover, tp , f n and f p are true positive, false negative and false positive
pixels, respectively.

• Overall accuracy is the fraction of correctly labeled pixels for all classes, Acc = Ânc
i=1 tpi/np where

nc and np are the number of classes and the number of pixels respectively and tpi denotes true
positives for class i.

• mIOU is the ratio of correctly predicted area to the union of predicted pixels and the ground truth
IOU = tp

tp+ f p+ f n , which is averaged over all classes.
• Inference memory is the amount of GPU memory, which is occupied by the network during

evaluation. The memory consumption is measured based on the maximum allocated GPU
memory during inference using a Pytorch implementation of the proposed methodology.

• Computation time considers data loading time, the time interval in which the network processes
the extracted patches over a 1000 ⇥ 1000 test image, the time needed to stitch patches to form
segmentation maps and also the time required to compute the evaluation metrics.

3.3. Experiments

In this section, we provide the experimental results obtained by the network architecture defined
in Section 2.1. In order to be able to measure the trade-off between the network resource consumption
and its performance on the cloud screening task, we set up several experiments. In these experiments,
we use different settings by considering a number of factors that can affect memory consumption as
well as the network performance. The factors that are considered include the computation precision,
the network encoder depth, the number of convolutional filters, the number of input spectral bands
and also the input size. In all experiments, the network is trained from the samples generated over the
SPARCS dataset based on the procedure defined in Section 2.2 and employing the training methodology
detailed in Section 2.3.

Remote Sens. 2019, 11, 1417 8 of 14

The experimental setup used for all the experiments below consists of running the methodology
implemented in Pytorch framework [38] over NVIDIA GeForce GTX 1080 GPU (Santa Clara, CA,
United States) with Pascal architecture and 8 GB memory.

Input bands: In the first experiment, we investigate how the number of spectral bands which
are input to the network can affect both the network performance and its memory usage. Therefore,
the proposed network defined in Section 2.1 is trained once over four bands of red (R), blue (B), green
(G) and infrared (IR) bands, and another time over each one of these bands separately and also once
over all 10 bands provided by the SPARCS dataset. As is reported in Table 1, the best results in terms
of F1-score, mIOU, and accuracy are obtained when the network is trained over four bands of red,
blue, green and infrared. Moreover, it can be seen that, when the network trained over one spectral
band, the more informative band is red in terms of overall accuracy and blue in terms of F1-score. We
should note that the difference between F1-score and overall accuracy is that the overall accuracy takes
into accounts also the true negative pixels; however, F1-score does not consider true negatives. Thus,
this explains the variations between overall accuracy and F1-score also in the remaining experiments,
where one network may outperform another network only in one metric. Considering the inference,
the network with one input band is faster by a small margin of 1 ms in the processing input image
(inference time is shown in Table 2) and consumes 2.4 MB less than the network with 10 input bands.
The results imply that the number of input spectral bands has a small effect on the network resource
consumption since only the number of input channels of the first convolutional layer in the encoder
(see Figure 1) changes and the rest of the network remains the same. This also shows that using more
than four bands does not bring any improvement to the problem of cloud screening. Figure 3 shows the
segmentation results by the network with four input bands and over 6 test images of SPARCS dataset.

Figure 3. The results of the proposed network (1-st row in Table 1) over six test images of SPARCS
dataset. Green and white pixels represent true positive and true negative while blue and red pixels
represent false negative and false positive outputs, respectively.

Input size: In this experiment, we study the connection between network performance and the
input size. Accordingly, we train the proposed network in Section 2.1 over samples that are generated
based on the procedure described in Section 2.2, using different sizes for extracting patches i.e., 1000
⇥ 1000, 256 ⇥ 256, 128 ⇥ 128, and 64 ⇥ 64. Since the proposed network is fully convolutional, it can
take as input an image with arbitrary size. In all experiments in this part, the four spectral bands
corresponding to red, green, blue and infrared are used. The 1st, 7th, 8th, and 9th rows in Table 1 show
the results for input size of 256 ⇥ 256, 1000 ⇥ 1000, 128 ⇥ 128 and 64 ⇥ 64, respectively; it can be seen
that in terms of cloud screening performance, the network with input size of 128 ⇥ 128 has the best
overall accuracy and mIOU while the network with input size of 256 ⇥ 256 performs with the best
F1-score. In terms of memory consumption, decreasing the input size from 256 ⇥ 256 to 128 ⇥ 128
results in releasing about 5.3 MB of the memory, and in terms of inference time (Table 2) it processes
the input data 22 ms faster. However, we note that further decreasing the input size contributes
only marginally to the memory consumption; however, it can worsen the network performance and
also leads to slower inference time due to the larger number of patches that should be extracted to

Remote Sens. 2019, 11, 1417 9 of 14

cover the test image. Such performance declines for smaller input size can be related to shrinking
the network field of view. Moreover, regarding the input size of 1000 ⇥ 1000, as it covers the whole
test images, it does not require stitching during inference and hence decreases the processing time.
As is mentioned in Section 2.1, the larger the network field of view is, the more neighboring pixels are
considered in predicting the score maps. To conclude, smaller input size can decrease the network
memory consumption, but this comes at the expense of shrinking the network field of the view that
may worsen the overall performance.

Table 2. The time interval which is required to (a) load the extracted patches (over 1000 ⇥ 1000 pixels
test image) from hard drive into memory; (b) compute the network outputs over the input patches
(i.e., patches extracted from a test image); (c) stitch the network outputs (to produce 1000 ⇥ 1000
segmentation maps); and (d) compute the evaluation metrics is provided.

Encoder
Precision

Input Input Size Data Loading Inference Stitch Eval Total

Type Depth Bands [Pixels] [ms] [ms] [ms] Metrics [ms] [ms]

Plain 5 full 4 256 ⇥ 256 37 168 110 415 730
Plain 5 full 1 256 ⇥ 256 8 167 110 415 700
Plain 5 full 10 256 ⇥ 256 7240 170 110 415 7935
Plain 5 full 4 1000 ⇥ 1000 17 171 0 415 603
Plain 5 full 4 128 ⇥ 128 45 146 110 415 716
Plain 5 full 4 64 ⇥ 64 80 1136 110 415 1741
Plain 5 half 4 256 ⇥ 256 18 158 110 415 701

Plain * 5 full 4 256 ⇥ 256 37 153 110 415 715
Plain + 5 full 4 256 ⇥ 256 37 100 110 415 662
Plain ** 5 full 4 256 ⇥ 256 37 150 110 415 712
ResNet 18 full 4 256 ⇥ 256 37 407 110 415 969
ResNet 34 full 4 256 ⇥ 256 37 536 110 415 1098
ResNet 50 full 4 256 ⇥ 256 37 733 110 415 1295

U-net [32] 9 full 4 256 ⇥ 256 37 720 110 415 1282
FMask [39] - full 10 1000 ⇥ 1000 37 1470 - 415 1922

Deeplab V3+

ResNet 101 full 4 256 ⇥ 256 37 422 110 415 984
Xception - full 4 256 ⇥ 256 37 441 110 415 1003

* number of filters divided by two; + number of filters divided by four; ** the last decoder block is omitted.

Precision: In this experiment, we investigate how the network performance can be influenced
by the floating point precision employed for the representation of network parameters and the
corresponding computations, hence we experiment with half precision computations. Pytorch
framework by default uses full precision floating-point which occupies 32 bits, thus by halving
the precision of the floating points, 16 bits will be occupied. In this experiment, we used half-precision
floating point both in training and test stages. As Table 1 shows, the network with half-precision
(10th row) occupies 8.05 MB of memory. Compared to the network with full precision (1st row) which
consumes 15.52 MB, half precision computations leads to releasing about 50% of the memory during
inference. Moreover, the network with the half precision processes the input 10 ms faster. However,
in terms of segmentation performance, halving the precision results in a considerable drop of 14% in
terms of F1-score, 33% in mIOU and 10% in overall accuracy. To conclude, as it will be explored in the
next sections, compared with other approaches, halving the precision can be regarded as an expensive
approach of managing memory in terms of network segmentation performance.

Convolutional filters: In this part, we consider the number of convolutional filters in the network
that can have a significant impact on the network performance. We measure the cloud screening
performance and the memory consumption for the network with the same architecture defined in
Section 2.1 but with a number of convolutional filters that is divided first by a factor of two (Plain *)
and then by a factor of four (Plain +). As reported in Table 1, dividing the number of network filters
by a factor of two (11th row) and by a factor of four (12th row) results in 75% and 90% reduction in
the number of network parameters, respectively. As a result, the first (Plain *) and second (Plain +)

Remote Sens. 2019, 11, 1417 10 of 14

networks consume about 8.5 MB and 11.6 MB less memory during inference compared with the original
architecture (1st row). While the performance of the first network (Plain *) drops by 0.28% in F1-score,
0.44% in mIOU and remains approximately the same in terms of overall accuracy, the performance
of second network (Plain+) drops by larger margin of 1.46% in F1-score, 2.16 % in mIOU and 0.45%
in overall accuracy. Such results imply that, to some extent, reducing the number of convolutional
filters within a specific network can reduce the network memory consumption while preserving its
performance, but this must not be overdone.

Output scale: In this experiment, to optimize resource consumption, we omit the last decoder
block (i.e., fifth block), hence the output scale is halved compared to input patch. As can be seen
from the results in Tables 1 and 2 (denoted by Plain **), this approach can free up the memory by
3.7 MB (23%) and speed up the total processing time by 18 ms while the performance drops only by
1% in F1-score.

Encoder depth: Finally, we measure how a deeper encoder can improve network performance.
It is well known that deeper networks generalize better over large datasets [17]. Moreover, it has
been shown that, among deeper networks, residual networks (ResNets) have better generalization
ability and can converge faster thanks to the employment of skip connection [18,26]. Hence, in this
experiment, we deepen the encoder by using residual networks with 18, 34 and 50 layers in the
encoding stage of the proposed network. As a result, the convolution layers in the encoder are replaced
by residual blocks as shown in Figure 4 for ResNet-18, while the decoder architecture remains the
same. As can be seen from the last three rows in Table 1, the residual encoder brings a considerable
improvement in terms of both F1-score and overall accuracy. Using ResNet with 18, 34 and 50 layers as
encoder leads to a increase of 2.23%, 2.03% and 1.41% in F1-score, 3.32 %, 2.92 % and 2.09 % in mIOU
and 1%, 1.18% and 0.9% in overall accuracy, respectively. However, the number of network parameters
grows by a factor of 13, 21 and 81 for ResNet 18, 34 and 50. In terms of inference time for the forward
pass, as can be seen from Table 2, using ResNets as encoder leads to an increase by a margin of 239, 368
and 565 ms for depths of 18, 34 and 50 layers, respectively. Therefore, using deeper residual networks
can improve cloud detection performance significantly, but it comes at the expense of an increased cost
in terms of memory consumption and inference time.

Figure 4. ResNet with 18 layers depicted in five blocks.

Comparison with state-of-the-art: Finally, we compare the performance of the proposed network
with that of Deeplab V3+ [19] which achieved state-of-the-art performance over PASCAL VOC 2012 [40]
and Cityscapes [41] datasets. Deeplab V3+ also makes use of encoder–decoder architecture to perform
image segmentation. Authors showed in [42] that Deeplab V3+ with ResNet-101 and Xception encoders
obtained the best performance. Therefore, we also train Deeplab V3+ once with ResNet-101 and another
time with Xception encoder over the SPARCS dataset. As can be seen in the last two rows of Table 1,
for the cloud screening task, Deeplab V3+ with ResNet encoder outperforms its variant with Xception
encoder by a considerable margin in overall accuracy and F1-score. In terms of memory consumption,
comparing Deeplab with our proposed network and both with ResNet as the encoder, Deeplab has
fewer parameters and occupies much less memory. This is due to the Deeplab architecture that does not
include deconvolutional filters in its decoder and relies on upsampling operations that do not include
parameters. Nevertheless, as can be seen from the results, our proposed network with plain encoder
(Plain * in Table 1) outperforms Deeplab in both overall accuracy and F1-score while consuming about

Remote Sens. 2019, 11, 1417 11 of 14

71 times less memory. We conjecture that such decrease in Deeplab performance is related to the
use of deeper encoder, which makes it prone to overfitting. Analogously, we have noticed a similar
decline in our proposed network performance when the encoder becomes larger. For instance, a drop
in F1-score and mIOU can be seen in Table 1 by comparing the proposed network with ResNet 18 and
50 as the encoder. In addition to overfitting, we notice that the deconvolutional layers which are used
in our network, instead of bilinear upsampling layers in Deeplab, contribute to higher performance,
although they increase the number of network parameters. Concerning the processing time, since
the upsampling operation in Deeplab decoder is carried out on CPU in Pytorch, Deeplab takes more
time compared with our proposed network. In addition to Deeplab V3+, we train the original U-net
architecture over the SPARCS dataset. Due to the differences that are highlighted in Section 2.1, U-net
consumes about 300 MB more memory during inference compared with our proposed network with
plain encoder (1st row); however, it contributes to performance by a margin of 0.65 and 1.36 in F1-score
and mIOU, respectively. Nevertheless, considering the proposed network with ResNet18 encoder, it
not only outperforms original U-net in performance but also consumes less memory during inference.
Moreover, F-mask [39] algorithm is applied over the SPARCS test images using all available 10 bands.
As Table 1 reports, CNN based approaches surpass F1-mask by a great margin.

In the end, in Figure 5, learned filters in three convolutional layers of the trained network
encoder (plain) and the corresponding feature maps of a sample input are depicted. We select
16 filters and feature maps from each of these three convolutional layers. As can be seen, the feature
maps resolution decreases in deeper layers of the encoder while more semantic visual patterns are
represented. Regarding the learned filters, since the depth of filters increases in deeper layers, the filters
of such layers cannot be visualized properly in RGB. However, in the first convolutional layer, filters
have a depth of 3 and hence can be visualized in RGB. Most of these filters have circular shapes, which
can be related to the cloud shape, showing that the learned filters represent templates that are effective
for detecting clouds.

Figure 5. Learned convolutional filters (bottom) and corresponding feature maps (top) for a sample
input patch (left).

4. Conclusions

In this study, we addressed the cloud screening problem by considering the hardware constraints
imposed by the satellite platforms. We proposed an encoder–decoder CNN to perform pixel-based
classification on satellite images, in order to discard images that are highly contaminated by clouds to
preserve resources. To enable an onboard implementation, we limit the resource consumption by CNN
while preserving its performance by optimizing the network architecture. The results show that the
proposed network can outperform the state-of-the-art CNN over the SPARCS dataset while consuming
much fewer resources during inference. The memory consumption allows these networks to easily
fit in the memory of low-power accelerators for embedded applications. The sustainable throughput

Remote Sens. 2019, 11, 1417 12 of 14

depends on the specific accelerator and its integration with the CPU. Our results show that the time
needed for the forward pass of the neural network is small on a powerful GPU, whereas a low-power
accelerator would require more time. Moreover, a significant amount of time is devoted to data
transfers between CPU and GPU; in an onboard implementation, these would be highly dependent on
the specific architecture of the processing unit, highlighting the need of careful design.

Author Contributions: Conceptualization, S.G. and E.M.; methodology, S.G. and E.M.; software, S.G.; validation,
S.G.; formal analysis, S.G.; investigation, S.G.; resources, E.M.; data curation, S.G. and E.M.; writing–original draft
preparation, S.G.; writing–review and editing, E.M.; visualization, S.G.; supervision, E.M.; project administration,
E.M.; funding acquisition, E.M.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Saunders, R.W.; Kriebel, K.T. An improved method for detecting clear sky and cloudy radiances from
AVHRR data. Int. J. Remote Sens. 1988, 9, 123–150. [CrossRef]

2. Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery.
Remote Sens. Environ. 2012, 118, 83–94. [CrossRef]

3. Griggin, M.; Burke, H.h.; Mandl, D.; Miller, J. Cloud cover detection algorithm for EO-1 Hyperion imagery.
In Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium IGARSS’03,
Toulouse, France, 21–25 July 2003; Volume 1, pp. 86–89.

4. Zhang, L.; Huang, X.; Huang, B.; Li, P. A pixel shape index coupled with spectral information for classification
of high spatial resolution remotely sensed imagery. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2950–2961.
[CrossRef]

5. Benediktsson, J.A.; Pesaresi, M.; Amason, K. Classification and feature extraction for remote sensing
images from urban areas based on morphological transformations. IEEE Trans. Geosci. Remote Sens. 2003,
41, 1940–1949. [CrossRef]

6. Benediktsson, J.A.; Palmason, J.A.; Sveinsson, J.R. Classification of hyperspectral data from urban areas
based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 2005, 43, 480–491. [CrossRef]

7. Huang, X.; Zhang, L. A multidirectional and multiscale morphological index for automatic building
extraction from multispectral GeoEye-1 imagery. Photogramm. Eng. Remote Sens. 2011, 77, 721–732.
[CrossRef]

8. Huang, X.; Zhang, L. Morphological building/shadow index for building extraction from high-resolution
imagery over urban areas. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 161–172. [CrossRef]

9. Fisher, A. Cloud and cloud-shadow detection in SPOT5 HRG imagery with automated morphological
feature extraction. Remote Sens. 2014, 6, 776–800. [CrossRef]

10. Merchant, C.; Harris, A.; Maturi, E.; MacCallum, S. Probabilistic physically based cloud screening of satellite
infrared imagery for operational sea surface temperature retrieval. Q. J. R. Meteorol. Soc. 2005, 131, 2735–2755.
[CrossRef]

11. Thompson, D.R.; Green, R.O.; Keymeulen, D.; Lundeen, S.K.; Mouradi, Y.; Nunes, D.C.; Castaño, R.; Chien,
S.A. Rapid spectral cloud screening onboard aircraft and spacecraft. IEEE Trans. Geosci. Remote Sens. 2014,
52, 6779–6792. [CrossRef]

12. Shiffman, S. Cloud Detection From Satellite Imagery: A Comparison Of Expert-Generated and
Automatically-Generated Decision Trees 2004. Available online: www.ntrs.nasa.gov (accessed on 1 February 2019)

13. Rossi, R.; Basili, R.; Del Frate, F.; Luciani, M.; Mesiano, F. Techniques based on support vector machines for
cloud detection on quickbird satellite imagery. In Proceedings of the 2011 IEEE International Geoscience
and Remote Sensing Symposium (IGARSS), Vancouver, BC, Canada, 24–29 July 2011; pp. 515–518.

14. Wagstaff, K.L.; Altinok, A.; Chien, S.A.; Rebbapragada, U.; Schaffer, S.R.; Thompson, D.R.; Tran, D.Q. Cloud
Filtering and Novelty Detection using Onboard Machine Learning for the EO-1 Spacecraft 2017. Available
online: https://ai.jpl.nasa.gov (accessed on 1 February 2019)

15. Murino, L.; Amato, U.; Carfora, M.F.; Antoniadis, A.; Huang, B.; Menzel, W.P.; Serio, C. Cloud detection of
MODIS multispectral images. J. Atmos. Ocean. Technol. 2014, 31, 347–365. [CrossRef]

http://dx.doi.org/10.1080/01431168808954841
http://dx.doi.org/10.1016/j.rse.2011.10.028
http://dx.doi.org/10.1109/TGRS.2006.876704
http://dx.doi.org/10.1109/TGRS.2003.814625
http://dx.doi.org/10.1109/TGRS.2004.842478
http://dx.doi.org/10.14358/PERS.77.7.721
http://dx.doi.org/10.1109/JSTARS.2011.2168195
http://dx.doi.org/10.3390/rs6010776
http://dx.doi.org/10.1256/qj.05.15
http://dx.doi.org/10.1109/TGRS.2014.2302587
www.ntrs.nasa.gov
https://ai.jpl.nasa.gov
http://dx.doi.org/10.1175/JTECH-D-13-00088.1

Remote Sens. 2019, 11, 1417 13 of 14

16. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
In Proceedings of the Advances in Neural Information Processing Systems, Stateline, NV, USA, 3–8 December
2012; pp. 1097–1105.

17. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9.

18. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26–30 June 2016; pp. 770–778.

19. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation
with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal.
Mach. Intell. 2018, 40, 834–848. [CrossRef]

20. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference
on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.

21. Ghassemi, S.; Fiandrotti, A.; Caimotti, E.; Francini, G.; Magli, E. Vehicle joint make and model recognition
with multiscale attention windows. Signal Process. Image Commun. 2019, 72, 69–79. [CrossRef]

22. Xu, Y.; Xie, Z.; Feng, Y.; Chen, Z. Road extraction from high-resolution remote sensing imagery using deep
learning. Remote Sens. 2018, 10, 1461. [CrossRef]

23. Arief, H.; Strand, G.H.; Tveite, H.; Indahl, U. Land cover segmentation of airborne LiDAR data using
stochastic atrous network. Remote Sens. 2018, 10, 973. [CrossRef]

24. Panboonyuen, T.; Jitkajornwanich, K.; Lawawirojwong, S.; Srestasathiern, P.; Vateekul, P. Semantic
segmentation on remotely sensed images using an enhanced global convolutional network with channel
attention and domain specific transfer learning. Remote Sens. 2019, 11, 83. [CrossRef]

25. Zhu, K.; Chen, Y.; Ghamisi, P.; Jia, X.; Benediktsson, J.A. Deep convolutional capsule network for
hyperspectral image spectral and spectral-spatial classification. Remote Sens. 2019, 11, 223. [CrossRef]

26. Ghassemi, S.; Sandu, C.; Fiandrotti, A.; Tonolo, F.G.; Boccardo, P.; Francini, G.; Magli, E. Satellite image
segmentation with deep residual architectures for time-critical applications. In Proceedings of the 26th
European Signal Processing Conference, Eternal City, Rome, 3–7 September 2018; pp. 2235–2239.

27. Ghassemi, S.; Fiandrotti, A.; Francini, G.; Magli, E. Learning and Adapting Robust Features for Satellite
Image Segmentation on Heterogeneous Datasets. IEEE Trans. Geosci. Remote Sens. Under review.

28. Shi, M.; Xie, F.; Zi, Y.; Yin, J. Cloud detection of remote sensing images by deep learning. In Proceedings of
the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July
2016; pp. 701–704.

29. Le Goff, M.; Tourneret, J.Y.; Wendt, H.; Ortner, M.; Spigai, M. Deep learning for cloud detection 2017.
Available online: https://hal.archives-ouvertes.fr (accessed on 1 February 2019)

30. Wu, X.; Shi, Z. Utilizing multilevel features for cloud detection on satellite imagery. Remote Sens. 2018,
10, 1853. [CrossRef]

31. Zhaoxiang, Z.; Iwasaki, A.; Guodong, X.; Jianing, S. Small Satellite Cloud Detection Based on Deep Learning
and Image Compression. Available online: www.preprints.org (accessed on 1 February 2019).

32. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation.
In Proceedings of the International Conference on Medical Image Computing and Computer–Assisted
Intervention, Munich, Germany, 5–9 October 2015; Springer: Cham, Switherland, 2015; pp. 234–241.

33. Mohajerani, S.; Krammer, T.A.; Saeedi, P. A Cloud Detection Algorithm for Remote Sensing Images Using
Fully Convolutional Neural Networks. In Proceedings of the 2018 IEEE 20th International Workshop on
Multimedia Signal Processing (MMSP), Vancouver, BC, Canada, 29–31 August 2018; pp. 1–5.

34. Hughes, M.J.; Hayes, D.J. Automated detection of cloud and cloud shadow in single-date Landsat imagery
using neural networks and spatial post-processing. Remote Sens. 2014, 6, 4907–4926. [CrossRef]

35. U.S. Geological Survey, L8 SPARCS Cloud Validation Masks. U.S. Geological Survey Data Release 2016.
United States Geological Survey (Reston, Virginia, United States). Available online: www.usgs.gov (accessed
on 1 February 2019)

36. Francis, A.; Sidiropoulos, P.; Vazquez, E. Real-Time Cloud Detection in High-Resolution Videos: Challenges
and Solutions. In Proceedings of the Onboard Payload Data Compression Workshop, Matera, Italy,
20–21 September 2018.

http://dx.doi.org/10.1109/TPAMI.2017.2699184
http://dx.doi.org/10.1016/j.image.2018.12.009
http://dx.doi.org/10.3390/rs10091461
http://dx.doi.org/10.3390/rs10060973
http://dx.doi.org/10.3390/rs11010083
http://dx.doi.org/10.3390/rs11030223
https://hal.archives-ouvertes.fr
http://dx.doi.org/10.3390/rs10111853
www.preprints.org
http://dx.doi.org/10.3390/rs6064907
www.usgs.gov

Remote Sens. 2019, 11, 1417 14 of 14

37. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015;
pp. 3431–3440.

38. Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.;
Lerer, A. Automatic differentiation in PyTorch 2017. Available online: www.pytorch.org (accessed on
1 February 2019)

39. Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud
shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015,
159, 269–277. [CrossRef]

40. Everingham, M.; Eslami, S.A.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object
classes challenge: A retrospective. Int. J. Comput. Vis. 2015, 111, 98–136. [CrossRef]

41. Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B.
The cityscapes dataset for semantic urban scene understanding. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 3213–3223.

42. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the
European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 833–851.

c� 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

www.pytorch.org
http://dx.doi.org/10.1016/j.rse.2014.12.014
http://dx.doi.org/10.1007/s11263-014-0733-5
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methodology
	Network Architecture
	Encoder
	Decoder

	Generating Training and Test Samples
	Cost Function and Optimization

	Results
	Dataset
	Test Metrics
	Experiments

	Conclusions
	References

