
Development of reduced structural theories for
composite plates and shells via machine learning

Marco Petrolo, Erasmo Carrera, Matteo Filippi

MUL2 Group, Department of Mechanical and Aerospace Engineering
Politecnico di Torino

Corso Duca degli Abruzzi 24, 10129, Torino, Italy
{marco.petrolo, erasmo.carrera}@polito.it

Abstract
This paper presents a new approach for the development of structural models via three
well-established frameworks, namely, the Carrera Unified Formulation (CUF)[1], the Ax-
iomatic/Asymptotic Method (AAM)[2], and Artificial Neural Networks (NN)[3]. CUF
and AAM provide the finite element arrays and measure the relevance of any given gen-
eralized displacement variable. The NN training makes use of the data from CUF-AAM
and the outputs are the Best Theory Diagrams [4] - curves providing the minimum num-
ber of nodal degrees of freedom required to satisfy a given accuracy requirement - and the
accuracy of any structural theory. The main governing equations for plate and shell finite
elements via CUF are the following and lead to the implementation of any order theory,
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The inputs of the NN are combinations of the fifteen generalized displacement variables
of a fourth-order model and the thickness ratio,

ux = ux1 + z ux2 + z4 ux5
uy = uy1 + z uy2 + z3 uy4 , h/a = 0.1, => [1 1 1 1 1 1 0 0 1 0 1 0 1 0 0 0.1]
uz = uz1 + z uz2 + z2 uz3

(2)

Where ’1’ indicates an active variable and ’0’ a deactivated one. The targets for the NN
training are the errors over the first natural frequencies,
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Where the reference frequencies are those by the full fourth-order model. The NN con-
figuration is a multilayer feed-forward with early stopping and mean squared error as the
objective function. Each layer has ten neurons. This paper adopts Levenberg-Marquardt
training functions. The numerical results refer to a 0/90/0 square simply-supported spher-
ical panel as in [4], R/a = 5. Figure 1 shows the BTD computed via two different ap-
proaches. FE refers to the full finite element approach considering 215 modal analysis, i.e.,
one per each model stemming from the combinations of the fifteen terms of the fourth-
order model. The BTD reports models that, for a given number of degrees of freedom
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Figure 1: BTD from FE and NN a/h = 5.

(DOF), provides the minimum error. NN refers to the BTD obtained from a trained neu-
ral network. Training considered a/h = 10 and a/h = 2 and a population of some 2000
structural models. The plot reports the explicit displacement field of the 12 and 7 DOF
models. Table 1 reports the error over the first ten frequencies as computed by the FE
analysis and by the trained NN. PTD refers to a displacement field having full linear ex-
pansion and a parabolic term on the transverse displacement. TSDT is a model having
full third-order expansions over the in-plane displacements and constant transverse one.
The results suggest that

Model DOF FE NN
FSDT 5 13.4 13.3
PTD 7 12.9 10.0
TSDT 9 2.6 2.0

Table 1: Mean error (%) on the first ten frequencies via FE and NN, a/h = 5.

• The use of NN is promising as a tool to evaluate the accuracy of structural theories
with very high computational efficiency. Also, as the network is trained considering
physical features such as the thickness, it may provide good estimates for different
values of the same feature.

• Considering the structural models, the results show that, for the problem considered,
models from the literature may fail in detecting the first natural frequencies with
sufficient accuracy. As a general guideline, and as known from the literature, third-
order in-plane variables are decisive.
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