
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Methodological Guidelines for Measuring Energy Consumption of Software Applications / Ardito, Luca; Coppola,
Riccardo; Morisio, Maurizio; Torchiano, Marco. - In: SCIENTIFIC PROGRAMMING. - ISSN 1058-9244. -
ELETTRONICO. - 2019:(2019), pp. 1-16. [10.1155/2019/5284645]

Original

Methodological Guidelines for Measuring Energy Consumption of Software Applications

Publisher:

Published
DOI:10.1155/2019/5284645

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2769312 since: 2023-04-27T12:20:31Z

Hindawi



Methodological Guidelines for Measuring Energy

Consumption of Software Applications

Luca Ardito, Riccardo Coppola, Maurizio Morisio, Marco Torchiano

Politecnico di Torino
Department of Control and Computer Engineering

Turin, Italy
name.surname@polito.it

Abstract

Energy consumption information for devices, as available in the literature
is typically obtained with ad-hoc approaches, thus making replication and
consumption data comparison difficult. We propose a process for measur-
ing the energy consumption of a software application. The process contains
four phases, each providing a structured deliverable that reports the infor-
mation required to replicate the measurement. The process also guides the
researcher on a threat to validity analysis to be included in each deliverable.
This analysis ensures better reliability, trust, and confidence to reuse the col-
lected consumption data. Such a process produces a structured consumption
data for any kind of electronic device (IoT devices, mobile phones, personal
computers, servers, etc.), which can be published and shared with other re-
searchers fostering comparison or further investigations. A real case example
demonstrates how to apply the process and how to create the required de-
liverables.

Keywords: energy consumption, software energy consumption, software
application, software engineering, energy consumption data, computer
engineering

1. Introduction1

A software program contains a sequence of instructions whose execution2

requires the device on which it is running to consume energy. Today, energy3

consumption, a non-functional property of the program, is seldom considered4

upfront as a non-functional requirement or, after the fact, as a property to5

Preprint submitted to Scientific Programming November 24, 2019



be measured and monitored. However, energy consumption may represent a6

critical problem for end users. In laptops, tablets, and smartphones, energy7

consumption clearly has an impact on battery life and, therefore, it becomes8

a user experience issue [1]. For data centres or Bitcoin miners [2], energy9

consumption has a direct impact on the electrical bill. In the literature, many10

have addressed the problem of measuring and reducing energy consumption,11

but typically in an ad-hoc manner [3].12

According to the Evidence-Based Software Engineering (EBSE) [4] ap-13

proach, concrete decision-making should be supported by the empirical evi-14

dence available in the literature. Such evidence must be trustable, produced15

through a documented and repeatable process, contextualised, linked to the16

context where it can be applied, identifiable, address a well-defined question,17

assessable, and report the known limitations of the results. Such character-18

istics are seldom present in most of the related published literature.19

If the energy consumption issue is tackled at the hardware level, then the20

task is accomplished by reducing the consumption of the physical devices21

or by creating different usage profiles (e.g., processors can scale down the22

frequency when used less). On the other hand, if the energy consumption23

issue is managed at the operating system level, then management policies24

may use the different hardware profiles of various devices (when available)25

or turn off hardware when not needed. We consider software as a driver of26

the energy consumption because it requires several actions to be completed27

by the underlying hardware, which reacts based on the received instructions.28

Measuring the energy consumption due to a specific piece of software implies29

addressing two major issues:30

• Isolating the energy consumption of a program when it is running con-31

currently to others on the same device.32

• Generalizing the obtained results: let the measure be meaningful to33

other devices.34

When collecting energy through physical measurements on a device, the35

value is related to the target software and all other processes running on the36

device simultaneously. The physical measurement does not allow a straight-37

forward generalisation of results because the same software could behave38

differently based on the hardware on which it is executed as well as other39

installed software. Another option is defining models that provide an esti-40

mate of the energy consumption of the target software instead of performing a41

2



physical measurement. The input of the model consists of device resource us-42

age indicators collected at run-time. The main issue affecting this approach43

is that a model can be representative of a device or a family of devices44

meaning that the estimation computed by the model is not always valid.45

Unfortunately, it is very difficult to get this result because every hardware46

manufacturer should provide accurate data on the consumption of the device,47

and this data should be available in real time as device status information48

through sensors and system calls from the operating system. Now, we can49

easily measure the energy consumption of an application by measuring the50

energy consumption of the entire device on which it is executed, analysing51

the obtained data, and estimate the consumption by minimising the error.52

This requires a precise methodology to obtain the most significant data and53

analyse them for useful information to estimate the power consumption of54

an application.55

In this paper, we propose a general process that can be used to measure56

the energy consumption of a software application. This process includes57

the best practices for collecting and analysing energy consumption data of58

a software application and formalises the steps needed to carry out a valid59

empirical experiment. Thus, this is proposed as a ground zero for performing60

software energy measurements to ensure repeatability and comparison of each61

experiment. The process we put forward can be used both to conduct energy62

measurement and to asses existing studies serving as a sort of checklist.63

The remainder of this paper is organised as follows:64

• Section 2 describes the proposed process to collect energy consumption65

data from devices as well as how to analyse the data;66

• Section 3 provides a real case study showing how to create the deliver-67

ables;68

• Section 4 reports the related work and assess the literature in terms of69

compliance with our process;70

• Section 5 concludes the manuscript and provides hints for future work.71

2. Software Consumption Measurement Process72

The proposal described in this paper is a repeatable process for measuring73

the consumption of a software application, hereinafter called the Software74

Under Test (SWUT). The process consists of the following four phases :75

3



Table 1: Deliverables of the different phases and impact on threats to validity

Phase Input Output Threats to Validity

Goal - SWUT and Context External : Generalization of results
Research Questions
Devices

How Goal Deliverable Instrumentation Internal : Assigning consumption value
to a process

Synchronization Construct : Incorrect Measurement
Sampling Conclusion : Insufficient number of repeti-

tions
File Format

Do How Deliverable Measurement Scripts Construct : Incorrect Implementation
Data Files

Analyse Do Deliverable Data Analysis Scripts Conclusion : Not suitable statistical tests
Results and Discussion

• Goal (G): define the research question, the target device(s) on which76

the measurements will take place, and the context in which the SWUT77

is executed.78

• How (H): decide how consumption will be measured and the procedure79

needed to carry out the measurement.80

• Do (D): carry out the measurement and collect the data.81

• Analyse (A): analyse the data and address the research question(s).82

The UML Activity Diagram in Figure 1 summarizes the main activities83

and decisions encompassed by the process and the relative threats to the84

validity of the results.85

Each phase of the process shall produce a deliverable, which summarises86

the decisions taken, the outcomes of the phase, and the said analysis of the87

threats to validity. A summary of the elements provided by each deliverable88

is provided in Table 1. As it is evident in the table, each deliverable serves89

as an input for the following one.90

The following subsections describe each phase of the process along with91

the required information to reproduce it.92

A sample application of the described process to a simple case study will93

be then described in Section 3.94

Each phase requires a few decisions to be taken, some of which can in-95

fluence the validity of the results. Wholin et al. [5] classified the threats to96

4



Activity Diagram0 2018/11/09 powered by Astah 
Activity Diagram0act 

Define the 
research goal

Understand Characterize Compare Predict

[not well known] [partially known] [known, to be campared] [well-known]

Define 
context

Threat to external validity: 
generalisability of results

Define 
procedure

TimeInstant Power Model estimation

Measurement method

Threat to internal validity: 
isolation of SwUT

Threat to construct validity: 
precision and accuracy

Analysis 
method

Threat to conclusion validity: 
statisical soundness

Knowledge of SwUT

Prepare 
setup

Perform 
measurement

Analyse

Threat to construct validity: 
incorrect implementation

Threat to conclusion validity: 
unsuitable statistical tests

Goal

How

Do

Analyse

Figure 1: Summary of activities and decisions of the proposed process.

5



validity as:97

• Internal Validity: focused on how sure it is that the treatment actually98

caused the measured outcome;99

• Construct Validity: focused on the relation between the theory behind100

the experiment and the observation;101

• External Validity: focused on the generalizability of the results outside102

the scope of the study;103

• Conclusion Validity: focused on the relationship between the treatment104

used in the experiment and the actual outcome measured.105

Table 1 shows these categories of threats and how they are impacted by106

each phase of the process.107

2.1. Phase I: Goal108

This phase is about defining the research questions that will drive the109

measurement process. Since the scope of the research questions is restricted110

to energy consumption, we propose to represent the goal as a template in-111

spired by the GQM approach [6]:112

“< understand | characterize | compare | predict> the<consumption>113

of the <SWUT> run on <device(s)> in <context(s)>”.114

An example of a research question obtained applying this template is:115

“Characterize the energy consumption of the Bubble Sort algo-116

rithm implemented in Java language when run on Raspberry Pi117

version 2B in the context of Raspbian Linux OS”.118

The first aspect to consider is the purpose of the measurement, which119

depends on the level of knowledge of a specific process, and includes the120

following options:121

• Understand: this goal applies to the initial investigations for a process122

that is not well known to understand the input and output variables of123

the process. Nominal or ordinal measures may characterize variables.124

6



• Characterize: this goal applies to a process that is partially known125

to enhance its description by providing the input, output, and context126

variables that influence the process. Interval, ratio or absolute measures127

may characterize variables. Relationships between the variables, either128

analytic or probabilistic, are proposed, but their validity is limited.129

• Compare: this goal is a variant of characterising where two similar130

SWUTs are characterised and compared on the variables defined.131

• Predict: this goal applies to well-known processes to provide a model132

that relates all variables in the process. The validity of the model is133

broad, so that output variables are predicted by input variables reliably.134

Consumption can be measured in terms of energy [Joule] or power [Watt],135

which are related and one may be computed from the other. However, in136

practice they are not entirely interchangeable:137

• From the research goal, power offers an immediate view and is suitable138

for tasks with a very long (possibly infinite) duration, while energy is139

suitable for tasks with a finite duration. For instance, if the software140

function to be measured is “read an email message”, or “convert an141

audio file from mp3 to wma”, then energy is the most suitable to char-142

acterise the consumption of the functions. If the software function is143

“control the speed of an engine”, then power is the most suitable.144

• From the measurement as a function of the hardware configuration145

(server vs desktop vs mobile phone), it may be way easier to measure146

power compared to energy, which will be discussed in Section 2.2.147

The SWUT can represent a function, a set of functions, a software pro-148

cess, a software application or a software application subset of features. The149

description of the SWUT includes the programming language, the toolchain150

used to produce it (e.g., the compiler and its version or the linker and its151

version), and the usage scenario. Harman and colleagues [7] identified three152

levels of SWUT granularity: fine grained, corresponding to individual lines of153

code or statements; mid-grained, that is a block of code or a method/proce-154

dure; or coarse-grained addressing a whole program execution over a period155

of time.156

7



The device represents the physical device (or devices) specifications (make,157

model, version, CPU, architecture, and memory) used in the experiment.158

159

The context describes other attributes that may influence the experiment,160

such as:161

• The operating system;162

• The list of processes running while the measurement is performed;163

• The device configuration;164

• Any hardware and software instrumentation used to collect the energy165

information.166

Since a SWUT can be very complex, addressing the research questions167

may require the creation of many subgoals, which aim at measuring the en-168

ergy (or power) consumption of a predefined subset of features of the complex169

SWUT. We will provide a complete example in Section 3.170

As seen in Table 1, the decisions must consider the threats to external171

validity, which regard the generalisation of results:172

1. Threats help identify wether the results are valid only for the analysed173

device(s) and context(s) or they have wider validity.174

2. Threats define the importance the obtained results will be valid on175

other devices or contexts. If yes, then researchers should state how176

device(s) and context(s) should be selected to minimise the external177

threats to validity. If not, researchers should state if it is in the goal of178

the experiment to obtain results only for a specific device and context.179

This type of analysis during the early stages of the process has a twofold180

contribution. It makes the experiment more precise and formal as well as181

forcing who is experimenting to choose the best context(s) and device(s) to182

reach the goal.183

The output of this phase is a deliverable which contains the goal descrip-184

tion comprised of research question(s), device(s), SWUT, context, and the185

external threats to validity analysis.186

8



2.2. Phase II: How187

With the unit of measure (energy or power) determined in the first phase,188

this step will decide how to take the measurement. The three options are de-189

scribed in the following, whereas Table 3 analyses the benefits and drawbacks190

of each technique.191

Instant Power Measurement. This technique measures the instantaneous cur-192

rent consumed by the device and then multiplies this value by the voltage.193

The integral over a period gives the energy value. Instant power measure-194

ments are precise if the sampling frequency is high, but they require physical195

instrumentation. This approach usually operates at the device level – al-196

though hardware component-level measurement is possible – and can work197

with coarse grained SWUT only.198

Time Measurement. Another way to collect the energy consumption of a199

device is through measurement of time. A fully charged (and healthy) battery200

holds a known amount of energy (e.g., 1000 mAh corresponds to 18 kJoules).201

Assuming a constant consumption over time, the speed at which energy is202

depleted depends on the power consumption of the device. So, the average203

power consumed is computed by measuring the time to discharge the battery204

completely. This measurement relies on the precision of the battery capacity205

measure. If this value is imprecise, then so will be the calculated consumption206

value. Another issue is how linearly the battery discharges, especially if207

a measure is collected without fully discharging the battery. For devices208

without a battery (e.g., SoC computers, such as a Raspberry Pi), the type209

of measurement is possible by connecting the device to a battery instead of210

connecting it to the electrical network. This approach has the same limitation211

as the previous one in terms of granularity.212

Model Estimation. Consumption measurements through models are calcu-213

lated in a way that relates the power consumption of a particular device214

with internal resource usage indicators, such as the CPU states, instructions,215

memory or disk accesses, and network adapters. In the literature, there exist216

few examples of power models. For example, A. Patak et al. [8] described a217

power module based on system call tracing. This approach uses system calls218

for estimating the resource usage. Di Nucci et al. [9] proposed a software-219

based approach, named PETRA, proving that those methods are not in-220

herently less precise than hardware-based or model-based solutions. Their221

approach is specifically aimed at testing Android applications. A. Nacci et222

9



Table 2: Elements of the How deliverable

Instant Time Model
Power Measurement Estimation

Hardware Instrumentation X X -
Software Instrumentation - X -
Synchronization X - X
Sampling Frequency X - X
File Format X X X
Threats to Validity X X X

al. [10] introduced an approach to build a power model for Android devices223

by using Android APIs to retrieve a variety of states, including the battery,224

network connection, Wi-Fi, and screen. Two components usually implement225

the models:226

• A resource usage analyser that measures the usage of resources on a227

computer, which depends on the operating system;228

• A resource usage to consumption converter that reads the data pro-229

vided by the resource usage analyser and, based on the mathematical230

model, it converts to consumption values. The mathematical model is231

a parameter that varies according to the device.232

The latter component requires choosing a model suitable for the device on233

which the SWUT will run. The model should provide the estimation error,234

the sampling frequency at which the resource usage is updated, and the235

overhead caused by extracting the resources utilisation. The overhead is a236

crucial value because a software process implementing the model executes the237

resource usage data collection, and, as with all the other software processes,238

it affects the consumption of the device on which it is executed. The sampling239

frequency and overhead are directly proportional.240

This latter approach has the advantage of being applicable also to a fine241

grained SWUT.242

The output of this phase is called How Deliverable as described in Table243

1, which contains the key decisions used for obtaining the consumption of the244

SWUT. The deliverable will contain different elements based on the selected245

measurement approach, as shown in Table 2.246

10



Table 3: Evaluation of measurement techniques

Measurement
Technique

PROS CONS
Energy Power Energy Power

Instant
Power

Measurement

Precise if
sampling

frequency is
high

-

Physical Instrumentation
needed.

Difficult to isolate
a single software

application’s contribution.

Time
Measurement

Precise if the
exact energy
stored in the

battery is
known

-

Requires many
repetitions of long tasks.

Difficult to isolate
a single software

application’s contribution

Model
Estimation

No instrumentation required.
Easy to isolate

a single software
application’s contribution

Precision not always declared

The components of the How deliverable, and the way they vary according247

to the selected approach, are detailed in the following subsections.248

2.2.1. Hardware Instrumentation249

Hardware Instrumentation is required by the approaches based on Instant250

Power and Time Measurement.251

Instant Power. To perform power measurement, the following hardware in-252

strumentation is required:253

• A Voltage Generator;254

• A shunt resistor (e.g. 0,05 Ω);255

• An ADC (analog-to-digital converter);256

• A supervising device.257

11



Figure 2: Circuit designed to measure instant power consumption

Figure 2 shows a typical configuration to measure instant power consump-258

tion data from the device. An ADC reads the voltage drop V across the shunt259

resistor. This data is sent to the supervising device, which will be later used260

for the analysis. According to Ohm’s Law, V/R provides the current I, so261

the instant power consumption is calculated by P = V · I. If the device has262

a battery pack, it should be removed because the voltage generator will also263

charge the battery pack during the experiment, providing inconsistent values264

to the ADC. Uncertainty on the power is u(P ) = P ∗ (u(V )/V + u(I)/I).265

Both uncertainties are due to measurement errors and are typically relatively266

small when using suitable devices. On the market there are several power267

meters that can be used for the different categories of devices (e.g. mobile268

phones or single board computers, PCs, etc.). It is not required to build a269

power meter, however, its internal structure can be simplified to the circuit270

described in Figure 2.271

Time Measurement. As described in Figure 3, a supervising device takes the272

system times during the test run, when the battery level changes, and when273

the device battery is completely discharged. For automating the time mea-274

surement, a programmable switch (represented by the dotted line connection275

between the supervising device and the switch) may be used to manage the276

charging process of the battery when it reaches a predefined discharge value277

(e.g., 2%). If the battery information is not available, then the predefined dis-278

charge value is 0%, and the device under test will turn off. Here, the problem279

is how to trigger this event. An example could be reading the output voltage280

value of a USB port with an ADC. When the voltage starts decreasing, the281

device is turning itself off, so this event can trigger the battery recharge.282

12



Figure 3: Hardware configuration for time measurement

2.2.2. Software Instrumentation283

The Software Instrumentation is required only if the Time Measurement284

approach is selected. Time measurements require an automated procedure,285

which calls the SWUT continuously until the battery is discharged. At the286

end of the measurement, the result is an average consumption of the entire287

test run. To summarise, the measurement procedure should perform the288

following steps:289

• Charge the battery until maximum battery level;290

• Record the system time;291

• Run the SWUT inside a loop until the battery is completely discharged.292

Typically, the SWUT is not able to completely discharge the battery293

in a single execution, so it must be run many times in an infinite loop294

while recording the number of runs;295

• Record system time when the battery charge level changes (if this data296

is available);297

• Re-record the system time when the battery charge level reaches a pre-298

defined minimum value or when it is completely discharged. Compute299

the experiment total time T and the number of runs, and then store300

the results in a file;301

13



• Recharge the battery until it is fully charged;302

• Repeat these steps to obtain reasonable statistics (e.g., 30 data points303

represents a meaningful dataset [11]).304

Once the raw data is collected, the average power consumption is computed305

by analysing the time spent to completely discharge the battery as P =306

(C/T ) · V , where:307

• P is the average power consumption consumed in an hour,308

• C is the total capacity of the battery in mAh1,309

• T is the time needed to discharge it in hours, and310

• V is the voltage provided by the battery.311

While the total energy consumed can be computed as E = C · V .312

The uncertainty on the P is u(P ) = P ∗ (u(C)/C + u(T )/T + u(V )/V ),313

thus depending on:314

• u(C): the uncertainty on the actual battery capacity, this is the most315

critical since battery tend to change their capacity over time and even316

new batteries might have actual capacity quite different from the nom-317

inal one;318

• u(T ): the error in the time measurement: this error is typically small319

since complete battery discharge requires a long time;320

• u(V ): the error in the voltage measurement: this error must be mini-321

mized using suitable measurement devices.322

This technique assumes a constant power consumption value over the323

entire battery discharge time.324

1Or the totale capacity minus the residual capacity at the predefined minimum.

14



2.2.3. Synchronization325

Instant Power. In this approach, the consumption data – collected with a326

certain sampling frequency – is available on the supervising device used for327

collecting the data. However, power consumption must be associated with328

the process executing the SWUT, and this information is available on the329

DUT. In other words, it is needed to synchronise the time scales of the DUT330

and the supervising device. This problem can be solved in two ways:331

• Synchronize the DUT and the supervising device system times so that332

each sample belongs to a known timestamp.333

• Instrument the code by adding distinctive power patterns for a defined334

period before and after each run.335

The first approach requires accurate time synchronisation between the DUT336

and the measurement device to record only the consumption related to the337

SWUT execution. The synchronisation could be achieved using NTP (Net-338

work Time Protocol). However, this solution can cause errors of more than339

100 ms due to network congestion. It also requires both the supervising de-340

vice and the device under test to be connected at least to a LAN to reach341

the NTP server. An error in the synchronisation between the two devices342

can lead to data invalidation, especially in experiments carried out in cas-343

cade because the consumption data collected is not entirely related to the344

SWUT. The second approach allows for the association of the consumption345

to a SWUT without synchronisation by adding markers in the SWUT. The346

markers are known as code patterns, which produce distinctive data con-347

sumption patterns identifiable by data analysis after the data collection, and348

may be defined as:349

• Busy Marker: a function executing an empty infinite loop.350

• Sleep Marker: a call to the sleep function.351

It is possible to automatically identify these well-known patterns in the con-352

sumption data using signal processing techniques because the busy marker353

has very high power consumption, while the sleep marker has very low power354

consumption (see section 2.4). Figure 4 presents three busy markers, two355

sleep markers, and one execution of the SWUT tagged as work.356

15



Figure 4: Consumption data and instrumented SWUT

Model Estimation. The problem related to time and data synchronisation357

is similar when this approach is adopted. Instead of having a consumption358

value, there will be resource usage data. It will then be required to translate359

the resource usage data into consumption data allowing the use of a times-360

tamp to isolate the consumption data related to the SWUT. Alternatively, it361

is possible to add a marker before and after the SWUT to identify the SWUT362

consumption data between the two markers. While the latter approach can363

be followed exactly, the first approach is more straightforward because the364

model estimation does not require a supervising device, and hence there is no365

need to perform clock synchronisation. So it is possible to isolate the SWUT366

consumption data by using timestamps.367

2.2.4. Sampling Frequency368

A sampling frequency is required when the Instant Power and Model Es-369

timation approaches are adopted. The instant power consumption measure-370

ment represents the average power consumption in each sample. A suitable371

sampling frequency is 125 kHz because only 1% of energy is consumed above372

this frequency as stated by Saborido et al. [12]. The authors stated that a373

10 kHz measurement could lead to an error of 8%, so such a low sampling374

frequency causes significant errors.375

The size of the data log should be considered as another constraint. Con-376

sidering that each sample could be ∼ 10 bytes, at 10 kHz frequency the script377

produces ∼ 100 Kbytes per second. So, the sampling frequency should be378

selected carefully based on the duration of the process running the SWUT,379

16



the related size of the data logged, and the acceptable error.380

The same sampling frequency tradeoffs are valid for the Model Estimation381

approach. However, it should be taken into account that logging the resource382

usage too frequently can cause a sensible overhead.383

2.2.5. File Format384

The How Deliverable document contains the explanation of the raw data385

file format that is used.386

For Instant Power measurements, the raw data is included in a plain text387

file with each line containing the instant current in A in the sample time T.388

This format is simple, easy to read, and does not contain any extraneous data.389

If the instant measurement contains multiple data (e.g., current, voltage, and390

the current system time), then it is better to organise the file in JSON or391

XML format to explicitly express the type of data included in the file. Such a392

definition of a file format and content is useful for creating data file parsers.393

The same file format can be applied to the Model Estimation approach,394

given that the output provided by the model is parsed and converted into395

consumption.396

In case of Time Measurement, the raw data is included in a plain text file397

representing the duration of the experiment. This format is simple, easy to398

read, and does not contain any extraneous data, for example, 1:15:13.041454.399

2.2.6. Analysis method400

The typical goal of an energy measurement campaign is to assess whether401

any main factor, e.g., a specific algorithm or computation architecture, affects402

the energy consumption for specific tasks. In addition, often the experimental403

design allows for the monitoring of possible confounding factors. For this404

purpose, a basic analysis approach consists of fitting a linear model for the405

factors with the form:406

Energy = cMF ×MainFactor + cCF × CoFactor
The factor variables can be a basic indicator or continuous variables. The407

linear model will be subject to an ANalysis Of VAriance (ANOVA) to under-408

stand the statistical significance of the factor effects on the power. ANOVA409

is a statistical method to analyze the difference of means among different410

groups; ANOVA attributes the variance of means to different sources and411

evaluates the probability that an observed difference is due to an actual ef-412

fect of factor versus random effects (e.g. measurement noise). Typically such413

17



probability – called p-value – is compared against a predefined threshold414

(5% is a common choice) to decide whether it is possible to state that the415

treatment had a real effect.416

The ANOVA is a parametric test, meaning that its results are reliable417

when a few conditions are met, the most important being the normality of418

the samples. The normality can be checked by means of the Shapiro-Wilk419

test; if the test return a a p-value smaller than a given α level it is possible420

to conclude that the data is not drawn from a normal distribution.421

When the parametric assumption for ANOVA are not be met, a per-422

mutation test alternative to ANOVA can be used (e.g., using the lmPerm423

R package [13]). In addition to the statistical significance, it is important424

to evaluate the magnitude of the effect of the factors. A basic assessment425

can be performed by looking at relative values of the estimated regression426

coefficients or by means of standardised coefficients, such as η2.427

When a simple comparison of two samples is required, without any co-428

factor involved a t-test can be applied, being a simplified version of an429

ANOVA.430

2.2.7. Threats to Validity Analysis431

Regardless of the chosen approach, the How deliverable must contain an432

analysis of three different threats to validity.433

Internal validity. It depends on whether the consumption data is related to434

the execution of the SWUT. Several possible cases include the following:435

• The device has no operating system and executes only the SWUT. The436

consumption of the device can be attributed entirely to the SWUT.437

• The device has a multitasking OS. The SWUT and other processes (at438

the application or OS level) run concurrently. The problem is how to439

attribute the consumption of the device to each process (and to the440

SWUT, in particular). An option is to stop all processes except the441

one that executes the SWUT. This is unfeasible in most OSs, so the442

remaining option is to minimise the set of running processes to those443

strictly required by the OS. Then, it is possible to measure the device444

consumption both when the device is idle, i.e., only OS-related pro-445

cesses are running, and when it is running the SWUT. The difference446

between the two consumption values represents a reasonable approxi-447

mation of the effective consumption attributable to the SWUT.448

18



• The device has a multicore processor. The SWUT can be executed on449

any core at a specific CPU frequency. For this reason, it is unlikely450

that two consumption measurements for the same SWUT performed451

on the same device provide the same value.452

The execution of the SWUT not in isolation, might be less a threat when the453

goal of the process is to perform a comparison. In such a case, a comparison454

can be performed when assuming the noise produce by other programs is455

similar for all tested alternatives.456

Construct validity. It depends on how consumption is measured as well as457

the precision of the measurement:458

• Instant power consumption has precision impacted mostly by the pre-459

cision of the current measurement, and by the noise produced by pro-460

cesses executed in parallel with the SWUT (see discussion above on461

internal validity).462

• Time measurement has precision impacted by the measure of the energy463

contained by the battery, by the non-linear discharge pattern, by the464

reduction of battery capacity with the recharging cycles, and by the465

time required to identify that the energy contained by the battery falls466

below a defined threshold.467

• Model estimation builds on the precision of the model as its key at-468

tribute. The model may or may not consider relevant factors (for in-469

stance, heating) and, therefore, produce poor estimates.470

Conclusion validity. It is the final category of threats to analyse during this471

phase. For gaining statistical evidence, the researcher must plan a certain472

number of repetitions of the same consumption measurement. Sometimes473

this can be an issue, especially in time measurements where each run can474

last hours. Thus, when it is not feasible to plan many repetitions of the475

same run, the investigator should consider a tradeoff between the number of476

repetitions and the possible error in the conclusions. Appropriate statistical477

tests should be used to determine the likelihood of observed differences or478

the confidence intervals associated with measurements.479

19



2.3. Phase III: Do480

In this phase, the researcher implements the experiment designed in the481

previous phases. The crucial part is the procedure automation. Each exe-482

cution of the procedure should be autonomous, and at the conclusion, the483

researcher should be able to collect the data without interventions. Human484

intervention will alter the procedure execution because it will not be repeat-485

able with the same actions. Achieving this requires defining a script that486

performs the same procedure multiple times. So, the goal of this phase is to487

provide an automated procedure valid for the DUT(s) used in the experiment.488

In the case of instant power consumption measurement, the scripts should489

automate both the data acquisition and the SWUT execution. When per-490

forming a time measurement, the script must store all the system times as491

well as manage the battery recharge to avoid human intervention. In [14] and492

[15], the authors explained a possible implementation of this kind of scenario493

automation for time measurements. For model measurements, the scripts494

run all the software measurements tools defined in the previous phase and495

collect resource usage logs for each scenario.496

An incorrect setup of the experiment poses a threat to Construct validity497

of the results since it could lead to measuring the wrong construct.498

The output of this phase will be the scripts, which automate the data499

collection procedure and a set of files, which contain the raw energy con-500

sumption data according to the data format provided in the previous phase.501

The Do Deliverable document, introduced in Table 1, will be a synthetic502

report that lists and explains the content of each script and raw data. The503

availability of scripts and data make the replication and verification of results504

– essential in any scientific approach – to be carried out by third party. A505

recommended practice, is to leverage open public repositories – e.g. figShare,506

Zenodo, and GitHub – to store scripts and data.507

2.4. Phase IV: Analyse508

In this phase, the consumption data collected in the previous phase is509

analysed. There are two approaches for identifying task-related data in power510

traces:511

• Online with synchronisation between the recorder and under measure-512

ment systems, and513

• Offline using added markups to the traces.514

20



With the first approach, only the portion of the traces pertaining to the515

observed tasks is recorded and later processed. The approach requires accu-516

rate synchronisation that is based on the capability to timely communicate517

between the device and the measurement instrumentation.518

The second approach requires all the traces for a series of experiments to519

be recorded, and then, during an analysis phase, the segments pertaining to520

the observed tasks are extracted and processed. It requires no synchronisa-521

tion as it suffices for trivial instrumentation to add markups into the traces.522

This approach is supported by the R package Powtran2. The result of the523

power trace analysis is the total amount of energy consumed to perform a524

task.525

The energy consumption obtained in either way can then be analyzed526

according to the method defined in the How phase.527

The Analyse phase might pose a threat to the Conclusion validity. In528

particular the data must be checked for the presence of outliers, which must529

be assessed, then a decision must be taken concerning their possible removal.530

In addition the distribution of the energy data should be identified; this is531

important to allow the choice of the appropriate statistical tests.532

The output of this phase is a deliverable, called the Analyse Deliverable as533

described in Table 1, which contains Data analysis scripts, the Data analysis534

results, and the conclusion threats to validity analysis.535

3. Applying the Consumption Measurement Process536

In this section, we show how the proposed process can be applied to an537

example in which a battery-powered Raspberry Pi is used to sort integer538

values gathered by a sensor. The experiment can be deemed as represen-539

tative of a typical environment in which measuring the energy consumption540

of a software application is required, since that estimation is crucial for the541

development of embedded software [16]. In the example, it is required to542

choose the most efficient sorting algorithm to maximize battery time. Given543

that the issue is the battery time, all the consumption measurements will544

be energy measurements. The following subsection is a process deliverable545

according to our proposed framework.546

2https://github.com/SoftengPoliTo/powtran/ (Last Visited: 2019/09/22)

21

https://github.com/SoftengPoliTo/powtran/


3.1. Goal Deliverable547

As defined in Section 2.1 the Goal deliverable contains the research ques-548

tions, the description of SwUT, device, context, and the external threats to549

validity analysis.550

3.1.1. Research Questions551

RQ1 Compare energy consumption of Counting Sort algorithm implemented552

in C language and Merge Sort algorithm implemented in C language553

run on Raspberry Pi version 2B in the context of Raspbian Linux OS:554

RQ1a Characterise the energy consumption of the Counting Sort al-555

gorithm implemented in C language run on Raspberry Pi version556

2B in the context of Raspbian Linux OS;557

RQ1b Characterise the energy consumption of the Merge Sort algo-558

rithm implemented in C language run on Raspberry Pi version 2B559

in the context of Raspbian Linux OS.560

3.1.2. SWUT Description561

The following two SWUTs are considered in the experiment:562

• Counting sort: 2-pass sorting algorithm, with O(n) time complexity;563

• Merge sort: single-pass sorting algorithm, with O(nlogn)] time com-564

plexity.565

A brief description of the considered algorithms and the code implemen-566

tation are reported in appendix Appendix A.1.567

We planned five distinct dataset to test the SwUT labeled with numbers568

from 1 to 5. The first dataset contains numbers from 0 to (DATASET SIZE569

-1) in ascending order and the second dataset contains numbers in descending570

order from (DATASET SIZE -1) to 0. The remaining three datasets contain571

pseudo-random numbers with values between 0 and (DATASET SIZE-1).572

The seed is known, so the same pseudo-random numbers can be generated573

anytime. For these data, DATASET SIZE represents 50000 elements.574

3.1.3. Device Specifications and Context575

The most relevant hardware specifications for the tested device, a Rasp-576

berry Pi 2B, are specified in table 4.577

The context of the measurement is specified in table 5. The full set of578

device specifications and the complete list of processes running during the579

experiment is reported in appendix Appendix A.2.580

22



Parameter Value

CPU 900Mhz Quad-Core ARM Cortex-A7
RAM 1GB
Graphics Core VideoCore IV

Table 4: Goal deliverable - Devices

Parameter Value

OS Raspbian Linux OS: Jessie Lite
Kernel Version 4.4
OS Config. Default
No. running processes 22
Power information collection interface ADC NI USB 6210
Power information processing C software written with NI library3

Table 5: Goal deliverable - Context

3.1.4. Threats to External Validity Analysis581

The results will be valid only for Raspberry Pi version 2B, and the ex-582

perimenters accept this restriction.583

3.2. How Deliverable584

As defined in section 2.2, the how deliverable for an Instant Power mea-585

surement will contain the following sections: Hardware Instrumentation, Syn-586

chronization, Sampling Frequency, File Format, Threats to Validity Analysis.587

3.2.1. Hardware Instrumentation588

• Voltage generator: 5V (max 2A)589

• Shunt Resistor: 0,05 Ω590

• ADC: National Instrument NI-6210591

• Supervising device: Desktop Computer592

3.2.2. Sampling and Data Synchronization593

There will be no clocks synchronisation or post-processing data analysis.594

3.2.3. Sampling Frequency595

The selected sampling frequency is 125 khz.596

23



3.2.4. File Format597

The file name includes the following details about the experiment: de-598

vice maker, device model, algorithm name, programming language, dataset599

size, dataset label (e.g., progressive number). A sample file name can be600

Raspberry 2b counting c 5000 1. A file content sample can be the following:601

1 ,149160E+0602

1 ,142452E+0603

1 ,152316E+0604

3.2.5. Threats to Validity Analysis605

To limit the Threats to Internal Validity related to the correct determi-606

nation of the consumption value for a specific process, we plan to:607

• Run the experiment on a new installation of a Raspbian Lite OS to608

minimise the number of concurrent processes,609

• Measure the instant power consumption of the device in idle, and610

• Subtract the idle value from the data obtained in each run (see section611

3.2.7).612

To limit the Threats to Construct Validity, we provide a voltage mea-613

surement of the shunt resistor. The value logged in the file is the voltage614

multiplied by the voltage divided by the shunt resistor value. This multipli-615

cation will provide the instant power consumption value according to Ohm’s616

Law, P = V I. In this computation, we do not take into account the shunt617

resistor temperature, which could alter our measurement. We are willing to618

accept this error because it is not going to affect our results significantly.619

To limit the Threats to Conclusion Validity, we will repeat each measure-620

ment 30 times.621

3.2.6. Do Deliverable622

We will collect instant power consumption during the execution of the al-623

gorithm. In the analysis phase, we will transform instant power consumption624

to an energy value by computing the integral of instant power consumption625

over the experiment time interval. For automating the experiment, we cre-626

ated a script in the Python language, to:627

• Run the data collector on the supervising device;628

24



• Run the SwUT on the Raspberry Pi;629

• Store the instant power consumption on a text file;630

• Commit and push the instant power consumption file to a local git631

repository.632

The Raspberry Pi is connected to a router on a LAN. The supervising633

device is also connected to the same network, so it is possible to run the634

SwUT via SSH. The script reads the To-Do Listfrom an input file. The To-635

Do List includes a line representing each run of the SwUT specifying the636

following information:637

• Device Model;638

• Programming Language;639

• SwUT;640

• Dataset Size;641

• Dataset Label.642

To repeat these operations programmatically, we created a program, called643

executor, to run on the Raspberry Pi, which takes the following as input:644

• The SwUT name;645

• The Dataset size;646

• The dataset Label.647

When started, the executor will:648

1. Create the dataset dynamically;649

2. Run the marker;650

3. Run the SwUT;651

4. Repeat points 2 and 3 thirty times;652

5. End.653

The experiment automation script in python, the To-Do List file, and the654

raw data are available online on an open repository [17].655

Each element of the To-Do List executes the same task thirty times, as656

described in Section 3.2.5. Each run is preceded by the implementation of657

a marker, which allows the identification of the SwUT in the instant power658

consumption data.659

25



Table 6: Summary statistics of energy by algorithm

Algorithm Mean Median SD p.SW

counting sort 2.30 2.33 0.25 p <0.001
merge sort 8.69 8.55 1.22 p <0.001

3.2.7. Analyse Deliverable660

Corresponding to the original RQ, we formulate the following null hy-661

pothesis: There is no significant difference in the central tendency of the662

energy consumed by the two algorithms in performing the sorting task. The663

significance level (α), corresponding to the risk of committing a type I error,664

i.e., rejecting the null hypothesis while it is true, may be assigned to the665

standard 5%.666

Analysis Results. The distribution of the energy consumed per task can be667

represented graphically by means of a boxplot displayed in Figure 5668

Figure 5: Energy consumed by the two algorithms for sorting an array of 50,000 elements.

A summary of the data, together with a central tendency, dispersion, and669

normality is reported in Table 6. The values are reported in millijoules.670

26



We observe that the last column, reporting the p-value of the Shapiro-671

Wilk test, contains values that are smaller than 5% (our reference value). We672

can reject the null hypothesis for both algorithms that the values are sam-673

pled from a normal distribution. Therefore, we should apply non-parametric674

statistics in the following analysis. To check the null hypothesis, we can apply675

a Mann-Whiteny U test. The p-value returned by the test is smaller than the676

reference level, so we can reject the null hypothesis. We conclude that a sig-677

nificant difference in energy consumption exists between the two algorithms.678

To quantify the magnitude of the difference, we compute the standardized679

effect size. For this purpose, we adopt the Cliff’s Delta statistic. We obtain680

an effect size of -1 meaning that the amount of energy consumed by the first681

algorithm (counting sort) is smaller than the second (merge sort) by a sig-682

nificant amount. So, we conclude counting sort is the algorithm to select for683

better energy efficiency.684

4. Related Work685

During recent years, the interest in how software influences the power686

consumption of a device has increased sharply. It is possible to divide the687

related work on the topic into two categories:688

1. Energy consumption measurement/estimation.689

2. Energy consumption reduction/optimization.690

The first category focuses on the way in which energy is measured or es-691

timated. A recent work by Harman et al. [7] categorizes Energy Testing692

as one of the most important fields for Search-Based Software Engineer-693

ing, and highlights the need for trustable metrics and for quick and well-694

defined energy-measuring procedures. The paper also highlights several novel695

hardware-based approaches, e.g., the SEEP [18] approach using symbolic ex-696

ecution to capture and re-execute paths. The approach we propose is adapt-697

able to any alternative method for measuring energy or power, since using a698

different procedure would only have impact on the hardware section of the699

How deliverable and on the Do deliverable where the steps of the experiments700

are formalized.701

Noureddine et al. [19] review different energy measurement approaches702

that can be classified as measurement/estimation and modelling. In this first703

sub-category, the goal is to determine the energy consumption through the704

hardware equipment, while the latter creates a mathematical model of the705

27



device energy consumption to provide energy data without external equip-706

ment. By analysing the literature, we see that Hindle et al. [20] proposed an707

approach to measure how the energy consumption of software applications708

varies through the different versions. There exist working prototypes, which709

allow estimating the energy consumption of mobile devices, the most popular710

being DevScope [21], AppScope [22], and En-Track [23]. This work proposes711

complete and working prototypes for measuring the power consumption of712

Android applications. The main problem of these approaches is the limited713

number of supported devices. For this reason, it is difficult to replicate the714

studies to validate the measurements or to apply the same measurement on715

a slightly different device or software.716

The second category focuses on the changes to be made to the architecture717

or the source code to achieve the energy consumption reduction or optimisa-718

tion. The literature review by Aleti et al. [24] describes some approaches to719

reduce the energy consumption by improving the software architecture.720

All these efforts are typically individual optimisation and are difficult to721

apply to general cases. Furthermore, both categories share some common722

steps to be performed, such as data collection, code instrumentation, and723

data analysis, but often it is not easy to compare the procedures in different724

experiments since a uniform notation for the documentation of similar tasks725

is missing. So, it is useful to think about a general process to measure726

the power consumption of a software application, and to provide the tools727

needed to document and analyse the data obtained in the measurement. To728

our knowledge, such a general and repeatable approach is still missing in the729

literature.730

It is possible to identify many references that measure the energy con-731

sumption of software applications and propose ways to reduce it, such as [9]732

[25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40], [41]. In733

Table 7 we compare the information (listed as table columns) provided by our734

process along with the information provided by each of these papers (listed735

as table rows). A check mark (X) indicates that the current information736

carried out by our process is also included in the related paper. In Section737

2 we explain in detail all information produced as the output of our process.738

Table 7 shows that in the literature there are methods for measuring the739

energy consumption of software applications. However, there is no common740

procedure to extract the energy data from software applications. In detail,741

all the analysed works lack the following features:742

28



Table 7: Comparison between related work and our process
Related paper [9] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41]

Goal Deliverable
RQ Definition X X X X X X X X X X X X X
Software Under Test Description X X X X X X X X X
Device Context Info X X X X X X X

How Deliverable
Measurement or Estimation Technique De-
scription

X X X X X X X X X X X X X X X X X X

Hardware and Software Instrumentation X X X X X
Sampling Frequency Used X X X X X X X X
Data Format Description

Do Deliverable
Implementation Scripts Description and
Publication
Raw Data Publication

Analyse Deliverable
Statistical Data Analysis X X X X X X X X
Threats to Validity Analysis X X X X X X X X X X X

• Provide all the information that are part of our process;743

• Explain step-by-step how to replicate the experiment, and744

• Provide a defined format to publish the raw data obtained.745

Following a defined procedure will enable a comparison between data of dif-746

ferent experiments. This will guide developers toward countermeasures to747

handle cases of high-energy consumption. We previously identified a high-748

level framework [42], which describes the motivations that lead to measuring749

the energy consumption of software applications. So, the main contribution750

of this work proposes a common process to be used by anyone to extract751

energy data of software applications in such a way as to have comparable752

data that is extracted and analyzed in a standard way.753

5. Conclusion754

The awareness of energy consumption is an emerging quality for soft-755

ware and hardware. The expansion of mobile device usage as well as the756

diffusion of IoT devices made energy consumption a critical issue due to757

the limited amount of energy batteries can store. In this paper, we pre-758

sented a well-defined and rigorous approach to plan and conduct software759

energy consumption measurements that, to the best of our knowledge, was760

not previously available in the literature. The proposed procedure incorpo-761

rates features enabling the adoption of evidence-based software engineering762

as it produces results that are:763

29



• Trustable: detailed documentation of goals, planning, and execution764

allows quality assessment.765

• Comparable: the contextual details and the uniformity of the process766

ease comparison.767

• Actionable: the factors are defined and, thus, any energy improvement768

actions can be properly targeted.769

The approach is applicable in a real-world context and has been applied770

by the authors in previous research. In addition, a sample application is771

reported to serve as a template guide for third-party applications.772

Furthermore, the approach also serves as a checklist for assessing existing773

studies. We used it in this sense to evaluate the related work, as summarized774

in Table 7.775

For future work, we plan to create a repository where it will be possible776

to upload the deliverables produced according to the process we describe.777

Such repository would allow comparing different studies and building an778

empirically backed body of knowledge.779

6. Statements780

6.1. Conflict of Interest781

The authors declare that there is no conflict of interest regarding the782

publication of this paper.783

6.2. Data Availability784

The data used to support the findings of this study are included within785

the article in the form of references linking to resources available on the786

figShare public open repository.787

References788

[1] J. Bornholt, T. Mytkowicz, K. S. McKinley, The model is not enough:789

Understanding energy consumption in mobile devices, in: Proceedings790

of 2012 IEEE Hot Chips 24 Symposium (HCS), pp. 1–3.791

[2] P. Fairley, Blockchain world - feeding the blockchain beast if bitcoin792

ever does go mainstream, the electricity needed to sustain it will be793

enormous, IEEE Spectrum 54 (2017) 36–59.794

30



[3] B. Mochocki, K. Lahiri, S. Cadambi, Power analysis of mobile 3d graph-795

ics, in: Proceedings of the Conference on Design, Automation and Test796

in Europe: Proceedings, DATE ’06, European Design and Automation797

Association, 3001 Leuven, Belgium, Belgium, 2006, pp. 502–507.798

[4] T. Dyba, B. A. Kitchenham, M. Jorgensen, Evidence-based software799

engineering for practitioners, IEEE Software 22 (2005) 58–65.800

[5] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A. Wesslén,801

Experimentation in Software Engineering: An Introduction, Kluwer802

Academic Publishers, Norwell, MA, USA, 2000.803

[6] R. Van Solingen, V. Basili, G. Caldiera, H. D. Rombach, Goal question804

metric (GQM) approach, Encyclopedia of software engineering (2002).805

[7] M. Harman, Y. Jia, Y. Zhang, Achievements, open problems and chal-806

lenges for search based software testing, in: 2015 IEEE 8th International807

Conference on Software Testing, Verification and Validation (ICST),808

IEEE, pp. 1–12.809

[8] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, Y.-M. Wang, Fine-grained810

power modeling for smartphones using system call tracing, in: Proceed-811

ings of the Sixth Conference on Computer Systems, EuroSys ’11, ACM,812

New York, NY, USA, 2011, pp. 153–168.813

[9] D. Di Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaidman,814

A. De Lucia, Software-based energy profiling of android apps: Sim-815

ple, efficient and reliable?, in: 2017 IEEE 24th international conference816

on software analysis, evolution and reengineering (SANER), IEEE, pp.817

103–114.818

[10] A. A. Nacci, F. Trovò, F. Maggi, M. Ferroni, A. Cazzola, D. Sciuto,819

M. D. Santambrogio, Adaptive and flexible smartphone power modeling,820

Mobile Networks and Applications 18 (2013) 600–609.821

[11] R. Hogg, E. Tanis, Probability and Statistical Inference, Prentice Hall,822

2006.823

[12] R. Saborido, V. Arnaoudova, G. Beltrame, F. Khomh, G. Antoniol,824

On the impact of sampling frequency on software energy measurements,825

PeerJ PrePrints 3 (2015) e1219.826

31



[13] B. Wheeler, M. Torchiano, lmPerm: Permutation Tests for Linear Mod-827

els, 2016. R package version 2.1.0.828

[14] L. Ardito, M. Torchiano, M. Marengo, P. Falcarin, glcb: an energy829

aware context broker, Sustainable Computing: Informatics and Systems830

3 (2013) 18 – 26.831

[15] L. Ardito, Energy aware self-adaptation in mobile systems, in: Proceed-832

ings - International Conference on Software Engineering, pp. 1435–1437.833

[16] M. Ibrahim, M. Rupp, H. Fahmy, A precise high-level power consump-834

tion model for embedded systems software, EURASIP Journal on Em-835

bedded Systems 2011 (2011) 480805.836

[17] R. Coppola, M. Torchiano, L. Ardito, Methodological Guidelines for837

Measuring Energy Consumption of Software Applications - Replication838

Package for Raspberry PI case study, https://doi.org/10.6084/m9.839

figshare.9879503.v1, 2019.840

[18] T. Hönig, C. Eibel, R. Kapitza, W. Schröder-Preikschat, Seep: exploit-841

ing symbolic execution for energy-aware programming, in: Proceedings842

of the 4th Workshop on Power-Aware Computing and Systems, ACM,843

p. 4.844

[19] A. Noureddine, R. Rouvoy, L. Seinturier, A review of energy measure-845

ment approaches, SIGOPS Oper. Syst. Rev. 47 (2013) 42–49.846

[20] A. Hindle, A. Wilson, K. Rasmussen, E. J. Barlow, J. C. Campbell,847

S. Romansky, Greenminer: A hardware based mining software reposi-848

tories software energy consumption framework, in: Proceedings of the849

11th Working Conference on Mining Software Repositories, MSR 2014,850

ACM, New York, NY, USA, 2014, pp. 12–21.851

[21] W. Jung, C. Kang, C. Yoon, D. Kim, H. Cha, Devscope: A nonintrusive852

and online power analysis tool for smartphone hardware components, in:853

Proceedings of the Eighth IEEE/ACM/IFIP International Conference854

on Hardware/Software Codesign and System Synthesis, CODES+ISSS855

’12, ACM, New York, NY, USA, 2012, pp. 353–362.856

32

https://doi.org/10.6084/m9.figshare.9879503.v1
https://doi.org/10.6084/m9.figshare.9879503.v1
https://doi.org/10.6084/m9.figshare.9879503.v1


[22] C. Yoon, D. Kim, W. Jung, C. Kang, H. Cha, Appscope: Application857

energy metering framework for android smartphones using kernel activ-858

ity monitoring, in: Proceedings of the 2012 USENIX Conference on859

Annual Technical Conference, USENIX ATC’12, USENIX Association,860

Berkeley, CA, USA, 2012, pp. 36–36.861

[23] S. Lee, W. Jung, Y. Chon, H. Cha, Entrack: A system facility for ana-862

lyzing energy consumption of android system services, in: Proceedings863

of the 2015 ACM International Joint Conference on Pervasive and Ubiq-864

uitous Computing, UbiComp ’15, ACM, New York, NY, USA, 2015, pp.865

191–202.866

[24] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, I. Meedeniya, Soft-867

ware architecture optimization methods: A systematic literature review,868

IEEE Transactions on Software Engineering 39 (2013) 658–683.869

[25] C. Seo, S. Malek, N. Medvidovic, An energy consumption framework for870

distributed java-based systems, in: Proceedings of the Twenty-second871

IEEE/ACM International Conference on Automated Software Engineer-872

ing, ASE ’07, ACM, New York, NY, USA, 2007, pp. 421–424.873

[26] C. Sahin, F. Cayci, I. L. M. Gutiérrez, J. Clause, F. Kiamilev, L. Pollock,874

K. Winbladh, Initial explorations on design pattern energy usage, in:875

2012 First International Workshop on Green and Sustainable Software876

(GREENS), pp. 55–61.877

[27] S. Islam, A. Noureddine, R. Bashroush, Measuring energy footprint878

of software features, in: 2016 IEEE 24th International Conference on879

Program Comprehension (ICPC), pp. 1–4.880

[28] C. Sahin, L. Pollock, J. Clause, How do code refactorings affect energy881

usage?, in: Proceedings of the 8th ACM/IEEE International Symposium882

on Empirical Software Engineering and Measurement, ESEM ’14, ACM,883

New York, NY, USA, 2014, pp. 36:1–36:10.884

[29] D. Li, S. Hao, W. G. J. Halfond, R. Govindan, Calculating source line885

level energy information for android applications, in: Proceedings of886

the 2013 International Symposium on Software Testing and Analysis,887

ISSTA 2013, ACM, New York, NY, USA, 2013, pp. 78–89.888

33



[30] S. Hao, D. Li, W. G. J. Halfond, R. Govindan, Estimating mobile889

application energy consumption using program analysis, in: Proceedings890

of the 2013 International Conference on Software Engineering, ICSE ’13,891

IEEE Press, Piscataway, NJ, USA, 2013, pp. 92–101.892

[31] D. Li, W. G. J. Halfond, An investigation into energy-saving program-893

ming practices for android smartphone app development, in: Proceed-894

ings of the 3rd International Workshop on Green and Sustainable Soft-895

ware, GREENS 2014, ACM, New York, NY, USA, 2014, pp. 46–53.896

[32] D. Li, S. Hao, J. Gui, W. G. J. Halfond, An empirical study of the en-897

ergy consumption of android applications, in: 2014 IEEE International898

Conference on Software Maintenance and Evolution, pp. 121–130.899

[33] D. Li, Y. Jin, C. Sahin, J. Clause, W. G. J. Halfond, Integrated energy-900

directed test suite optimization, in: Proceedings of the 2014 Interna-901

tional Symposium on Software Testing and Analysis, ISSTA 2014, ACM,902

New York, NY, USA, 2014, pp. 339–350.903

[34] C. Sahin, F. Cayci, J. Clause, F. Kiamilev, L. Pollock, K. Winbladh,904

Towards power reduction through improved software design, in: 2012905

IEEE Energytech, pp. 1–6.906

[35] D. Li, Y. Jin, C. Sahin, J. Clause, W. G. J. Halfond, Integrated energy-907

directed test suite optimization, in: Proceedings of the 2014 Interna-908

tional Symposium on Software Testing and Analysis, ISSTA 2014, ACM,909

New York, NY, USA, 2014, pp. 339–350.910

[36] C. Sahin, P. Tornquist, R. Mckenna, Z. Pearson, J. Clause, How does911

code obfuscation impact energy usage?, in: Proceedings of the 2014912

IEEE International Conference on Software Maintenance and Evolution,913

ICSME ’14, IEEE Computer Society, Washington, DC, USA, 2014, pp.914

131–140.915

[37] S. Hao, D. Li, W. G. J. Halfond, R. Govindan, Estimating android916

applications’ cpu energy usage via bytecode profiling, in: Proceedings917

of the First International Workshop on Green and Sustainable Software,918

GREENS ’12, IEEE Press, Piscataway, NJ, USA, 2012, pp. 1–7.919

[38] I. Manotas, L. Pollock, J. Clause, Seeds: A software engineer’s energy-920

optimization decision support framework, in: Proceedings of the 36th921

34



International Conference on Software Engineering, ICSE 2014, ACM,922

New York, NY, USA, 2014, pp. 503–514.923

[39] K. Liu, G. Pinto, Y. D. Liu, Data-oriented characterization of924

application-level energy optimization, in: A. Egyed, I. Schaefer (Eds.),925

Fundamental Approaches to Software Engineering: 18th International926

Conference, FASE 2015, Held as Part of the European Joint Confer-927

ences on Theory and Practice of Software, ETAPS 2015, London, UK,928

April 11-18, 2015, Proceedings, Springer Berlin Heidelberg, Berlin, Hei-929

delberg, 2015, pp. 316–331.930

[40] K. Liu, G. Pinto, Y. D. Liu, Data-oriented characterization of931

application-level energy optimization, in: A. Egyed, I. Schaefer (Eds.),932

Fundamental Approaches to Software Engineering, Springer Berlin Hei-933

delberg, Berlin, Heidelberg, 2015, pp. 316–331.934

[41] D. Li, S. Hao, W. G. J. Halfond, R. Govindan, Calculating source line935

level energy information for android applications, in: In ISSTA, pp.936

78–89.937

[42] L. Ardito, G. Procaccianti, M. Torchiano, A. Vetrò, Understanding938

green software development: A conceptual framework, IT Professional939

17 (2015) 44–50.940

[43] R. Coppola, L. Ardito, M. Torchiano, Methodological Guidelines for941

Measuring Energy Consumption of Software Applications - Acqusi-942

tion Software, https://doi.org/10.6084/m9.figshare.9879569.v1,943

2019.944

35

https://doi.org/10.6084/m9.figshare.9879569.v1


Appendix A. Experiment Details945

Appendix A.1. SWUT code946

Counting sort is a 2-pass sort algorithm that is efficient when the number947

of distinct keys is small compared to the number of items. The first pass948

counts the occurrences of each key in an auxiliary array, and then makes a949

running total so each auxiliary entry is the number of preceding keys. The950

second pass puts each item into its final place according to the auxiliary entry951

for that key. Time complexity is O(n). The implementation has been tested952

and follows the state of the art:953

void c o u n t i n g s o r t ( int A[ ] , int n) {954

int i , ∗B,∗C;955

B = malloc (n ∗ s izeof ( int ) ) ;956

C = malloc (M ∗ s izeof ( int ) ) ;957

for ( i =0; i<M; i++)958

C[ i ] = 0 ;959

for ( i =0; i<n ; i++)960

C[A[ i ] ]++;961

for ( i =1; i<M; i++)962

C[ i ] += C[ i −1] ;963

for ( i=n−1; i>=0; i−−) {964

B[C[A[ i ] ] −1 ] = A[ i ] ;965

C[A[ i ]]−−;966

}967

for ( i =0; i<n ; i++)968

A[ i ] = B[ i ] ;969

}970

The Merge sort algorithm divides the items to be sorted into two groups,971

recursively sorts each group, and merges them into a final, sorted sequence.972

Time complexity is O(nlogn). The implementation has been tested and fol-973

lows the state of the art:974

void my merge c ( int ∗v , int dim) {975

int ∗aux ;976

aux = ( int ∗) mal loc (dim ∗ s izeof ( int ) ) ;977

m er g e s o r t r e c u r (v , 0 , dim−1, aux ) ;978

}979

980

36



void m er g e s o r t r e cu r ( int ∗v , int p , int r ,981

int ∗aux ) {982

int q ;983

i f (p < r ) {984

q = (p+r ) / 2 ;985

m er g e s o r t r e cu r (v , p , q , aux ) ;986

m er g e s o r t r e cu r (v , q+1,r , aux ) ;987

my merge (v , p , q , r , aux ) ;988

}989

}990

991

void my merge ( int ∗v , int p , int q , int r ,992

int ∗aux ) {993

int i , j , k ;994

for ( i=p , j = q+1, k = p ;995

i<=q && j<=r ; ) {996

i f ( v [ i ] < v [ j ] )997

aux [ k++] = v [ i ++];998

else999

aux [ k++] = v [ j ++];1000

}1001

while ( i <= q )1002

aux [ k++] = v [ i ++];1003

while ( j<=r )1004

aux [ k++] = v [ j ++];1005

for ( k=p ; k<=r ; k++)1006

v [ k ] = aux [ k ] ;1007

}1008

Appendix A.2. Devices and Context1009

The hardware specifications for the tested device, Raspberry Pi 2B, in-1010

clude:1011

• A 900MHz quad-core ARM Cortex-A7 CPU1012

• 1GB RAM1013

• USB ports: no devices connected1014

37



• 40 GPIO pins: not used for our experiment1015

• Full HDMI port: no display connected1016

• Ethernet port: connected to a local router without Internet connection1017

• Combined 3.5mm audio jack and composite video: not used1018

• Camera interface: not used1019

• Display interface: not used1020

• Micro SD: Kingston 16GB Class 101021

• VideoCore IV 3D graphics core1022

For this experiment, the context may be summarised as follows:1023

• Raspbian Linux OS: Jessie Lite, Kernel version 4.41024

• Default OS configuration1025

• Processes running during the experiment:1026

– kworker1027

– systemd1028

– kthreadd1029

– ksoftirqd1030

– rcu sched1031

– rcu bh1032

– migration1033

– kdevtmpfs1034

– netns1035

– perf1036

– khungtaskd1037

– writeback1038

– crypto1039

38



– bioset1040

– kblockd1041

– rpciod1042

– kswapd01043

– vmstat1044

– fsnotify mark1045

– nfsiod1046

– kthrotld1047

– bioset1048

• Power information collected through ADC NI USB 62101049

• Power information processed through custom software written in the1050

C language using the default NI library. The software has been made1051

available online through an open repository [43].1052

39


	Introduction
	Software Consumption Measurement Process
	Phase I: Goal
	Phase II: How
	Hardware Instrumentation
	Software Instrumentation
	Synchronization
	Sampling Frequency
	File Format
	Analysis method
	Threats to Validity Analysis

	Phase III: Do
	Phase IV: Analyse

	Applying the Consumption Measurement Process
	Goal Deliverable
	Research Questions
	SWUT Description
	Device Specifications and Context
	Threats to External Validity Analysis

	How Deliverable
	Hardware Instrumentation
	Sampling and Data Synchronization
	Sampling Frequency
	File Format
	Threats to Validity Analysis
	Do Deliverable
	Analyse Deliverable


	Related Work
	Conclusion
	Statements
	Conflict of Interest
	Data Availability

	Experiment Details
	SWUT code
	Devices and Context


