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AN INTRODUCTION TO THE TWODIMENSIONAL

SCHRÖDINGER EQUATION WITH NONLINEAR POINT

INTERACTIONS

1R. CARLONE, 2 M. CORREGGI,2 L. TENTARELLI

Abstract. We present an introduction to the nonlinear Schrödinger equation
(NLSE) with concentrated nonlinearities in R2. Precisely, taking a cue from the

linear problem, we sketch the main challenges and the typical difficulties that

arise in the twodimensional case, and mention some recent results obtained by
the authors on local and global well-posedness.

1. Introduction

In the last twenty years the Schrödinger equation with point interactions has
proven to be a very useful mathematical tool for modeling many interesting phe-
nomena in several areas of theoretical physics: from foundations of quantum me-
chanics (e.g., [FT,CCF1,CFN1,CFN2]) to acoustics (e.g., [CFP2]), from quantum
field theory (e.g., [CFP1]) to spectral theory (e.g., [CCF2]). In addition, linear and
nonlinear point interactions can be seen as singular perturbations not only of the
standard Schrödinger (or heat) equation. They may appear, for instance, also in
the study of the Dirac equation, a model which has recently attracted some renewed
attention (see e.g., [AGH-KH,CMP,CCNP])

Linear point interactions arise as a particular, but relevant, application of the
more general theory of self-adjoint extension of symmetric operators; a theory that
has gained new popularity in recent years also for the application to the study of
evolution equations in non-standard domains, such as quantum graphs (see e.g.,
[ACFN1, ACFN2, ACFN3, ACFN4, AST1, AST2, AST3, AST4, BK, CFN, GSD, N,
NPS,ST1,ST2,T]) and quantum hybrids (see e.g., [CE,CP,ES1,ES2,ES3]).

The extension to nonlinear point interactions appeared first in [AT] and its in-
terest is driven by the possibility of investigating nonlinear problems in the con-
text of solvable models (i.e., models with an explicit solution) such as, indeed,
point interactions. In dimensions d“1,3 these problems have been extensively ana-
lyzed and many results have been obtained, such as local and global well-posedness
(see [AT,ADFT1]), occurrence of blow-up solutions (see [AT,ADFT2]), and approx-
imation by standard NLSEs with concentrating potentials (the so-called point-like
limit – see [CFNT1,CFNT2]). We also mention that in these dimensions also linear
non-autonomous models have been widely studied, mainly in relation to complete
ionization phoenomena (see e.g., [CCLR,CD,CDFM,SY]).

On the contrary, to the best of our knowledge, the two-dimensional problem
have failed to be understood for years, even though some of the main technical
difficulties arising in this case were known (see [AGH-KH,CCF2,CCF3]). However,
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2 R. CARLONE,M. CORREGGI, L. TENTARELLI

the problem has been finally solved by the authors in [CCT], where new features
of Volterra integral operators with highly singular kernels have been established
(see also [CFT]) in order to prove local and global well-posedness of the associated
Cauchy problem.

In this communication, starting from linear point interactions in R2, we sketch
some important points of the strategy used in [CCT] to discuss the issues of local
and global well-posedness of the nonlinear model.

2. Linear Point Interactions

In this section we give a brief overview of linear point interactions in R2 (for
more details we refer to [AGH-KH]).

As in R3 (and in contrast to what occurs in R), in R2 the starting point is that
of giving a precise meaning to the formal operator

(2.1) Hf :“ ´∆`

N
ÿ

i“1

αiδp¨ ´ yiq, y1, . . . ,yN P R2, α1, . . . , αN P R.

Hence, we look for a suitable self-adjoint operator in L2
`

R2
˘

, which correctly rep-
resent the heuristic expression in (2.1). In particular, this operator has to act as
the free Laplacian far from the points were the interactions are located.

In the following we recall how to construct such an operator by means of the
theory of self-adjoint extensions. For the sake of simplicity, we consider only the
case of a single point interaction placed in y P R2 (for the generalization to the case
of a finite number of point interactions see [AGH-KH]).

2.1. Definition and setting. Let us introduce the following restriction of the
Laplacian:

Hr :“ ´∆, DpHrq :“ C80
`

R2ztyu
˘

.

This operator is symmetric and, furthermore, acts exactly as the standard Laplacian
far from the interaction point. Hence, the strategy to find a suitable form for (2.1)
is that of classifying all possible (non trivial) self-adjoint extensions of Hr.

In fact, one can prove (see [AGH-KH]) that all these extensions are given by a
one-parameter family of operators Hα,y with domain and action given by

DpHα,yq :“
 

ψ P L2pR2q|ψ “ φλ ` q G
λp¨ ´ yq, φλ P H

2
`

R2
˘

,

q P C, lim
xÑy

φλpxq “
´

α` 1
2π log

?
λ` γ

2π

¯

q

*

(for any λ ą 0) and

pHα,y ` λqψ :“ p´∆` λqφλ, @ψ P DpHα,yq,

where γ is the Euler-Mascheroni constant and Gλ is the Green’s function of ´∆`λ,
namely Gλpxq “ 1

2πK0p
?
λ|x|q, with K0p

?
λ| ¨ |q denoting the inverse (unitary)

Fourier transform of p|k|2 ` λq´1, i.e., the modified Bessel function of second kind
of order 0 (a.k.a. Macdonald function [AS, Sect. 9.6]).

Remark 2.1. In the 3d case an analogous construction holds, but with a major
difference: one can define an equivalent decomposition (up to modifying the inte-
grability requirements at infinity) for λ “ 0. Here, on the contrary, although the
operator domain is independent (as in 3d) of the parameter λ ą 0, the choice λ “ 0
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is forbidden due to the infrared singularity of the 2d Green’s function (which in
fact diverges when λÑ 0).

Remark 2.2. The parameter α introduced above is not the inverse scattering lenght.
There is a relation between α defined above with the scattering lenght p4παscattq´1

as defined in [AGH-KH] and it is the following

αscatt `
γ

2π
´

log 2

2π
“ α.

The quadratic form associated with Hα,y, in addition, is given by:

Fα,ypψq :“}∇φλ}2L2pR2q ` λ }φλ}
2
L2pR2q ´ λ }ψ}

2
L2pR2q`

`

´

α` 1
2π log

?
λ
2 `

γ
2π

¯

|q|2,
(2.2)

with form domain

V :“
 

ψ P L2pR2q|ψ “ φλ ` q G
λp¨ ´ yq, φλ P H

1
`

R2
˘

, q P C
(

.

Such a quadratic form is not positive definite. As a consequence, one finds that
a bound state occurs for any value of α (another major difference with the 3d
case, where the sign of the coupling constant α distinguishes between the exis-
tence/nonexistence of a bound state). More precisely:

σ pHα,yq “
 

´4e´4πα´2γ
(

Y r0,8q,

and thus twodimensional point interactions can be said to be always attractive.

2.2. Dynamics. As a consequence of the previous considerations (by means, for
instance, of the Stone’s theorem), it is well-known that, for any ψ0 P DpHα,yq, the
Cauchy problem

(2.3)

$

&

%

ı
Bψt
Bt

“ Hα,yψt

ψt“0 “ ψ0

is globally well-posed. In addition, in this case, an expression for the propagator
as an integral kernel is available (see again [ABD,AGH-KH]). This means that the
solution of the Cauchy problem can be given explicitly.

However, there exists an alternative description for the dynamics of (2.3), which
has two main advantages. It makes the state description more similar to the physics
intuition of what a point interaction is, and, especially, it is a suitable starting point
for the generalization from linear problems to nonlinear problems, where no theory
of self-adjoint operators is available.

This description is based on the following ansatz for the solutions:

(2.4) ψtpxq “ pU0ptqψ0qpxq `
ı

2π

ż t

0

ds U0pt´ s, |x´ y|qqpsq

where U0ptq is the integral kernel of the 2d free Schrödinger propagator, i.e.,

U0pt; xq “
e´

|x|2

4ıt

2ıt
,

and qptq is a complex scalar function usually called charge. In this way, all the rele-
vant information on the interaction is stored in fact in qptq and hence the dynamics
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of the problem is completely determined by the equation satisfied by qptq, that is
the so-called the charge equation.

Remark 2.3. At an intuitive level, (2.4) is simply the Duhamel formulation of (2.3) if
one assumes that qptq represent the dynamics of the wave function at the interaction
point.

Before justifying the previous ansatz on ψt and deriving, at least formally, the
charge equation, we need to introduce a technical tool (see also [CCT,CFT,SKM]).
Recall that the Volterra functions (see, e.g., [EMO]) are defined as

νpt, αq :“

ż 8

0

ds
tα`s

Γpα` s` 1q

where Γptq :“

ż 8

0

dx xt´1e´x. In particular, we focus on the Volterra function

of order ´1, i.e., νpt,´1q “: Iptq. This function is finite (and analytic) for every
t ą 0, whereas

Iptq „ 1

t log2
`

1
t

˘

”

1`Op|log t|
´1
q

ı

, as t Ó 0,

so that I P L1
locpr0,8qq and I R Lplocpr0,8qq, for every p ą 1. In addition,

Iptq „ et `Opt´1q, as tÑ `8.

Furthermore, and above all, such a function is a Sonine kernel, namely there exists
another function J ptq such that

ż t

0

ds Ipt´ sqJ psq “ 1 @t ě 0.

Precisely, J ptq :“ ´γ ´ log t.

Now, we can explain why (2.4) solves (2.3), provided that ψt P DpHα,yq for
every t ě 0. For the sake of simplicity we assume here qp0q “ 0, since this is not
restrictive (the argument if qp0q ‰ 0 is analogous, up to further computations).
First we note that

ıBtψtpxq “ p´∆U0ptqψ0qpxq ´
qptq

2π
`

1

2π

ż t

0

dτ BτU0pt´ τ ; |x´ y|qqpτq

“ p´∆U0ptqψ0qpxq ´
1

2π

ż t

0

dτ U0pt´ τ ; |x´ y|q 9qpτq,

where we used the fact that iBtU0ptqψ0 “ ´∆U0ptqψ0. Hence, applying the Fourier
transform on R2, the above expression reads (setting k “ |k|)

(2.5) ıyBtψtpkq “ k2e´ık
2t
xψ0pkq ´

1

2π

ż t

0

dτ e´ık¨y e´ık
2
pt´τq 9qpτq.
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On the other hand, the Fourier transform of Hα,yψt turns out to be

k2
ˆ

pψtpkq ´
1

2π

qptqe´ık¨y

k2 ` λ

˙

´
λ

2π

qptqe´ık¨y

k2 ` λ

“ k2e´ık
2t
pψ0pkq `

1

2π

ż t

0

dτ e´ık¨y Bτ

´

e´ık
2
pt´τq

¯

qpτq ´
qptqe´ık¨y

2π

“ k2e´ık
2t
pψ0pkq ´

1

2π

ż t

0

dτ e´ık¨y e´ık
2
pt´τq 9qpτq,

which is equal to the r.h.s. of (2.5). Summing up, if ψt P DpHα,yq for every t ě 0,
then the ansatz (2.4) solves (2.3). In fact, some regularity for the charge q is also
required in order to make rigorous the previous computation. However, since in
view of (2.4), the regularity of ψt is due to qptq, this request is somehow hidden in
the assumption ψt P DpHα,yq.

At this point it is evident that the central question is the behavior of qptq, or in
other words, the detection of the proper evolution equation for qptq (which will turn
out to be a Volterra integral equation of the first kind). The argument below is just a
formal derivation of the charge equation (a more rigorous way that exploits Laplace
transform can be found in [A]), but is interesting since stresses the underlying link
between this equation and the boundary condition present in the operator domain.

In order to guarantee that ψt P DpHα,yq, a boundary condition must be satisfied,
i.e.,

φλ,tpyq “
1

2π

ż

R2

dk eık¨y pφλ,tpkq “
´

α` 1
2π log

?
λ
2 ´

γ
2π

¯

qptq.

Moreover, since φλ,t “ ψt ´ qptqG
λp¨ ´ yq,

1

2π

ż

R2

dk eık¨y
"

e´ık
2t
pψ0pkq `

ı

2π

ż t

0

dτ e´ık¨y e´ık
2
pt´τqqpτq ´

1

2π

qptqe´ık¨y

k2 ` λ

*

“

´

α` 1
2π log

?
λ
2 ´

γ
2π

¯

qptq.

Combining the last diverging term on the l.h.s. with the second one via an integra-
tion by parts, we get

1

2π

ż

R2

dk

"

eık¨y e´ık
2t
pψ0pkq ´

1

2πpk2 ` λq

ż t

0

dτ e´ık
2
pt´τq r 9qpτq ´ ıλqpτqs

*

“

´

α` 1
2π log

?
λ
2 ´

γ
2π

¯

qptq.

The integral in k of the second term on the l.h.s. contains an infrared singularity
for t “ τ which is proportional to logpt´τq: in fact by [GR, Eqs. 3.722.1 & 3.722.3]

ż

R2

dk
e´ık

2
pt´τq

k2 ` λ
“ ´πeıλpt´τq rcipλpt´ τqq ´ ı sipλpt´ τqqs

“ ´πeıλpt´τq pγ ` log λ` logpt´ τqq ` eıλpt´τqQpλ; t´ τq,

where sip ¨ q and cip ¨ q stand for the sine and cosine integral functions (see [AS, Eqs.
5.2.1 & 5.2.2] for the definition) and, by [AS, Eq. 5.2.16],

Qpλ; t´ τq :“ ´π

ˆ 8
ÿ

n“1

p´pt´ τq2λ2qn

2np2nq!
´ ı sippt´ τqλq

˙
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(note that Qp0; t´ τq “ ´ ıπ2

2 ). Hence, we obtain that

pU0ptqψ0q pyq ´
´

α` 1
2π log

?
λ
2 `

γ
2π

¯

qptq

“ ´
1

4π

ż t

0

dτ
`

γ ` logpt´ τq ` log λ´ 1
πQpλ; t´ τq

˘

Bτ

´

eıλpt´τqqpτq
¯

and taking the formal limit λ Ñ 0 (notice the exact cancellation of the diverging
log λ terms)

pU0ptqψ0qpyq ´
`

α´ 1
2π log 2` γ

2π ´
ı
8

˘

qptq

“ ´
1

4π

ż t

0

dτ pγ ` logpt´ τqq 9qpτq.

Finally, applying the convolution integral operator defined by I and using the
Sonine property, suitably rearranging terms, one has

(2.6) qptq `

ż t

0

dτ Ipt´ τqp4πα´ 2 log 2` 2γ ´ iπ
2 qqpτq “ fptq,

where

(2.7) fptq “ 4π

ż t

0

dτ Ipt´ τqpU0pτqψ0qpyq,

which is what is usually called charge equation.

It is clear that the previous computations are just formal. Moreover, the actual
strategy to prove that (2.4) solves (2.3) is the converse of what we made. Indeed,
the main steps should be the following:

(i) proving that (2.6) has a unique solution, at least on a small interval;
(ii) proving that it also displays such a regularity that ψt P DpHα,yq (and thus

(2.4) satisfies (2.3));
(iii) proving that the solution of (2.6) (and consequently the solution of (2.3))

is global in time.

However, one can immediately see that this strategy is not the most suitable in
the linear case, since classical theory of self-adjoint operators provides immediately
(i)–(iii). In addition, point (ii) is not easy to prove in a direct way since the integral
operator

pIgq ptq :“

ż t

0

dτ Ipt´ τqgpτq,

which is the main feature of the charge equation, has no regularizing properties in
Sobolev spaces (due to its highly singular behavior at the origin) and this prevents
to establish the suitable regularity on φλ,t. More in detail, even if g is a smooth
function, Ig may present a very rough behavior. For instance, setting g ” 1, one

can see that Igptq “
şt

0
dτ Ipτq “ νpt, 0q is not even in Hθ

locpR`q, if θ ą 1{2, while

it belongs to H
1{2
loc pR`q.

On the other hand, in the nonlinear case, when the classical theory is not avail-
able, the strategy hinted before is the unique path one can follow, provided that
one can manage point (ii) in spite of the singular behavior of the operator I.

Remark 2.4. The lack of regularizing properties of the integral operator I is the
main difference between the 2d case and the 1d and 3d ones. Indeed, in odd

dimension the resulting charge equation displays the 1{2-Abel kernel
Cβ
t1´β

, β P p0, 1q,
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as integral kernel (in place of I), which has sufficient smoothing properties (see
[AT,GV]) to overcome the regularity issues.

3. Nonlinear Point Interactions

As we mentioned before, the method based on the investigation of the Duhamel
formula and the charge equation, although not necessary in the linear case, is the
one that solely allows an easy generalization to the nonlinear problem.

Precisely, this extension is done by analogy, simply assuming that the strength
of the interaction α depend itself on the charge in a nonlinear way (of power type),
i.e.,

(3.1) α “ β0 |qptq|
2σ
, β0 P R, σ P R`.

Then, one has to follow the strategy suggested before, namely one has to prove that
the function ψt defined by (2.4) solves (2.3) at least in a weak sense, provided that
there is a unique and sufficiently regular solution of the charge equation. It is clear
that, in view of (3.1), (2.6) reads

(3.2)
qptq ` 4πβ0

ż t

0

dτ Ipt´ τq|qpτq|2σqpτq

´2
`

log 2´ γ ` ıπ
4

˘

ż t

0

dτ Ipt´ τqqpτq “ fptq,

where fptq is given again by (2.7).
This problem has been solved in [CCT] by the authors. However, since an

exhaustive presentation of the proof would require the management of several hard
and subtle technical issues, here we just give some hints on the strategy used to
overcome items (i)–(iii).

3.1. Sketch of the strategy. First, we want to point out that in [CCT] we dealt
with the weak solution of (2.3), namely with a function ψt P V that satisfies

(3.3)

$

&

%

ı
d

dt
xχ|ψty “ Fα,y

“

χ, ψt
‰

ˇ

ˇtα“β0|qptq|
2σu

,

ψt“0 “ ψ0,

for any χ “ χλ ` qχG
λp¨ ´ yq P V , where x¨|¨y is the inner product of L2pR2q and

Fα,y
“

χ, ψt
‰

ˇ

ˇtα“β0|qptq|
2σu

:“

ż

R2

dx t∇χ˚λ ¨∇φλ,t ` λχ˚λφλ,t ´ λχ˚ψtu

`

ˆ

β0|qptq|
2σ `

1

2π
log

?
λ

2
`

γ

2π

˙

q˚χqptq.

The search for a strong solution seems to be out of reach at the moment. We will
explain the reason below.

Remark 3.1. We stress that Fα,y
“

¨, ¨
‰

ˇ

ˇtα“β0|qptq|
2σu

is nothing but the nonlinear

analogous of the sesquilinear form associated to the quadratic form Fα,y defined
by (2.2) and hence is the natural choice for the definition of weak solution.

Point (i) is the simplest one since it exploits some well-known results on nonlinear
Volterra integral equations (see, e.g., [M,MS]). Thus, one almost immediately finds



8 R. CARLONE,M. CORREGGI, L. TENTARELLI

that (3.2) has a unique continuous solution qptq on a maximal existence interval
r0, T˚q, where T˚ is possibly infinite.

On the other hand, the central and more delicate point is (ii). In particular,
one can prove that, in order to have that ψt P V and satisfies (3.3) in the maximal
existence time, it is sufficient that the q P H1{2p0, T q for all T ă T˚. However, as
we suggested in the previous section, this is not an easy task due to the lack or
regularizing properties of the integral operator I, defined by the Volterra function
I. In addition, since as we showed before the action of the operator I can de-
stroy the regularity even of smooth functions, the strategy of the 1d and 3d cases,
where we recall that the integral kernel I is replaced by the 1{2-Abel one, namely
solving smoother problems with more regular initial data and then using a density
argument, is forbidden too.

Consequently, the unique available strategy, which is the one exploited in [CCT],
is that of

‚ developing a contraction argument on a possibly small interval r0, T s;
‚ repeating the same argument on consecutive intervals with suitable modi-

fications of (3.2);
‚ proving that the attachments preserve the regularity at the connection

points and allow to cover any closed and bounded interval strictly con-
tained in r0, T˚q.

Such a procedure works since the operator I displays the following contractive
property (see [CCT,CFT] for the proof):

(3.4) }Ig}H1{2p0,T q ď CT

´

}g}L8p0,T q ` }g}H1{2p0,T q

¯

,

where CT Ñ 0, as T Ñ 0.
Finally, the proof of point (iii) consists of detecting sufficient conditions in order

to claim that T˚ “ `8. The first step in this direction is the proof of the the
conservation of the mass, i.e., Mptq :“ }ψt}L2pR2q, and, especially, of the energy,
i.e.,

Eptq :“ }φ1,t}
2
H1pR2q `

ˆ

β0
σ ` 1

|qptq|2σ `
γ ´ log 2

2π

˙

|qptq|2.

Hence, a classical blow-up alternative analysis shows that in the so-called defocusing
case, i.e., β0 ą 0, the solution is global in time, whereas in the focusing case, i.e.,
β0 ă 0, T˚ may be both finite and infinite, depending on the initial datum ψ0.

3.2. Further remarks. The methods mentioned before to manage points (ii) and
(iii) have proved to be full of subtle and hard technical issues. An extensive discus-
sion of these goes beyond the aims of this proceeding and has been done in detail
in [CCT]. However there are points that deserve some comments.

First, we want to stress an immediate reason that makes the proof the strong
version of (3.3) out of reach at the moment. This is again connected to point (ii)
and, precisely, to the contracting properties of I. It is in fact possible to establish
an analogous of (3.4) also for H1-functions (actually for any ν P p1{2, 1s), which
is the regularity required to get ψt P DpHα,yq up to the proof of the boundary
condition. However, in this case it is necessary to assume that qp0q “ 0, which
is an unnatural assumption and, in addition, prevents the possibility of using the
attachments technique highlighted in the previous section. Thus, point (ii) cannot
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be proved for the H1 regularity and this prevents at the moment the possibility of
finding strong solutions of (3.3).

Furthermore, both the attachments technique and the proof of the energy con-
servation call for a further regularity of the charge. The former issue is due to the
failure of the Hardy inequality for H1{2-functions (see [CFNT2,KP]), that prevents
the attachment of two H1{2-functions on consecutive intervals to be in H1{2, in
general. The latter, on the contrary, is due to the integration of the derivative of
the charge, which is necessary in the computations, but which have no meaning as q
is not absolutely continuous, in general. However, if one proves that q is log-Hölder
continuous, namely, that its modulus of continuity is controlled by a logarithmic
function (in place of a fractional power function), then both the issues can be over-
come. Indeed, in this case the attachments can be proved to be licit and one can
develop a duality pairing argument in order to bypass the problem on integrating
9q.

Unfortunately, the proof of such a further regularity for the charge requires some
extra-assumptions on the initial datum ψ0. Precisely, its regular part φλ,0 has to
satisfy

p1` kqε pφλ,0 P L
1pR2q, for some ε ą 0,

which is a restriction with respect to the natural assumptions that only state ψ0 P V .
Finally, it is worth recalling that the contractive argument needed to manage

point (ii) requests a slightly restrictive assumption on the power of the nonlinearity.
Precisely, one must suppose that σ ě 1{2. This is due to the fact that otherwise
one cannot prove Lipschitz continuity of the map g ÞÑ |g|2σg between H1{2p0, T q X
L8p0, T q and itself, with a constant that do not blow up as T Ñ 0; namely, with a
constant that do not compensate the good contractive properties of I.
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