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L. Tentarelli*

ON THE EXTENSIONS OF THE DE GIORGI APPROACH
TO NONLINEAR HYPERBOLIC EQUATIONS

Abstract. In this talk we present an overview on the extensions of the De Giorgi approach
to general second order nonlinear hyperbolic equations. We start with an introduction to the
original conjecture by E. De Giorgi ([1, 2]) and to its solution by E. Serra and P. Tilli ([4]).
Then, we discuss a first extension of this idea (Serra&Tilli, [5]) aimed at investigating a wide
class of homogeneous equations. Finally, we announce a further extension to nonhomoge-
neous equations, obtained by the author in [9] in collaboration with P. Tilli.

1. De Giorgi’s conjecture.

In 1996, E. De Giorgi stated the following conjecture on weak solutions of the defo-
cusing NLW equation.

CONJECTURE 1 (De Giorgi, [1, 2]). Let w0,w1 C0 Rn , let k 1 be an inte-
ger; for every positive real number ε, let wε wε t,x be the minimizer of the functional

(1.1) Fε u :
0 Rn

e t ε u t,x 2 1
ε2 ∇u t,x 2 1

ε2 u t,x 2k dxdt

in the class of all u satisfying the initial conditions

(1.2) u 0,x w0 x , u 0,x w1 x .

Then, there exists lim
ε 0

wε t,x w t,x , satisfying the equation

(1.3) w ∆w kw2k 1.

REMARK 1. In the statement of the conjecture, we maintained the original for-
mulation of [1, 2] and we only changed notation, according to that we use in the sequel.
The same thing holds for all the results we mention in this paper. In addition, we recall
that u t,x denotes u

t t,x and that, for the sake of simplicity, we always omit the
dependence of the functional spaces on Rn, i.e. H1 H1 Rn , Lp Lp Rn and so on.

In order to better understand the meaning of the conjecture, it is worth stressing
some characteristic features of the functional Fε.

First we note that it involves second order time derivatives. Thus, a minimizer
of Fε solves a fourth order PDE. However, if one computes the formal Euler–Lagrange
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equation satisfied by a minimizer wε, then one obtains

ε2 e t ε wε e t ε ∆wε kw2k 1
ε

and thus, expanding and dropping e t ε,

(1.4) ε2 wε 2εwε wε ∆wε kw2k 1
ε .

Consequently, if one assumes that wε w in some suitable sense and lets ε 0, then
one formally obtains (1.3).

On the other hand, we also remark that, as Fε is defined through integrals over
the “space–time” 0, Rn, the initial conditions of the Cauchy problem are in fact
boundary conditions for the minimization problem.

In addition, it is convenient to stress the singular nature of the integration weight
e t ε. More precisely, one can see that ε 1 e t ε dt is an approximate Dirac delta mea-
sure and hence, at least formally,

εFε u
Rn

∇w0 x 2 w0 x 2k dx, as ε 0.

Hence, this prevents a straightforward application of classical techniques of variational
convergence, such as Γ–convergence. The previous asymptotic expansion, indeed,
shows that this technique does not provide useful information on the limit behavior
of the sequence of the minimizers.

Finally, one can note that Fε is convex (for fixed ε 0) and that therefore, up
to some suitable technical adaptation, the proof of the existence and uniqueness of the
minimizers is not a demanding issue.

We also recall that the existence of global solutions for the Cauchy problem
(1.3)&(1.2) is not new (see e.g. [7] and the references therein). Actually, as highlighted
in [3, 4], the originality of the strategy hinted by De Giorgi lies in how he intended to
exploit techniques from the Calculus of Variations. The variational approaches to the
wave equation w ∆w and its nonlinear variants that can one can find in the literature
(see e.g. [7, 8] and references therein) are based on the interpretation of w ∆w as
the Euler–Lagrange equation of the functional

I w :
0 Rn

w t,x 2 ∇w t,x 2 dxdt

(with possibly lower order terms like w 2k). However, since I is neither convex nor
bounded from below, one is forced to search for critical points rather than global mini-
mizers. Unfortunately, functionals like I behave badly also for the application of Criti-
cal Point Theory, so that only partial results can be proved. De Giorgi, on the contrary,
introduces a new functional Fε that is quite easy to minimize (regardless of the magni-
tude of k) and thus moves the problem to the investigation of the limit behavior of the
sequence of the minimizers.
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2. The proof of the conjecture.

In 2012, E. Serra and P. Tilli showed that Conjecture 1 is in fact true. Precisely, in [4],
they proved the following theorem.

THEOREM 1 (Serra&Tilli, [4]). For p 2 and ε 0, let wε t,x denote the
unique minimizer of the strictly convex functional

Fε u
0 Rn

e t ε u t,x 2 1
ε2 ∇u t,x 2 1

ε2 u t,x p dxdt

under the boundary conditions (1.2), where w0 and w1 are given functions such that

w0, w1 H1 Lp.

Then:

(a) Estimates. There exists a constant C (which depends only on w0, w1, p and n)
such that, for every ε 0,1 ,

T

0 Rn
∇wε t,x 2 wε t,x p dxdt CT, T ε,

Rn
wε t,x 2 dx C and

Rn
wε t,x 2 dx C 1 t2 , t 0,

and, for every function h H1 Lp

Rn
wε t,x h x dx C h Lp ∇h L2 , for a.e. t 0.

(b) Convergence. Every sequence wεi (with εi 0) admits a subsequence which is
convergent, in the strong topology of Lq 0,T A for every T 0 and every
bounded open set A Rn (with arbitrary q 2, p if p 2 and q p if p 2),
almost everywhere in R Rn and in the weak topology of H1 0,T Rn for
every T 0, to a function w such that

w L R ;Lp , ∇w L R ;L2 ,

w L R ;L2 , w L 0,T ;H1 T 0,

which solves in R Rn the nonlinear wave equation

(2.1) w ∆w p
2 w p 2 w

with initial conditions as in (1.2).
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(c) Energy inequality. Letting

E t :
Rn

w t,x 2 ∇w t,x 2 w t,x p dx,

the function w t,x satisfies the energy inequality

E t E 0
Rn

w1 x 2 ∇w0 x 2 w0 x p dx, for a.e. t 0.

REMARK 2. We stress the fact that, in (b), the limit function w solves (2.1) in a
distributional (or weak) sense, namely

0 Rn
w t,x ϕ t,x dxdt

0 Rn
∇w t,x ∇ϕ t,x dxdt

0 Rn

p
2 w t,x p 2 w t,x ϕ t,x dxdt

for every ϕ C0 R Rn . In the sequel we only deal with this type of solutions.

Some comments are in order. First, CONJECTURE 1 deals with the nonlinearity
w 2k with k integer, while THEOREM 1 treats w p without the assumption of p integer.

Another relevant feature of THEOREM 1, is that the assumptions on the initial data
w0, w1 are much weaker than those of the conjecture.

On the other hand, the convergence of the sequence of the minimizers is ob-
tained up to extracting subsequences, thus “losing” the uniqueness claimed in the con-
jecture. In particular, it is an open problem to avoid the extraction of subsequences
when p is large.

In addition, THEOREM 1 establishes an estimate for the mechanical energy E
usually associated with (2.1), which proves that the obtained solutions are of energy
class in the sense of Struwe (see [8]). When p is “sufficiently” small, the inequality is
in fact an equality, whereas, when p is large, energy conservation is still open.

For the sake of completeness, we mention that [6] discusses a simplified version
of the conjecture on bounded intervals. However, that paper only deals with the proof
of (2.1) and does not treat the fulfillment of the initial condition w 0,x w1 x .

3. Extension to homogeneous equations.

Now, one can easily see that, setting

W v
Rn

1
2

∇v 2 1
p

v p dx,

up to some multiplicative constants equation (2.1) reads

(3.1) w t,x ∇W w t, x ,
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where ∇W denotes the Gâteaux derivative of the functional W . Therefore, it is natural
to wonder if the sequence of the minimizers of the functional Fε, that here is defined by

(3.2) Fε u :
t

0
e t ε

Rn

ε2 u t,x
2

dx W u t, dt,

converges to a solution of the Cauchy problem associated with (3.1), even for different
choices of W .

REMARK 3. In (3.2) one uses a different scaling in ε, with respect to (1.1). This
is due to the fact that in the abstract framework this choice simplifies computations.
However, this does not yield significant differences.

This problem has been solved again by E. Serra and P. Tilli, in [5]. Before
showing the statements of the main results, it is necessary to point out under which
assumptions on the functional W (that we refer to as assumption (H) in the following),
they are valid.

(H) The functional W : L2 0, is lower semi–continuous in the weak topology
of L2, i.e

W v liminf
k

W vk , whenever vk v in L2.

Moreover, we assume that the set of functions

W v L2 : W v

is a Banach space such that

C0 W L2 (dense embeddings).

Finally, W is Gâteaux differentiable on W and its derivative ∇W : W W
satisfies

∇W v W C 1 W v θ , v W,

for suitable constants C 0 and θ 0,1 .

REMARK 4. Assumption (H) is typically satisfied by standard functionals like

W v
1
p Rn

∇kv p dx, p 1,

(with possibly lower order terms) where W is the space of the L2 functions v with
∇kv Lp.

THEOREM 2 (Serra&Tilli, [5]). Given w0, w1 W and ε 0,1 , under assump-
tion (H) the functional Fε defined in (3.2) has a minimizer wε in the space H2

loc 0, ;L2

subject to (1.2). Moreover:
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(a) Estimates. There exists a constant C, independent of ε, such that

τ T

τ
W wε t, dt CT, τ 0, T ε,

Rn
wε t,x 2 dx C and

Rn
wε t,x 2 dx C 1 t2 , t 0,

wε L R ;W C.

(b) Convergence. Every sequence wεi (with εi 0) admits a subsequence which is
convergent, in the weak topology of H1 0,T ;L2 for every T 0, to a function
w such that

w H1
loc 0, ;L2 , w L R ;L2 , w L R ;W .

Moreover, w satisfies the initial conditions (1.2).

(c) Energy inequality. Letting

(3.3) E t :
1
2 Rn

w t,x 2 dx W w t, ,

the function w t,x satisfies the energy inequality

E t E 0
1
2 Rn

w1 x 2 dx W w0 for a.e. t 0.

Unfortunately, under these assumptions, it is not known whether w satisfies
(3.1). Anyway, Serra&Tilli, still in [5], provided a sufficient condition on W that
allows to obtain (3.1).

THEOREM 3 (Serra&Tilli, [5]). Assume that, for some real number m 0,

(3.4) W v
1
2

v 2
Hm

0 k m

λk

pk Rn
∇kv x pk dx λk 0, pk 1 .

Then, assumption (H) is fulfilled if W is the space of those v Hm with ∇kv Lpk

0 k m endowed with its natural norm.
Moreover, the limit function w obtained via Theorem 2 solves, in the sense of

distributions, the hyperbolic equation (3.1).

REMARK 5. We recall that, as usual, v Hm is the L2 norm of ξ m v ξ , where
v is the Fourier transform of v. The typical case is when m is an integer, so that v Hm

reduces to ∇mv L2 .
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3.1. Examples.

In addition to (2.1) there are many other second order hyperbolic equations that can be
investigated using the approach suggested by THEOREM 2&THEOREM 3. We briefly
recall here some of the most significant ones (for a complete discussion we refer the
reader to [5]):

1. Nonlinear vibrating–beam equation:

w ∆2w ∆pw w q 2 w p, q 1 .

Here W is defined by

W v
Rn

1
2

∆v 2 1
p

∇v p 1
q

v q dx

and W v H2 : ∇v Lp,v Lq .

2. Wave equation with fractional Laplacian:

w ∆ s 0 s 1 .

Here W is defined by

W v cn,s
Rn Rn

v x v y 2

x y n 2s dxdy

(which is, for a proper choice of cn,s, the natural energy associated to the frac-
tional Laplacian) and W Hs.

3. Sine–Gordon equation:
w ∆w sinw.

Here W is defined by

W v
Rn

1
2

∇v 2 1 cosv dx

and W H1.

4. Wave equation with p–Laplacian :

w ∆pw.

Here W is defined by

W v
1
p Rn

∇v p dx

and W v L2 : ∇v Lp .

Note that in the cases of the Sine–Gordon and the p–Laplacian equation, the
functional W satisfies assumption (H), but not assumption (3.4). Consequently, one
could not apply THEOREM 3 to this cases. In the Sine–Gordon case, however, since the
functional is quadratic in the higher order space derivatives, one can prove an analogous
of THEOREM 3. On the contrary, it is an open problem whether this can be done also
for the case of the p–Laplacian.
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4. Extension to nonhomogeneous equations.

The natural further extension is the addition of a general forcing term at the right–hand
side of (3.1), that is, the study of the Cauchy problem associated with the nonhomoge-
neous equation

(4.1) w t,x ∇W w t, x f t,x .

The proper choice for the functional Fε in this case is given by

(4.2) Fε u
t

0
e t ε

Rn

ε2 u t,x
2

dx W u t,
Rn

fε t,x u t,x dx dt,

where fε is a sequence suitably converging to f .
This issue has been the topic of the doctoral dissertation of the author and is

extensively investigated in [9]. Here we just announce the result.

THEOREM 4 (Tentarelli&Tilli, [9]). Let W be a functional satisfying assump-
tion (H) and w0, w1 W. Let also f L2

loc 0, ,L2 . Then, there exists a sequence
fε , converging to f in L2 0,T ;L2 for all T 0, such that:

(a) Minimizers. For every ε 0,1 , the functional Fε defined by (4.2) has a mini-
mizers wε in the class of functions in H2

loc 0, ;L2 that are subject to (1.2).

(b) Estimates. There exist two positive constants Ct , Cτ,T , depending on t, τ and T
(in a continuous way), but independent of ε, such that

Rn
wε t,x 2 dx Ct ,

Rn
wε t,x 2 dx Ct , t 0,

τ T

τ
W wε t, dt Cτ,T , τ 0, T ε,

t

0
wε s 2

W ds Ct , t 0.

(c) Convergence. Every sequence wεi (with εi 0) admits a subsequence which is
convergent in the weak topology of H1 0,T ;L2 , for every T 0, to a function
w that satisfies (1.2) (where the latter is meant as an equality in W ). In addition,

w Lloc 0, ;L2 and w L2
loc 0, ;W .

(d) Energy inequality. Letting E be again the mechanical energy defined by (3.3),
there results

(4.3) E t E 0
t
2

t

0 Rn
f s,x 2 dxds

2

, for a.e. t 0.

(e) Solution of (4.1). Assuming, furthermore, that for some real numbers m
0, λk 0 and pk 1, W satisfies (3.4), then the limit function w solves (4.1).
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Some comments are in order. First, we point out that the estimate on the me-
chanical energy established by (4.3) is the same that one can find applying a formal
Grönwall–type argument to (4.1). In addition, setting f 0, the results of THEOREM
4 recover exactly those of THEOREM 2&THEOREM 3, thus showing that our extension
to nonhomogeneous equations is consistent.

On the other hand, the Euler–Lagrange equation satisfied by the minimizers of
Fε (which is analogous to (1.4)) suggests to work directly with f in place of fε in (4.2).
However, this gives rise to several issues in establishing the requested a priori estimates
on Fε wε . On the contrary, a proper choice of fε allows one to adapt the De Giorgi
approach under the sole assumption f L2

loc 0, ;L2 , which is the usual one in the
search of solutions of finite energy for (4.1). In particular, the detection of a proper
(topology and) “speed of convergence” for fε to f is one of the main issues in the
extension to nonhomogeneous problems.

Finally, it is worth to outline briefly the main difference between the homo-
geneous and the nonhomogeneous case: the estimates on the sequence wε are no
longer global in time. This occurs since the presence of f drops all the uniform bounds
deduced in [5] and allows to establish estimates that are either independent of ε or
independent of t. In particular, the presence of the forcing term entails that the quantity

Eε t :
1
2 Rn

wε t,x 2 dx
t

ε 2 e s t ε s t W wε s, ds

is not decreasing (as in the homogeneous case) and not even uniformly bounded with
respect to both ε and t. This function, that we call approximate energy, is a formal
approximation of the mechanical energy E and the investigation of its behavior is the
main point of our approach, since it provides the a priori estimates on the minimizers
wε. Consequently, the fact that it admits only estimates on bounded intervals is the
reason for which the inequalities in (b) are no longer global.

This transition “from global to local” of the a priori estimates affects the regular-
ity of the limit function w, but fortunately does not rule out the possibility of extending
the De Giorgi approach. Actually, the proofs of the energy inequality, the initial condi-
tions and (4.1) do not require any global estimate on the sequence of minimizers (even
in the homogeneous case).

Moreover, we point out that the choice of the sequence fε is crucial also for es-
tablishing the proper estimate on Eε t ; in particular, for establishing causal estimates
for a quantity which is a–causal by definition.

5. A further extension: dissipative equations.

Finally, it worth recalling that [5] also shows that an approach à la De Giorgi is avail-
able also for dissipative homogeneous wave equations of the type

w t,x ∇W w t, x ∇G w t, x ,
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where G is a quadratic form defined on a suitable Hilbert space. A typical example is
given by the Telegraph equation

w ∆w w p 2 w w p 1

(just setting W v Rn
1
2 ∇v 1

p v p dx and G v 1
2 Rn v 2 dx).

As in the non–dissipative case, also here it is natural to wonder if an extension
to the nonhomogeneous case, namely

w t,x ∇W w t, x ∇G w t, x f t,x ,

is possible. The answer is again positive and this issue will be treated in a forthcoming
paper by the author, as well.
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