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Load Imbalance and Caching Performance
of Sharded Systems

Lorenzo Saino, Member, IEEE, Ioannis Psaras, Member, IEEE, Emilio Leonardi, Senior Member, IEEE
and George Pavlou, Fellow, IEEE

Abstract—Sharding is a method for allocating data items to
nodes of a distributed caching or storage system based on the
result of a hash function computed on the item’s identifier. It
is ubiquitously used in key-value stores, CDNs and many other
applications. Despite considerable work that has focused on the
design and implementation of such systems, there is limited under-
standing of their performance in realistic operational conditions
from a theoretical standpoint. In this paper we fill this gap
by providing a thorough modeling of sharded caching systems,
focusing particularly on load balancing and caching performance
aspects. Our analysis provides important insights that can be
applied to optimize the design and configuration of sharded
caching systems.

Index Terms—Sharding, load balancing, caching.

I. INTRODUCTION

SHARDING1 is a widely used technique to horizontally
scale storage and caching systems and to address both

processing and storage capacity bottlenecks. According to this
technique, a large set of data items is partitioned into a set of
segments, named shards, based on the result of a hash function
computed on the identifier of the item. Each shard is then
mapped onto a physical storage or caching node. This technique
practically enables partitioning data across members of a cluster
and can directly identify the member of the cluster responsible
for a given item by simply computing a hash function. Normally,
sharding is used in conjunction with consistent hashing [3] to
minimize the remapping of items as a result of cluster members
joining or leaving the system.

Sharding is widely used in a variety of applications. It is
for example ubiquitously implemented in database systems,2

Web caches in enterprise networks [2], [4], CDNs [3], [5] and
key-value stores [6]. It is also used to partition large forwarding
tables across network cards of a router [7] or across different
routers of a network [8]. More recently, sharding has been
applied to single-node key-value stores to partition items across
memory regions and CPU cores [9], [10].

However, despite considerable work on the design and
implementation of sharded systems, there is little theoretical
understanding of sharding properties under realistic conditions.

Lorenzo Saino is with Fastly, Inc., San Franscisco, CA, USA. Ioannis
Psaras and George Pavlou are with the Department of Electronic and Electrical
Engineering, University College London, UK. Emilio Leonardi is with the
Department of Electronic and Telecommunications, Politecnico di Torino, Italy.

1The term sharding is sometimes referred to, in literature, as hash
partitioning [1] or hash routing [2]. Throughout this paper, we use these
terms interchangeably.

2To the best of our knowledge all major database implementations, both
relational and NoSQL, currently support sharding.

In this paper, we shed light on the performance of such systems
by widely extending previous work of ours on this subject
[11]. Our contribution focuses on two main aspects of sharded
systems: load balancing and caching performance.

We quantify the effect of common design parameters and
operational conditions on load imbalance. We show that
skewness in the distribution of item request frequency and
size can considerably increase load imbalance. On the other
hand, common techniques such as partitioning data items into
chunks, replicating items across multiple shards and deploying
frontend caches are all very effective solutions to mitigate it.

With respect to caching performance, we analyze the
behavior of a system of shards, when each of them performs
caching decisions independently. We also examine how a layer
of frontend caches impacts the overall caching performance.
Our main finding is that, under realistic operational conditions,
a system of sharded caches yields approximately the same
cache hit ratio of a single cache which is as large as the
cumulative size of all shards of the system.

This result has important practical implications. In fact, it
shows that a very large cache can be partitioned in smaller
sharded caches and scaled horizontally without performance
degradation. In addition, it makes possible to model a sharded
caching system as a single cache, hence making its analysis
considerably more tractable. We use the latter to analyze the
interactions between a sharded caching system and a layer of
frontend caches.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the system model adopted throughout this
paper. In Sec. III, we investigate factors causing load imbalance
in sharded systems and techniques to mitigate it. In Sec. IV, we
analyze how sharding impacts cache hit performance. Based on
these results, in Sec. V we investigate the load balancing and
caching performance of a sharded system when preceded by a
layer of frontend caches. Finally, we summarize our findings
and draw our conclusions in Sec. VI.

II. SYSTEM MODEL

We start by introducing the system model adopted throughout
this paper and explain assumptions and notation, which we
also report in Tab. I.

Consistently with previous work, we assume that the system
is subject to a demand conforming to the Independent Reference
Model (IRM) [12], which implies that i) requests are issued
for items 1, . . . , N belonging to a fixed catalog of size N ,
ii) the probability that a given request is for item i, is
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TABLE I: Summary of notation

Symbol Notation
N Number of items
K Number of shards
K′ Number of frontend caches
C Cache size
L Fraction of requests served by a shard
Xi Variable valued 1 if item i assigned to shard, 0 otherwise
pi Probability of item i being requested
hi Cache hit ratio of item i

α Zipf exponent of item request frequency distribution
H

(α)
N Generalized Nth order harmonic number

T, TF , TB Characteristic time of a generic cache, frontend, backend

stationary and independent of previous requests. We denote
with {p1, p2, . . . , pN} the vector of such probabilities.

Equivalently, one can assume that i) the request process of
item i is a stationary Poisson process with intensity λi = piΛ
and ii) request processes of different items are independent.

The system comprises K shards, with K < N , each
equipped with the same amount of caching space of C <
bN/Kc items. We assume that items are mapped uniformly to
shards according to a hash function fH : [1 . . . N ]→ [1 . . .K].
Therefore, we can model the assignment of an item i to a shard
using a Bernoulli random variable Xi such that

fXi(x) =

{
1
K , x = 1

1− 1
K , x = 0

.

Note that our assumptions correspond to the adoption of
the so called “random hash function” model, which has been
widely adopted in literature [3], [13], [14] to analyze the effects
of hash functions on load balancing in distributed systems, due
to its analytical tractability.

Most of our analysis does not make any assumption about
the distribution of item popularity. However, when specifically
studying the impact of item popularity distribution, we assume
it follows a Zipf distribution, which is known to model very
well item popularity distributions in the applications of our
interest, such as Web content distribution [15] and key-value
stores [6], [16]. According to this distribution, the probability
of an item being requested is

pi =
i−α∑N
i=1 i

−α
=

i−α

H
(α)
N

, (1)

where H(α)
N =

∑N
i=1 i

−α corresponds to the generalized N th

order harmonic number and α > 0 is a parameter affecting the
skewness of the distribution. The greater the value of α, the
greater the skewness of item popularity and in the limit case
of α → 0 the distribution is uniform. The value of α which
best models operational workloads varies, but a number of
measurement studies [15], [17], [18], [19] covering a variety
of operational systems report values between 0.6 and 1.2.

III. LOAD BALANCING

After describing the notation and assumptions used in
our analysis, we now investigate how well the randomized
assignment of items spreads load across shards. The results of
this analysis apply to both caching and storage systems.

This problem is an instance of a heavily loaded single-choice
weighted balls-in-bins game. A single-choice balls-in-bins game
consists in placing each of N balls into one of K bins chosen
independently and uniformly at random (i.u.r.). In the weighted
case, each ball has a different weight, which in our case is the
probability of an item being requested. In the heavily loaded
case, which is the case of our interest, the number of balls is
considerably larger than the number of bins, i.e., N � K.

The study of balls-in-bins games has received considerable
attention in the past. Unfortunately, there is very little work
investigating weighted balls-in-bins games, and, to the best
of our knowledge, there is no previous work satisfactorily
addressing the heavily loaded case. There is instead a greater
amount of work addressing the unweighted case. Raab and
Steger [20] showed that if N ≥ K log(K), the most loaded bin
receives N/K + Θ(

√
N log(K)/K) balls with a probability

not smaller than 1 −N−θ for an arbitrarily chosen constant
θ ≥ 1. This is the tightest bound currently known.

Limiting our analysis to the assumption of uniform popularity
distribution would not allow us to understand the load balancing
dynamics of sharded systems under realistic conditions. In fact,
it is well known that distributed caching and storage systems are
normally subject to highly skewed item popularity distributions
[6], [15], [16]. As we show below, skewness in item popularity
distribution strongly impacts load imbalance.

In addition to considering realistic item popularity distri-
butions in our model, we also make novel contributions by
shedding light on the impact of heterogeneous item size, item
chunking and multiple item replication.

In line with previous work [4], we quantify load imbalance
by using the coefficient of variation of load processed by a
shard cv(L),3 where L is a random variable corresponding to
the fraction of requests processed by a single shard. Other work
(e.g., [3], [6]), instead, quantifies load imbalance as the ratio
between the load of the most loaded shard and the average
load of a shard E[L]. The latter metric is normally adopted in
experimental work [6], where it can be easily measured, or in
theoretical work assuming uniform item popularity distribution
[3], where it can be tightly bounded using standard Chernoff
arguments. Unfortunately, in theoretical work assuming non-
uniform item popularity distribution like ours, Chernoff bounds
cannot be easily applied. As a consequence, it is not possible
to derive tight bounds on the load of the most loaded shard.
For this reason, in line with previous work of this kind [4],
we adopt the coefficient of variation as the metric to quantify
imbalance.

A. Base analysis
We start by analyzing first how well the randomized

assignment of items to shards spreads load, without making
any assumption on item popularity distribution.

Adopting the notation introduced above, we can express the
fraction of requests that each shard receives as

L =

N∑
i=1

Xi pi . (2)

3The coefficient of variation of a random variable is the ratio between its
standard deviation and its mean value: cv(L) =

√
Var(L)/E[L].
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Since X1, . . . , XN are i.i.d. random variables, the expected
value and variance of L can be calculated as

E[L] = E

[
N∑
i=1

Xi pi

]
=

N∑
i=1

E[Xi] pi =
1

K
,

Var(L) = Var

(
N∑
i=1

Xi pi

)
=

N∑
i=1

Var(Xi) p
2
i

=
K − 1

K2

N∑
i=1

p2i .

We can now derive the coefficient of variation cv(L) as

cv(L) =

√
Var(L)

E[L]
=
√
K − 1

√√√√ N∑
i=1

p2i . (3)

We can immediately observe from Eq. 3 that the load
imbalance increases proportionally to the square root of the
number of shards K and to the skewness of item popular-
ity (quantified by

∑N
i=1 p

2
i ). Regarding the impact of item

popularity skewness on load imbalance, the minimum value
of cv(L) occurs when all items are equally probable, i.e.,
pi = 1/N ∀i ∈ [1 . . . N ], while the maximum is when one
item is requested with probability 1 and all other items with
probability 0. We formalize these considerations and derive the
following bounds on cv(L), which apply uniformly to every
distribution of the demand.

Theorem 1. Let L be the fraction of requests a shard receives
in a system of K shards subject to an arbitrary IRM demand
over a catalog of N items. Then√

K − 1

N
≤ cv(L) ≤

√
K − 1 . (4)

Proof. The theorem can be proved immediately by jointly
applying Hölder’s inequality and Minkowski’s inequality to
bound

∑N
i=1 p

2
i :

1

N

(
N∑
i=1

pi

)2

≤
N∑
i=1

p2i ≤

(
N∑
i=1

pi

)2

.

Substituting
∑N
i=1 pi = 1 (which holds since pi is the

probability of an item i ∈ [1 . . . N ] being requested), we can
rewrite the inequality as

1

N
≤

N∑
i=1

p2i ≤ 1 . (5)

Substituting Eq. 3 into Eq. 5 and rearranging, we obtain Eq. 4.

The above bounds, derived without making any assumption
on item popularity, are however of little practical interest since
they can span few orders of magnitude in realistic conditions
(i.e., N ≥ 106). In the following section, we derive more
useful results by making assumptions on the distribution of
item popularity.

B. Impact of item popularity distribution

In this section, we provide a closed-form approximation
for cv(L) under a Zipf-distributed demand that will help
us understand the impact of each system variable on load
imbalance.

Theorem 2. Let L be the fraction of requests a shard receives
in a system of K shards subject to an IRM demand over a
catalog of N items and item request probability distributed
according to a Zipf distribution with parameter α. Then

cv(L) ≈



√
K − 1

√
(N + 1)1−2α − 1 · (1− α)√
1− 2α · [(N + 1)1−α − 1]

α 6=
{

1
2 , 1
}

√
(K − 1) log(N + 1)

2(
√
N + 1− 1)

α = 1
2√

N(K − 1)

(N + 1) log2(N + 1)
α = 1

.

(6)

Proof. We start by deriving an approximated closed-form
expression of H(α)

N . We do so by approximating H(α)
N with its

integral expression evaluated over the interval [1, N + 1]:

N∑
i=1

1

iα
= H

(α)
N ≈

∫ N+1

1

dx

xα
=

{
(N+1)1−α−1

1−α , α 6= 1

log(N + 1), α = 1
.

(7)
We then use Eq. 7 to approximate

∑N
i=1 p

2
i for the three cases

α /∈
{

1
2 , 1
}

, α = 1
2 and α = 1:

N∑
i=1

p2i

∣∣∣∣
α/∈{ 1

2 ,1}
=

N∑
i=1

(
i−α∑N
j=1 j

−α

)2

=
H

(2α)
N(

H
(α)
N

)2
≈
[
(N + 1)1−2α − 1

]
(1− α)2

[(N + 1)1−α − 1]
2

(1− 2α)
, (8)

N∑
i=1

p2i

∣∣∣∣
α= 1

2

=

N∑
i=1

(
i−

1
2∑N

j=1 j
− 1

2

)2

=
H

(1)
N(

H
( 1

2 )
N

)2

≈ log(N + 1)

4
(√
N + 1− 1

)2 , (9)

N∑
i=1

p2i

∣∣∣∣
α=1

=

N∑
i=1

(
i−1∑N
j=1 j

−1

)2

=
H

(2)
N(

H
(1)
N

)2
≈ N

(N + 1) log2(N + 1)
. (10)

It should be noted that Eq. 9 and Eq. 10 could also be
obtained by deriving the limits of Eq. 8 for α→ 1

2 and α→ 1
respectively by applying L’Hôpital’s rule.

Finally, applying the approximations of Eq. 8, Eq. 9 and Eq.
10 to Eq. 3, we obtain Eq. 6.

This result has important practical implications. The closed-
form approximation makes it easier to reason about the impact
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of each variable on load imbalance. Therefore it can be applied
to optimize the design and configuration of sharded systems.
Additionally, we use this approximation in Sec. V-A to quantify
the impact of frontend caches on load imbalance and extensively
evaluate its accuracy.

To understand the impact of number of shards and item
popularity distribution on load imbalance better we show in
Fig. 1 the value of cv(L) calculated using Eq. 6 for various
values of α and K.

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
α

0.0

0.5

1.0

1.5

2.0

2.5

c v
(L

)

K=16
K=32
K=64
K=128

Fig. 1: cv(L) vs. α and K for N = 106

Analyzing Eq. 6 and Fig. 1, we can observe that the load
imbalance is pretty close to 0 for low values of α and increases
monotonically as α and K increase. In particular, it should be
noted that item popularity skewness considerably affects load
imbalance. This effect had been already widely experienced in
operational systems [6], [21], [22]. However, the sensitivity of
load imbalance with respected item distribution skewness was
never investigated analytically. Our analysis also demonstrates
that unweighted balls-in-bins analyses investigating purely
the number of items assigned to each shard cannot capture
accurately load imbalance dynamics under realistic conditions.

C. Impact of heterogeneous item size

If all items have the same size, the fraction of requests
processed by a shard corresponds to the fraction of overall
traffic it serves. However, if items have heterogeneous sizes,
load imbalance in terms of number of requests and amount
of traffic served do not coincide anymore. In this section we
evaluate the load imbalance in terms of fraction of traffic served
assuming that items have heterogeneous size. Since previous
work did not identify any significant correlation between item
size and request frequency in the applications of our interest
[15], [16], we assume in our analysis that item size and access
frequency are independent.

Theorem 3. Let L(µ,σ) be the throughput served by a shard of
a system of K shards subject to an IRM demand p1, p2, . . . , pN ,
where the size of each item is a variable with mean µ and
variance σ2. Then

cv
(
L(µ,σ)

)
=
√
K

√(
1− 1

K

)
+
σ2

µ2

√√√√ N∑
i=1

p2i . (11)

Proof. Since we assume that item size and request frequency
are independent, we can define L(µ,σ) as

L(µ,σ) = λ

N∑
i=1

Xi Si pi ,

where Si is an arbitrary random variable with mean µ and
variance σ2, representing the size of item i and λ is the overall
rate of requests served by the system.

Since we assumed that Xi and Si are independent we have

E[Xi · Si] = E[Xi] ·E[Si] =
µ

K
,

Var(Xi · Si) = E[X2
i · S2

i ]−E[Xi · Si]2

=
1

K

[(
1− 1

K

)
µ2 + σ2

]
.

Since X1S1, . . . , XNSN are i.i.d., expected value and
variance of L(µ,σ) can be calculated as

E[L(µ,σ)] = E

[
λ

N∑
i=1

XiSipi

]
= λ

N∑
i=1

E[XiSi] pi =
λµ

K
,

Var(L(µ,σ)) = Var

(
λ

N∑
i=1

XiSipi

)
= λ2

N∑
i=1

Var(XiSi) p
2
i

=
λ2

K

[(
1− 1

K

)
µ2 + σ2

] N∑
i=1

p2i .

Deriving cv(L(µ,σ)) =
√

Var(L(µ,σ))/E[L(µ,σ)] we obtain
Eq. 11.

We can observe from Eq. 11 that load imbalance still
increases with

√
K as in the homogeneous item size case. In

addition and more importantly, load imbalance also increases
with the coefficient of variation of item size cv(S) = σ/µ. We
can highlight this relation by rewriting Eq. 11 as

cv(L) = Θ

(√
K

(
1 +

σ

µ

))
= Θ

(√
K (1 + cv(S))

)
.

(12)
From Eq.12 we can see the potentially dramatic impact of

item size variance on the system performance: observe that
cv(L)→ +∞ when σ → +∞. Such performance degradation
can be greatly reduced by adopting chunking strategies as
discussed in the next section.

D. Impact of chunking

The analysis carried out above shows the emergence of load
imbalance as α and K increase. One way to mitigate this is
to split items into chunks and map each chunk to a shard
independently. Splitting large items into independent chunks
and handling each chunk independently is a common practice
in many systems. In this section we quantify the benefits of
chunking on load balancing.

Theorem 4. Let LM be the load of a shard in a system where
each item is split into M chunks and each chunk is mapped to
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a shard independently. Chunking reduces the load imbalance
by
√
M , i.e.,

cv (LM ) =
cv(L)√
M

. (13)

Proof. We can reasonably assume that chunks of the same
item are requested with the same probability and let Xi,j be a
Bernoulli random variable taking value 1 if chunk j of item i
is mapped to the shard under analysis and 0 otherwise. The
load at each shard can then be modeled as

LM =

N∑
i=1

M∑
j=i

Xi,j
pi
M

=
1

M

N∑
i=1

Yi pi ,

where Yi =
∑M
j=1Xi,j ∼ B(M, 1

K ) is a binomial random
variable.

Since Y1, . . . , YN are i.i.d., cv(LM ) can be calculated as

cv (LM ) =

√
Var(LM )

E[LM ]
=

√
1
M2

∑N
i=1 Var(Yi) p2i

1
M

∑N
i=1E[Yi] pi

=

√
(K − 1)

∑N
i=1 p

2
i√

M
. (14)

Substituting Eq. 3 into Eq. 14, we obtain Eq 13.

Theorem 4 shows that chunking is a very practical and
effective solution to reduce load imbalance.

E. Impact of multiple item replication
So far we assumed that each item is stored or cached in a

single location, or more precisely, that each shard is mapped
to only one physical device. This is the common case in
caching systems, where, since there is no need to guarantee
the availability of all items in case of failures, it is preferable
to cache each item at most once to maximize the number of
distinct items that can be cached by the system. However,
in storage systems, the availability of each item must be
guaranteed in spite of failures. The common approach in this
case [23] is to replicate each item R times, with R ≤ K and
store it in the node resolved by the hash function and also in
the R− 1 neighboring nodes. When a request for an item is
received, it is randomly redirected to one of these R nodes.

This approach makes it possible to trade storage efficiency
with fault tolerance by setting an appropriate replication factor
R. In the following, we investigate how the choice of R impacts
load imbalance. Intuitively, one could argue that replicating
items multiple time reduces load imbalance since it spreads the
load of highly loaded shards over multiple hosts. Our analysis
shows that this is in fact the case. We present our findings in
the following theorem and then discuss their implications.

Theorem 5. The load imbalance cv(LR) of a system of K
shards where each item is replicated R ≤ K times is equal
to the load imbalance of a system of K/R shards where each
item is replicated once:

cv(LR) =

√
K

R
− 1

√√√√ N∑
i=1

p2i . (15)

Proof. We start by observing that, as a result of an item being
randomly replicated R times across a system of K shards, then
(i) each target is assigned an item with probability R/K and
(ii) if an item has global request probability pi, a request for
that item will hit one of the R replicas with probability pi/R.

We can now apply these observations to Eq. 2 and derive

LR =

N∑
i=1

pi
R
Zi , (16)

where Zi ∼ Bernoulli(R/K).
We can now derive cv(LR) as follows:

cv (LR) =

√
Var(LR)

E[LR]
=

√∑N
i=1

pi
RVar(Zi)∑N

i=1
pi
RE[Zi]

=

√
K

R
− 1

√√√√ N∑
i=1

p2i . (17)

Finally, comparing Eq. 17 with Eq. 3 we can observe that
the load imbalance in a system of K shards with each item
replicated R times corresponds to the load imbalance of a
system of K/R shards where each item is replicated once.

Theorem 5 shows that replicating items multiple times across
different nodes substantially reduces load imbalance, roughly by
a factor

√
R. This result has important implications of practical

interest. For example, in sharded systems characterized by high
request frequency workloads, but moderately sized datasets,
replication can be used to trade greater storage requirements
with more homogenous load distribution, i.e., more stable and
predictable CPU utilization.

From Eq. 15, it is interesting, albeit expected, to observe
the following: for R = 1, cv(LR) = cv(L), since items are
replicated only once, as in the standard sharding case. At the
other extreme, i.e., when R = K, then cv(LR) = 0, which is
also expected. In fact, in the latter case, each shard is assigned
all the items and the sharded system becomes an array of
identical storage/caching devices where requests for any item
are forwarded to a randomly chosen destination.

IV. CACHE HIT RATIO

We now investigate the performance of a sharded system
in terms of cache hit ratio, assuming that each shard is not a
permanent store but evicts items according to a replacement
policy independently from other shards. In particular, our
objective is to compare the performance of a system of caching
shards with that of a single cache with capacity equal to the
cumulative capacity of all the shards of the system. We assume
that each shard has equal size C, with C < bN/Kc items and
all shards operate according to the same replacement policy.

Our analysis applies the characteristic time approximation.
The characteristic time T of a cache subject to an IRM demand
corresponds to the time spent by an item in an LRU cache
from its last request (which moves the item to the top of the
cache) to its eviction. This value is a random variable specific
to each item, which is hard to characterize exactly. However,
approximating it with a single constant value for all items
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still yields remarkably accurate results and widely simplifies
performance analysis because it decouples the dynamics of a
specific item from all other items.

This approximation was first proposed by Fagin [24], who
additionally proved that it is asymptotically exact as cache size
C and population size N tend to infinite while C/N remains
constant. Che et al. [25] later independently rediscovered it,
although with a slightly different formulation. However, they
only provided intuitive arguments for its accuracy. Subsequently,
Fricker et al. [26] provided a further a posteriori theoretical
justification for its accuracy, which also covered configurations
where the arguments of Che et al. did not apply. They showed
that, for an LRU cache subject to a Zipf popularity distribution,
the coefficient of variation of the random variable representing
the characteristic time tends to vanish as the cache size grows.
At the same time, the dependence of the characteristic time
on the specific item becomes negligible as the catalog size
grows. In addition, they also extended this approximation to
the case of random and FIFO caches. Finally, Martina et al.
[27] more recently generalized it to support a wider variety of
replacement policies and network topologies.

Because of the IRM demand assumption, the probability
that an item is in the cache pin is equal by definition to its
hit probability phit, as a consequence of the PASTA (Poisson
Arrivals see Time averages) property of a Poisson process [28].
Applying the characteristic time approximation, it is possible
to determine the hit ratio of each item i simply by knowing the
request probability of that item pi and the characteristic time
of the cache T . In the specific case of the LRU replacement
policy this corresponds to

phit(pi, T ) = pin(pi, T ) = 1− e−piT . (18)

The generalization of Martina et al. [27] shows that this
method can be applied to a larger variety of cache replacement
policies, including FIFO, RANDOM and q-LRU (i.e., LRU
with insertion probability q). We refer the reader to their work
[27] for equations to derive hit ratios for these replacement
policies under the characteristic time approximation.

Although all these policies have different formulations of
pin(·), it is important to highlight that, as shown by Martina
et al. [27], they all share the property that ∀δ > 0, then

pin(pi, T ) = pin (δ pi, T/δ) . (19)

As a result of this property, for the case δ = T we have
pin(pi, T ) = pin (pi T, 1). This implies that pin could be
always expressed as a function of the product pi T rather
than of each of the two variables independently. We will use
this observation to derive the results presented in Sec. V-B,
where we will use interchangeably the notation pin(pi · T ) to
indicate pin(pi, T ), i.e., pin(pi · T ) ≡ pin(pi, T ).

We can now present the following definitions that we will
use in the remainder of this section.

Definition 1. The characteristic time T of a cache is the
average time elapsed between either the last request for an
item (e.g., LRU) or its insertion (e.g., FIFO, RANDOM) and
its eviction from the cache.

Definition 2. A cache replacement policy is defined by
characteristic time if the steady-state per-item hit ratio of a
cache operating under such policy, subject to an IRM demand,
is exclusively an increasing function of the request intensity
of the item and the characteristic time of the cache.

Under the characteristic time approximation, caching strate-
gies such as LRU, FIFO, RANDOM and q-LRU belong to
the class of policies defined by characteristic time. A special
consideration needs to be made for the LFU replacement
policy. While LFU cannot be defined by characteristic time,
it has been shown [27] that it yields steady-state cache hit
ratio performance identical to the q-LRU replacement policy
(which is instead defined by characteristic time) when q → 0.
Therefore, all considerations regarding policies defined by
characteristic time equally apply to LFU.

The characteristic time of a cache T can be computed by
solving

N∑
i=1

pin(pi, T ) = C , (20)

where, as already discussed above, pin(·) is a function, specific
for each replacement policy, that returns the cache hit ratio
of an item given its probability of being requested pi and the
characteristic time of the cache T . For all cache replacement
policies listed above, Eq. 20 does not have a closed-form
solution, but can be easily solved numerically.

After these initial considerations, we present the following
theorem and devote the remainder of this section to prove it and
to discuss its applicability in realistic operational conditions.

Theorem 6. Let CS be a caching shard of capacity C belonging
to a system of K shards, all with the same capacity and
operating under the same replacement policy R defined by
characteristic time. The overall system is subject to an IRM
demand {p1, p2, . . . , pN} > 0. Items 1, . . . , N are indepen-
dently mapped to shards 1, . . . ,K uniformly at random. Then,
for large C, (i.e. when both N and C grow to infinity with
C/N → β < 1/K) the cache hit ratio of CS with high
probability4 tends to the cache hit ratio of a single cache
of size K · C operating under replacement policy R subject
to the aforementioned demand.

Proof. The proof is presented in the appendix.

We further validate the approximation of Theorem 6 nu-
merically and draw results in Fig. 2a and 2b, where we show,
given fixed values of cumulative cache size KC = 16K and
number of items N = 256K, the value of TS for different
values of K and with item popularity distributed according
to Zipf distributions with exponents α ∈ {0.6, 0.8, 1.0} for
the cases of LRU and FIFO/RANDOM replacement policies.
It should be noted that we plot the results for RANDOM
and FIFO replacement policies in a single graph as it is well
known that they yield identical cache hit ratios when subject to
IRM demand [29] and therefore have the same characteristic
time [27]. The results are consistent with our analysis. The

4A sequence of events {An}n occurs with high probability (w.h.p.) if
P (An) → 1 as n→ ∞.
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(a) Characteristic time (TS) vs. number of
shards (K) and α (LRU case), with KC =
16K and N = 256K
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(b) Characteristic time (TS) vs. number of
shards (K) and α (FIFO/RANDOM case),
with KC = 16K and N = 256K
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(c) Cache hit ratio for single cache and sys-
tems of shards, with α = 0.8 and N = 256K

Fig. 2: Cache hit ratio performance of sharded systems

mean value of TS is not affected by variations in the number
of shards K and is the same in the case of a single cache
(K = 1). The standard deviation of TS , represented by the
error bars, increases with K, as expected, but it remains low
in comparison to the mean value of TS as it is possible to see
from the values of the y-axis.

The insensitivity of TS against K is also expectedly reflected
in cache hit ratio performance. We simulate systems of caching
shards under the LRU, FIFO and LFU replacement policies
for various caching sizes and various K and plot results in Fig.
2c. The graph shows again insensitivity of cache hit ratio with
respect to K, further validating the results of our analysis.

Ji et al. [30] reached similar conclusions to those of Theorem
6. However their model makes more restrictive assumptions
and only applies to the case of a system of LRU caches subject
to a Zipf-distributed IRM demand with α > 1 and infinite
item population. Differenty, Theorem 6 applies to systems of
caches operating according to any replacement policy driven
by characteristic time subject to an arbitrary IRM demand.

Finally, although the asymptotic hit ratio of LRU caches
has been studied extensively in the past [24], [31], [32], none
of the previous work can be directly applied to the problem
addressed by Theorem 6. All previous work applies only to
LRU caches subject to an IRM demand. While the overall
sharded system studied by Theorem 6 is subject to an IRM
demand, each individual cache is instead subject to a demand
where the request rate of each item is stochastic, and therefore
does not conform to the IRM model. However, since Theorem
6 shows that, as cache size grows, the hit ratio of each shard
tends to that of a single standalone cache, asymptotic models
for single caches can be applied to evaluate the performance
of sharded systems.

V. FRONTEND CACHING

So far we analyzed the performance of sharded systems in
isolation. However, in practical deployments, such systems are
frequently preceded by an array of frontend nodes, as depicted
in Fig. 3. These nodes can perform various functions, such as,
for example, access control, terminating TCP connections or
TLS sessions and redirecting requests to the relevant shards
[6], [33]. These frontend nodes are frequently equipped with
a smaller cache to offload the backend sharded system [23],

[33]. In this section, we investigate the interaction between
this layer of frontend caches and a sharded system deployed
behind it and show how the former impacts load balancing
and cache hit ratio performance of the latter.

1

1 2 3 K

2 K’.  .  .

.  .  .

BACKEND

FRONTEND

Fig. 3: Sharded system preceded by a layer of frontend caches

A. Load balancing

Intuitively, one can reasonably conjecture that placing a
frontend cache does in fact reduce load imbalance at the
backend. In fact, as we observed above, skewness in item
popularity strongly increases load imbalance but at the same
time, it can be addressed effectively by caching. Common
replacement policies are more likely to cache items requested
more frequently, and, as a result, they smoothen the skewness
of the item popularity distribution of their miss streams.

Fan et al. [34] already investigated this aspect concluding
that a small frontend cache of O(K logK) items operating
according to an LFU replacement policy is in fact sufficient to
reduce load imbalance. However, their analysis only addresses
the load imbalance caused by an adversarial workload with
knowledge of the mapping between items and shards attempting
to swamp a specific shard.

In contrast, our work addresses the more general case of
a frontend cache operating under a variety of replacement
policies subject to an arbitrary IRM demand. We conclude that
a frontend cache is in fact effective in reducing load imbalance
as long as it is properly dimensioned.

For simplicity, the following analysis assumes a single
frontend cache. However, it can be trivially demonstrated that
the results derived here equally apply to the case of an array
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of identically sized frontend caches, depicted in Fig. 3, as long
as the distribution of item request frequency is identical in all
frontend nodes.

Let hi be the hit probability of item i at the frontend cache.
The fraction of requests handled by a shard can be written as

L =

∑N
i=1Xi pi (1− hi)∑N
i=1 pi (1− hi)

. (21)

It immediately follows that it its coefficient of variation is

cv(L) =

√
Var(L)

E[L]
=
√
K − 1

√∑N
i=1 p

2
i (1− hi)2∑N

i=1 pi(1− hi)
. (22)

After this preliminary discussion, we proceed to analyze the
case of a frontend cache operating according to an arbitrary
replacement policy subject to an arbitrarily-distributed IRM
demand. We derive a set of sufficient conditions under which
a frontend cache reduces load imbalance and apply them to
the case of LRU, FIFO and RANDOM replacement policies.
We then proceed to analyze the specific case of a perfect
frontend cache subject to a Zipf-distributed IRM demand. For
this particular case, we derive simple formulas for frontend
cache dimensioning in order to minimize load imbalance.

1) Arbitrary caches: A frontend cache reduces the load
imbalance among shards of a system as long as the conditions
stated in the following theorem apply.

Theorem 7. Let LC be the load at a shard of a system preceded
by a frontend cache subject to an IRM demand. Let’s assume
that items 1, . . . , N are sorted in decreasing order of popularity,
i.e., p1 ≥ p2 ≥ . . . ≥ pN . If h1 ≥ h2 ≥ . . . ≥ hN and
p1(1 − h1) ≥ p2(1 − h2) ≥ . . . ≥ pN (1 − hN ), then the
frontend cache reduces load imbalance, i.e., cv(LC) ≤ cv(L).

Proof. The proof is presented in the appendix.

It is important to emphasize that the conditions provided by
Theorem 7 are only sufficient and not necessary. As a matter of
fact, as we show later in this section, LFU caches never meet
the condition p1(1 − h1) ≥ p2(1 − h2) ≥ . . . ≥ pN (1 − hN )
and yet still reduce load imbalance.

We can now apply these conditions to the cases of FIFO,
RANDOM and LRU replacement policies to draw conclusions
of practical interest. These analyses apply concepts from the
characteristic time approximation discussed in Sec. IV.

Corollary 7.1. The load imbalance of a sharded system
preceded by a frontend cache operating according to the FIFO
or RANDOM replacement policy subject to an IRM demand
decreases monotonically with the size of the cache.

Proof. It is well known that FIFO and RANDOM replacement
policies yield identical cache hit ratios when subject to an
IRM demand [29]. According to the generalized characteristic
time approximation of [27], the cache hit ratio hi of an item i
yielded by a FIFO or RANDOM cache is

hi =
piT

1 + piT
, (23)

where T is the characteristic time of the cache and is a positive
constant.

We now prove the theorem by showing that a frontend FIFO
or RANDOM cache always meets the sufficient conditions
of Theorem 7. It is immediately evident from Eq. 23 that if
p1 ≥ p2 ≥ . . . ≥ pN then h1 ≥ h2 ≥ . . . ≥ hN . Now we only
need to demonstrate that p1(1 − h1) ≥ p2(1 − h2) ≥ . . . ≥
pN (1− hN ). This is equivalent to showing that pi(1− hi) ≥
pi+1(1−hi+1) holds ∀i ∈ 1, . . . , N − 1. Applying 23, we can
rewrite this condition as

pi
1 + piT

≥ pi+1

1 + pi+1T
. (24)

Remembering that by definition T > 0 and pi ≥ 0∀i ∈
1, . . . , N , we can rearrange Eq. 24 and observe that it holds
as long as pi ≥ pi+1 which is true by definition.

Corollary 7.2. A frontend cache of size C operating according
to the LRU replacement policy and subject to a Zipf-distributed
IRM demand with skewness α and a catalog of N items reduces
load imbalance if

C ≤ N −
N∑
i=1

2
− α·i−α

1−2−α . (25)

Proof. According to the characteristic time approximation [25]
the cache hit ratio hi of an item i yielded by an LRU cache is

hi = 1− e−piT , (26)

where T is the characteristic time of the cache and is the
unique root of the equation

N∑
i=1

hi =

N∑
i=1

1− e−piT = N −
N∑
i=1

e−piT = C . (27)

We show that a frontend LRU cache meets the sufficient
conditions of Theorem 7 as long as Eq. 25 holds.

It can be immediately observed from Eq. 26 that if p1 ≥
p2 ≥ . . . ≥ pN then h1 ≥ h2 ≥ . . . ≥ hN . Now we only need
to verify under what conditions p1(1 − h1) ≥ p2(1 − h2) ≥
. . . ≥ pN (1 − hN ). This is equivalent to verify under what
conditions pi(1−hi) ≥ pi+1(1−hi+1) holds ∀i ∈ 1, . . . , N−1.
Applying Eq. 26, we can rewrite this condition as

pi
pi+1

≥ e(pi−pi+1)T .

Because of the Zipf-distributed demand assumption, we can
substitute pi = i−α/H

(α)
N and, after rearranging, we obtain

T ≤
α log( i+1

i )H
(α)
N

i−α − (i+ 1)−α
.

Since the numerator monotonically decreases and the denomi-
nator monotonically increases with respect to i, the right hand
side part of the inequality is minimized for i = 1. Therefore

T ≤
α log(2)H

(α)
N

1− 2−α
≤

α log( i+1
i )H

(α)
N

i−α − (i+ 1)−α
. (28)

From Eq. 27 we can observe that C increases with T . Therefore,
we can substitute Eq. 28 into Eq. 27 and rearrange to obtain
Eq. 25:

C ≤ N−
N∑
i=1

exp

[
−
i−αα log(2)H

(α)
N

H
(α)
N (1− 2−α)

]
= N−

N∑
i=1

2
− α·i−α

1−2−α .
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2) Perfect cache: We now analyze the case of a perfect
frontend cache of size C < N that always caches the C most
popular items. This corresponds to an LFU replacement policy,
since we assume an IRM workload. Assuming that p1 ≥ p2 ≥
. . . ≥ pN , then a perfect frontend cache permanently stores
items 1, . . . , C.

Denoting LC as the load after filtering from a frontend cache
of C items, we can write cv(LC) as

cv(LC) =
√
K − 1

√∑N
i=C+1 p

2
i∑N

i=C+1 pi
. (29)

We further assume that item popularity follows a Zipf
distribution with parameter α > 0 and apply the approximation
of Eq. 7 to derive the following closed-form expression for
cv(LC):

cv(LC) ≈



√
K − 1

√
(N+1)1−2α−(C+1)1−2α

1−2α
(N+1)1−α−(C+1)1−α

1−α

if α /∈ { 12 , 1}

√
K − 1

√
log(N+1)−log(C+1)

2(
√
N+1−

√
C+1)

if α = 1
2

√
K − 1

√
N−C

(N+1)(C+1)

log(N+1)−log(C+1) if α = 1

.

(30)
We can now present our main theorem and four corollaries

and discuss their results.

Theorem 8. Let LC be the load at a shard subject to a Zipf-
distributed IRM demand with skewness parameter α pre-filtered
by a frontend perfect cache of size C, with C < N . Then
cv(LC) is a convex function with respect to C and has a
global minimum for

C∗ = argmin
C

cv(LC) = γ(N + 1)− 1 , (31)

where, if α /∈ { 12 , 1}, γ is the unique solution of

2(1− α)γ2α−1 − (1− 2α)γα−1 − 1 = 0 (32)

in the open interval γ ∈ (0, 1), otherwise

γ =

− 1
4 W−1

(
− 1

2e
− 1

2

)−2
≈ 0.08 if α = 1

2

− 1
2 ·W0

(
−2e−2

)
≈ 0.2032 if α = 1

. (33)

where W0 and W−1 denote respectively the main and lower
branches of the Lambert W function.

Proof. The proof is presented in the appendix.

We can now make further considerations for the asymptotic
case of N → +∞ and approximations for large N values.

Corollary 8.1. For α > 1 and N → +∞, then

cv(LC) =

√
K − 1

C + 1
· α− 1√

2α− 1
. (34)

Proof. If α > 1 and N → +∞, then (N + 1)1−α → 0 and
(N + 1)1−2α → 0. Applying these substitutions to Eq. 30 we
obtain Eq. 34.

Corollary 8.2. For N → +∞, a perfect frontend cache always
reduces load imbalance and any increase in cache size further
reduces load imbalance.

Proof. The proof is straightforward from Theorem 8, which
shows that cv(LC) is monotonically decreasing with respect
to C in the interval 0 ≤ C ≤ C∗ = γ(N + 1)− 1. Since

lim
N→+∞

C∗ = lim
N→+∞

γ(N + 1)− 1 = +∞ ,

then any finite cache size reduces load imbalance.

Corollary 8.3. If α = 1
2 and N is large, then C∗ ≈ 0.08 ·N .

Proof. Solving numerically the term W−1

(
− 1

2e
− 1

2

)
of Eq.

33 we obtain
C∗ = 0.08 ·N − 0.92 . (35)

Since for large N the constant part of Eq. 35 is negligible, we
can approximate it as C∗ ≈ 0.0.08 ·N .

Corollary 8.4. If α = 1 and N is large, then C∗ ≈ 0.2 ·N .

Proof. The proof is analogous to the case above. Solving
numerically the term W

(
−2e−2

)
of Eq. 33 we obtain

C∗ = 0.2032 ·N − 0.797 . (36)

Since for large N the constant part of Eq. 36 is negligible, we
can approximate it as C∗ ≈ 0.2 ·N .

This analysis showed that a perfect frontend cache is effective
in reducing load imbalance in all scenarios of practical interest
as long as properly dimensioned.

From Theorem 8 and its corollaries we can observe that the
global minimum of cv(LC) does not depend on the absolute
values of C or N but on the quantity γ = C+1

N+1 , as well as
α. In Fig. 4 we plot all values of γ for which we observe a
global minimum of cv(LC) for various values of α, which
represent the skewness of item popularity distribution. As
already discussed above, typical workloads can be modeled with
α ∈ [0.6, 1.2]. In that interval, the values of γ that minimize
load imbalance are between 0.11 and 0.24. This implies that
even in the worst case scenario, the frontend cache should
be smaller than 11% of the size of item population to ensure
that any addition of caching space reduces load imbalance. In
practice such frontend caches are rarely larger than 1% of the
item population. Hence, we conclude that any typical frontend
cache reduces load imbalance.
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Fig. 4: Relationship between γ and α



IEEE/ACM TRANSACTIONS ON NETWORKING 10

0.005 0.010 0.015
C/N

0.0

0.5

1.0

1.5

2.0

c v
(L

C
)

α = 0.6
α = 0.8
α = 1
α = 1.2

Exact
Model

Fig. 5: cv(LC) with perfect frontend cache (N = 106)

As a further step in our evaluation, we quantify the actual
reduction of load imbalance achieved by a perfect frontend
cache and plot results in Fig. 5 for various values of α and
cache/catalog ratio C/N in the case of N = 106. In the plot,
the lines labeled as Exact have been drawn using Eq. 29 while
the lines labeled as Model have been drawn using Eq. 30.

This analysis allows us to draw three main conclusions.
First of all, the load imbalance model, which relies on
the approximation of Theorem 2, is very accurate. This is
demonstrated by the almost perfect agreement between exact
and model results. Second, the imbalance reduction is greater
for more skewed item distributions. This is expected because,
as discussed above, more uniform distributions induce lower
load imbalance and therefore there is less improvement that
a frontend cache can provide. Finally, and most importantly
from a practical standpoint, even a very small cache of around
0.5% of content catalog is sufficient to carry out a substantial
reduction in load imbalance. Further increasing cache size still
reduces load imbalance but less substantially.

B. Cache hit ratio

In addition to reducing load imbalance, a layer of frontend
caches impacts the caching performance of the backend sharded
system. We dedicate this section to investigate the interplay
between these two layers of caches and investigate how
variables like size and number of frontend caches impact
caching performance.

We assume that the system comprises K equally sized
shards and an array of K ′ equally sized frontend caches. We
assume that the overall system is subject to an IRM demand
{p1, p2, . . . , pN} and that each request is first handled by a
randomly selected frontend cache. As a result, the demand re-
ceived by each single frontend is {p1/K ′, p2/K ′, . . . , pN/K ′}.
Finally, we assume that both frontend and backend caches
operate according to the same replacement policy and that
such a policy is defined by its characteristic time.

We denote the size of a single frontend cache as CF and the
cumulative size of the backend (i.e., the sum of the sizes of
each shard) as CB . Similarly, we denote the characteristic time
of a single frontend cache and the backend sharded system as
TF and TB respectively.

This analysis relies on Theorem 6 which shows that a cluster
of sharded caches asymptotically yields performance identical

to a single cache with size equal to the cumulative size of
all shards. This result allows us to model the caching system
as a two-level tree with the system of shards as root and the
frontends as leaves.

Recalling the definition of characteristic time, we can observe
that the probability that an item is found at a frontend cache
corresponds to the probability that the item was requested in
the interval [t−TF , t] independently of the state of the backend
cache. Alternatively, a cache hit at the backend on an item
received from a specific frontend Fj occurs only if either a
request from Fj arrived in the interval [t−TB , t−TF ] or if at
least one request arrived from any other frontend cache Fk,k 6=j
in the interval [t− TB , t].

We can immediately start deriving the cache hit ratio at the
frontend since it does not depend on the state of the backend.
We can start deriving the characteristic time TF and the hit
ratio h(F )

i at each frontend cache applying Eq. 20 and Eq. 18:

N∑
i=1

pin(pi/K
′, TF ) = CF , (37)

h
(F )
i = pin(pi/K

′, TF ) . (38)

Applying Eq. 19, we can rewrite the two equations above as

N∑
i=1

pin(pi, TF /K
′) = CF , (39)

h
(F )
i = pin(pi, TF /K

′) . (40)

Analyzing Eq. 39 and observing that pi and CF are constant
and do not depend on the number of frontend caches K ′, it
necessarily follows that TF /K ′ is constant. As a result, we
can immediately observe from Eq. 40 that the cache hit ratio
of each frontend cache h(F )

i does not depend on the number
of frontend caches K ′.

We can proceed deriving the average rate of requests for
item i missing the layer of frontend caches, denoted as p(B)

i

and then the characteristic time of the backend TB :

p
(B)
i =

K′∑
j=1

pi
K ′

(
1− h(F )

i

)
= pi

(
1− h(F )

i

)
, (41)

N∑
i=1

pin(p
(B)
i , TB) = CB . (42)

It should be noted however, that in this case requests are
no longer IRM, since they are not exogenous requests but
are misses from another cache, which, depending on the
replacement policy used, may be correlated. This is the case,
for example, with LRU caches [35]. For this reason we use
the overline notation.

To derive the hit ratio at the backend h(B)
i , we apply results

from [27] which allow us to compute h(B)(i|Fj), i.e., the hit
ratio of item i at the backend, given that it has been forwarded
by Fj . Specifically,

h(B) (i|Fj) ≈ pin(Ai,j) (43)
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(a) Cache hit ratio vs. CB (K′ = 1)
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(b) Cache hit ratio vs. CB (K′ = 16)
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Fig. 6: Accuracy of two-layer caching model (N = 512K, α = 0.8)

where

Ai,j =
1

K ′
·p(B)
i (j)·max(0, TB−TF )+

∑
k 6=j

1

K ′
·p(B)
i (k)·TB .

(44)
Since all frontend caches are identical and are subject to

identical demand, their miss streams are statistically identical.
As a result, the rate of requests reaching the backend from
each frontend are identical, i.e., p(B)

i = p
(B)
i (1) = p

(B)
i (2) =

· · · = p
(B)
i (K ′). In addition, the hit probability of an item at

the backend does not depend on the specific frontend from
which the request is received, i.e., hB(i|Fj) = h

(B)
i . We can

therefore apply these findings and rewrite Eq. 43 as

h
(B)
i ≈

pin
(
p
(B)
i

(
TB − TF

K′

))
if TF < TB

pin

(
p
(B)
i

(
1− 1

K′

)
TB

)
if TF ≥ TB

. (45)

The only sizing configuration of practical interest occurs
when the cumulative size of frontend caches is smaller than
the cumulative size of backend caches, i.e., K ′CF < CB . That
is because in practical applications, frontends are typically
built out of faster (and more expensive) memory technologies
than the backend [33], [34] and have smaller capacity. We can
easily observe that since the characteristic time of a cache is
inversely proportional to the intensities of request processes and
the request processes at the backend have lower intensities than
at the frontend, even when K ′CF = CB necessarily implies
that TF < TB . Therefore K ′CF < CB =⇒ TF < TB .

Analyzing the TF < TB case of Eq. 45 and recalling that
TF /K

′ is constant, we can observe that the cache hit ratio
at the backend does not depend on the number of frontend
caches. As a result, the cache hit ratio of a system of sharded
caches with an array of frontends is identical to that of a
single frontend case. We note that in the case where TF ≥ TB ,
the cache hit ratio at the backend depends on the number of
frontend caches K ′. However, as explained above, this case is
of no practical interest. Moreover, this dependency vanishes
as K ′ grows large.

One difference that is important to highlight though is that,
in both cases, since the miss stream of the frontend caches are
independent [35], the greater the value of K ′ the less is the
dependence among requests in the aggregate miss stream. As a
result, the Poisson approximation used in Eq. 45 becomes more
accurate. However, as we show below, even for low values of
K ′ our model is still very accurate.

We validate the accuracy of our model by comparing the
predicted cache hit ratio with values from simulations. We
performed all experiments using LRU caches and a Zipf-
distributed content popularity with N = 512K items and α =
0.8 and plot results in Fig. 6.

In Fig. 6a and Fig. 6b we show the accuracy of our models
against various cache sizes for K ′ = 1 and K ′ = 16. In both
cases we vary CB between 2K and 64K items and maintain
a constant ratio between backend and frontend cache sizes
CB/CF equal to 8. We also maintain constant values of K
and K ′ equal to 16. We deliberately selected small cache sizes
because this is the worst case condition for our model (see
Theorem 6). Despite this, our model predicts performance very
accurately under all cache sizes considered.

Finally, in Fig. 6c we further evaluate the accuracy of our
model maintaining constant values of CB and CF of 16K and
2K and varying the number of frontend caches K ′ from 1 to
64. Our model again predicts performance very well and, as
we showed above, both frontend and backend cache hit ratio
do not depend on the number of frontend caches.

VI. SUMMARY AND CONCLUSION

This paper presented analytical results shedding light on
operational properties of sharded caching systems that, while
empirically observed in the past, were poorly understood from
a theoretical standpoint. Our analysis focused on two main
aspects: load balancing and caching performance.

With respect to load balancing, we showed that heteroge-
neous request frequency and item size considerably increase
load imbalance and provided closed-form expressions to
quantify their impact. These results show that previous work
assuming uniform request frequency is inaccurate when de-
scribing the behavior of sharded systems in typical operational
conditions. On the other hand, we showed that techniques such
as item chunking and replicating items multiple times across
shards can effectively mitigate load imbalance.

With respect to caching performance, our key finding shows
that partitioning a single cache into a cluster of smaller
uncoordinated sharded caches does not cause any appreciable
degradation in cache hit ratio, as the cache size grows large.
This finding has remarkable practical implications because
it shows that caching systems can be scaled horizontally
without inter-cache coordination mechanisms and without loss
in caching performance.
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Finally, we evaluated how a sharded system operates when
deployed behind a layer of frontend caches, which is a
typical scenario in many operational deployments. This analysis
provided two key insights. First, even a small frontend cache
is very effective at reducing the load imbalance at the backend;
we quantified its impact for various common cache replacement
policies. Second, in the case of practical interest where
the cumulative size of frontend caches is smaller than the
cumulative size of backend caches, the cache hit ratio of the
backend is not affected by the number of frontend caches
but only by their sizes; we provided closed-form equations to
derive the hit ratio at each layer.

We believe that all these findings have important practical
applications in the design and configuration of operational
sharded systems.

APPENDIX

PROOF OF THEOREM 6

Proof. We denote TS as the characteristic time of a shard of
size C and T as the characteristic time of a single cache of
size K · C subject to the same demand of the overall sharded
system. Assuming uniformly distributed random assignment
of items to shards and applying Eq. 20 we obtain that TS and
T satisfy

ψ (TS) =
1

C

N∑
i=1

pin(Xi pi, TS) = 1 , (46)

φ(T ) =
1

C

N∑
i=1

pin(pi, T ) = K , (47)

where ψ (TS) is a random function of TS , which depends on
the r.v. {Xi}i, while φ (T ) is deterministic function.

We remark that pin(·) in Eq. 46 and 47 are the same function
because both caches operate according to the same replacement
policy and pin depends only on pi and T because we assumed
that such policy is determined by characteristic time.

By definition, if an item is never requested it cannot be in
the cache, hence pin(0, T ) = 0. Because of this observation
and since by definition Xi ∈ {0, 1}, then we can express
pin(Xi pi, TS)in the form Xi pin(pi, TS). As a result, we can
rewrite Eq. 46 as

ψ (TS) =
1

C

N∑
i=1

Xi pin(pi, TS) = 1 . (48)

Now observe that

E [ψ (T )] = E

[
1

C

N∑
i=1

Xi pin(pi, T )

]
=

1

KC

N∑
i=1

pin(pi, T )

=
1

K
φ(T ) = 1 . (49)

We now proceed showing that TS → T w.h.p. as C grows
large. First, we note that since by definition pin(pi, T ) ∈
[0, 1], ∀i ∈ [1 . . . N ], the following inequality holds:

N∑
i=1

[pin(pi, T )]
2 ≤

N∑
i=1

pin(pi, T ) . (50)

Jointly applying this inequality and Eq. 49, we derive the
following upper bound of Var(ψ(T )):

Var (ψ (T )) = Var

(
N∑
i=1

Xi pin(pi, T )

)

=
K − 1

(KC)2

N∑
i=1

(pin(pi, T ))
2

≤ K − 1

(KC)2

N∑
i=1

pin(pi, T )

=

(
1− 1

K

)
1

C
. (51)

Then, jointly applying Chebyshev’s inequality and Eq. 51 to
ψ(T ) we obtain

P (|ψ(T )− E [ψ(T )]| ≥ ε) ≤ Var(ψ(T ))

ε2C2

≤ 1− 1/K

ε2C2
E [ψ(T )]

=

(
1− 1

K

)
1

ε2C
. (52)

This implies that ψ(T ) → E [ψ(T )] = 1
Kφ(T ) = 1 = ψ(TS)

w.h.p. as C grows large.
Now, assuming T < +∞, since ψ(·) given {Xi}, is by

construction, a strictly increasing continuous function of its
argument (and thus also ψ−1(·) given {Xi} is continuous and
strictly increasing), then necessarily Ts → T w.h.p. as C and
N grow large. Similarly if T → +∞ then necessarily also
TS → +∞. Therefore, since phit(pi, TS) = pin(pi, TS) →
pin(pi, T ) = phit(pi, T ), the assertion immediately follows.

PROOF OF THEOREM 7

To prove this theorem, we first introduce two preliminary
lemmas:

Lemma 1. Given two finite sequences {bi}Ni=1 and {ci}Ni=1,
both non null and decreasing,5 with

∑N
1 ci = 0 then

N∑
i=1

bici ≥ 0 .

Proof. Since {ci}Ni=1 is decreasing with
∑N

1 ci = 0, there
exists an n with 1 < n < N such that: ci < 0 for any i ≥ n
and ci > 0 for any i < n (i.e., n = mini{ci < 0}).

Now, ∀b ∈ R
N∑
i=1

bici =

N∑
i=1

bici −
N∑
i=1

bci =

N∑
i=1

(bi − b)ci .

Then, the assertion follows by selecting b = bn and observing
that, by construction, for any i with 1 ≤ i ≤ N , we have
(bi − bn)ci ≥ 0 (this is because {bi}Ni=1 is decreasing).

5We use the terms increasing/decreasing in the weak sense, i.e., not
decreasing/not increasing
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∂cv(LC)

∂C
≈



√
K − 1(1− α)

[
2 1−α
1−2α ((N + 1)1−2α − (C + 1)1−2α)− (C + 1)−α

(
(N + 1)1−α − (C + 1)1−α

)]
2
√

(N+1)1−2α−(C+1)1−2α

1−2α (C + 1)α [(N + 1)1−α − (C + 1)1−α]
2

if α /∈ { 12 , 1}

√
K − 1

[
log
(
N+1
C+1

)
−
√

N+1
C+1 + 1

]
4
√
C + 1

(√
N + 1−

√
C + 1

)2√
log
(
N+1
C+1

) if α = 1
2

√
K − 1

[
(N − C)− 1

2 (N + 1) log
(
N+1
C+1

)]
(C + 1)2(N + 1) log2

(
N+1
C+1

)√
N−C

(N+1)(C+1)

if α = 1

(53)

Lemma 2. Given {ai}Ni=1, {bi}Ni=1, {ci}Ni=1 all non null and
decreasing, with ai = bi + ci and

∑N
1 ci = 0, then

N∑
i=1

a2i >

N∑
i=1

b2i .

Proof.
N∑
i=1

a2i =

N∑
i=1

(bi + ci)
2 =

N∑
i=1

b2i +

N∑
i=1

c2i + 2

N∑
i=1

bici ≥

N∑
i=1

b2i +

N∑
i=1

c2i >

N∑
i=1

b2i ,

where the second last inequality descends from Lemma 1.

Now we are ready to prove the theorem.

Proof. Let us recall that {pi}Ni=1, {hi}Ni=1 and {pi(1−hi)}Ni=1

are all decreasing. Observe that the coefficient of variation of
a sequence does not change if we multiply all the terms of the
sequence for a common strictly positive arbitrary factor. Thus
we can define

{qi}N1 = {Kpi(1− hi)}Ni=1

with K :=
∑N
j=1 pj∑N

j=1 pj(1−hj)
and compute c2v(LC), as

c2v (LC) =

∑N
i=1 q

2
i(∑N

i=1 qi

)2 .
By construction we have:

∑N
i=1 qi =

∑N
i=1 pi. Furthermore

we can write qi = pizi with {zi := K(1− hi)}Ni=1 increasing.
Thus, we have

ci := pi−qi = pi(1−zi) = pi(1−K(1−hi)) = pi+Kpi(hi−1).

Now, since both {pi}Ni=1 and {hi}Ni=1 are decreasing, {ci}Ni=1

turns out to be decreasing too. Moreover
∑N
i=1 ci =

∑N
i=1 pi−∑N

i=1 qi = 0; therefore we can apply Lemma 2 to show that
N∑
i=1

p2i >

N∑
i=1

q2i .

The assertion follows immediately, in fact

c2v(L) =

∑N
i=1 p

2
i

(
∑N
i=1 pi)

2
>

∑N
i=1 q

2
i

(
∑N
i=1 pi)

2
=

∑N
i=1 q

2
i

(
∑N
i=1 qi)

2
= c2v(LC).

PROOF OF THEOREM 8
Proof. We start deriving the partial derivative of cv(LC) with
respect to C for the three cases α /∈ { 12 , 1}, α = 1

2 and α = 1,
which we report in Eq. 53.

First, we analyze the case α /∈ { 12 , 1}. Solving the inequality
∂cv(LC)/∂C ≥ 0 and substituting γ = C+1

N+1 yields

1− α
1− 2α

[
2(1− α)γ2α−1 − (1− 2α)γα−1 − 1

]
≥ 0 .

Now, we analyze the behavior of ∂cv(LC)/∂C to demon-
strate that cv(L) has a unique global minimum for C = C∗.

Since by definition 0 ≤ C < N , we can immediately observe
that γ ∈ (0, 1). More specifically, γ → 0+ when C → 0 and
N → +∞, while γ → 1− when C → N . The values of
∂cv(LC)/∂C at the boundaries of the γ interval are

lim
γ→0+

∂cv(LC)

∂C
=

{
− 1−α

1−2α if α > 1

−∞ if α ∈
(
0, 12
)
∪
(
1
2 , 1
) ,

lim
γ→1−

∂cv(LC)

∂C
= 0 ∀α ∈ R+\

{
1

2
, 1

}
.

Since by definition α > 0, then

lim
γ→0+

∂cv(LC)

∂C
< 0 ∀α ∈ R+\

{
1

2
, 1

}
.

We now investigate under what conditions ∂ ∂cv(LC)
∂C /∂γ ≥ 0

and observe that

∂ ∂cv(LC)
∂C

∂γ
≥ 0⇔ (1− α)2γα−2(−2γα + 1) ≥ 0

⇔ γ ≤ 2−
1
α .

This shows that ∂cv(LC)/∂C is negative for γ → 0+, strictly
increases for 0 < γ < 2−1/α, reaches a global maximum for
γ = 2−1/α and then strictly decreases for 2−1/α < γ < 1
tending to 0 for γ → 1−.

From this analysis we can conclude that ∂cv(LC)/∂C is
strictly positive at its global maximum (γ = 2−1/α). Since
∂cv(LC)/∂C is continuous over γ ∈ (0, 1), applying the
intermediate value theorem we can conclude that there exists
at least a value of γ ∈ (0, 2−1/α) for which ∂cv(LC)/∂C = 0.
Since over that interval ∂cv(LC)/∂C is strictly increasing,
that root is unique and it is a local minimum of cv(LC). Also,
this analysis shows that ∂cv(LC)/∂C cannot have roots for
2−1/α < γ < 1. Therefore, the minimum of cv(L) is global.
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Finally, since we know that the only root of ∂cv(LC)/∂C
is the global minimum of cv(LC), we obtain Eq. 32 by
rearranging ∂cv(LC)/∂C = 0.

We now focus on the two remaining cases: α = 1
2 , 1. Solving

the inequality ∂cv(LC)/∂C ≥ 0 and substituting, as above,
γ = C+1

N+1 yields

∂cv(LC)

∂C
≥ 0⇔ γ ≥

− 1
4 W−1

(
− 1

2e
− 1

2

)−2
if α = 1

2

− 1
2 ·W0

(
−2e−2

)
if α = 1

.

From this inequality it is immediately evident that cv(LC) has
a global minimum when γ is equal to the right hand side part,
which corresponds to Eq. 33.
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