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Reducing Probes for QoT Estimation in Optical
Networks with Active Learning

Dario Azzimonti, Cristina Rottondi, Member, IEEE, and Massimo Tornatore, Member, IEEE

Abstract—Estimating Quality of Transmission (QoT) of a
lightpath before its establishment is a critical procedure for
an efficient design and management of optical networks. Re-
cently, supervised Machine Learning (ML) techniques for QoT
estimation have been proposed as an effective alternative to
well-established, yet approximated, analytic models, that often
require to introduce conservative margins to compensate for
model inaccuracies and uncertainties. Unfortunately, to ensure
high estimation accuracy, the training set (i.e., the set of historical
field data, or “samples”, required to train these supervised
ML algorithms) must be very large, while, in real network
deployments, the number of monitored/monitorable ligthpaths is
limited by several practical considerations. This is especially true
for lightpaths with above-threshold BER (i.e., malfunctioning
or wrongly-dimensioned lightpaths), which are infrequently ob-
served during network operation. Samples with above-threshold
BERs can be acquired by deploying probe lightpaths, but at
the cost of increased operational expenditures and wastage of
spectral resources. In this paper, we propose to use active
learning to reduce the number of probes needed for ML-
based QoT estimation. We build an estimation model based on
Gaussian processes, which allows to iteratively identify those
QoT instances that minimize estimation uncertainty. Numerical
results using synthetically generated datasets show that, by using
the proposed active learning-approach, we can achieve the same
performance of standard offline supervised ML methods, but
with a remarkable reduction (at least 21% and up to 95%) in
the number of training samples.

Index Terms—QoT estimation; Optical Networks; Lightpath
Probing; Active Learning; Gaussian Processes;

I. INTRODUCTION

In modern optical networks, following the adoption of
coherent transmission and of a more flexible spectrum grid,
network engineers can choose among several different trans-
mission configurations (e.g., among multiple modulation for-
mats and/or different frequency-slot widths). In this context,
the choice of the most suitable transmission configuration for
a new lightpath becomes a critical decision to ensure efficient
resource utilization. Hence, the ability to quickly and precisely
estimate the Quality of Transmission (QoT) of a lightpath prior
to its deployment has gained even more importance and has
attracted considerable research attention [1].

Traditionally, QoT prediction has been performed either
using computationally-intensive transmission emulators (as
those based on the Split-Step Fourier method [2]) or based
on approximated analytic models (such as the Gaussian Noise
(GN) model [3] or any of its several more recent extensions
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[4]). The latter models are widely adopted today due to their
simplicity and precision, but they require the introduction of
conservative margins to account for uncertainties in the values
of some input parameters (e.g. deviation from nominal values
in hardware equipment due to aging), incomplete knowledge
of network occupation (e.g., the presence of alien wavelengths)
or of the network configuration (e.g. the link lengths could be
not exactly known in the case of fiber rental).

Machine Learning (ML) has been investigated as a possible
new direction to build tools for QoT estimation that promise
to avoid scalability or uncertainty limits of the previous
approaches. The vast majority of recently-proposed ML-based
QoT-estimation tools adopt offline supervised learning, i.e.,
the ML algorithms are trained using a training set of historical
data. Such datasets contain samples of transmission parameters
(as, most typically, Bit Error Rate (BER) or Optical Signal to
Noise Ratio (OSNR)) collected during network operation by
Optical Performance Monitors (OPMs) [5] located at the re-
ceivers of already-deployed ligthpaths. Each of these samples
is associated to a set of features characterizing the considered
lightpath (e.g., length, number of traversed nodes, modulation
format used for transmission, etc.). Based on the training data,
ML algorithms extract the knowledge necessary to estimate
the QoT of future lightpaths (i.e., predicting whether their
OSNR/BER will exceed a given system threshold).

However, to obtain high estimation accuracy, the training
set needs to be sufficiently large and to contain samples that
explore the whole feature space, and such samples might not
be always available in a production network. A large number
of causes may limit the amount of collectible data (e.g.,
insufficient telemetry, old legacy equipment, etc.), and, in a
more general sense, data might be expensive to acquire (e.g.,at
the early operation stage of the system, when historical data
are still scarce), and/or to label, and shall be extracted/queried
only when necessary. In particular, lightpaths with above-
threshold BER (i.e., exhibiting faults or malfunctions) are
unlikely to be observed in real deployments due to the conser-
vative system-design strategies (i.e., high margins) typically
adopted to guarantee transmission quality. To complement
the training set with above-BER-threshold samples, probe
lightpaths [6] can be used to acquire data associated with
critical transmission configurations that would not be normally
adopted for customer traffic. However, collecting these probes
incur in additional operational costs and higher occupation of
spectral resources.

How to provide accurate ML-based QoT predictions in
presence of small/incomplete training sets is an important and
scarcely explored research issue. In this paper, we propose
an Active Learning (AL) method that works on top of a ML
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predictor based on Gaussian Processes (GP). After an initial
training with a limited number of instances, the proposed
AL algorithm iteratively asks to collect only a few selected
training samples with specific characteristics, with the intent
of minimizing the number of required samples. In particular,
samples that minimize a specifically tailored acquisition func-
tion will be sought for. Such acquisition function is designed
to maximize the increase of prediction accuracy at every
iteration1.

The rest of the paper is organized as follows: after a brief
overview on related work in Section II, we introduce some
background notions on Gaussian Processes and AL in Section
III and then describe the proposed AL solution for QoT
estimation in Section IV. In Section V we numerically assess
its performance, showing that we can obtain higher values of
the Area Under the ROC Curve (AUC), where ROC stands for
Receiver Operating Characteristic, with much fewer training
instances. We draw our conclusions in Section VI.

II. RELATED WORK

Several studies on QoT estimation of unestablished light-
paths have recently appeared (see [8] for a comprehensive
survey). Ref. [9], [10] adopted a cognitive Case Based Rea-
soning (CBR) approach, which stores in a database a list of
Q-factor measurements, together with a set of characteristics
of the associated lightpaths. When a new lightpath has to be
deployed, the table entries which exhibit highest similarity to
the candidate lightpath are used to make an estimation of the
expected Q-factor.

A similar approach is adopted in [11] and [12], respectively
to tune design margins in presence of unknown network
parameters, or to adjust input parameters for the GN model. In
both studies, field data are collected and ingested by a predic-
tion tool that outputs an OSNR estimation based on educated
guesses on the unknown network/GN model parameters.

Two alternative methods named network kriging and norm
L2 minimization are applied in [13]–[16] to perform QoT
estimation. These methods require the installation of probe
lightpaths carrying dummy traffic to acquire field measure-
ments to compute an estimation of the Q-factor of already
established or candidate lightpaths. As probe installation is
costly, the proposed methods explore the tradeoff of mini-
mization of the number of deployed probes and maximization
of the information gain. Our active learning-based method is
conceptually similar: the criterion we adopt to select probe
lightpaths to be deployed is the minimization of an acquisition
function that quantifies the prediction uncertainty. However,
the kriging approach requires that the metrics characterizing
a ligthpath can be expressed as a linear combination of the
link-level metrics calculated over its links. Such linearity
assumption is not necessary in our framework. Moreover, the
above mentioned studies do not take into account the co-
existence of multiple modulation formats and mainly focus on

1A preliminary version of this study appeared in [7]. Here, we detail the
principles of the active learning approach adopted in our framework and
provide an entirely novel and thorough numerical assessment of its predictive
capabilities

single-rate WDM networks (flexi-grid networks are addressed
only in [16], assuming dual baud rate transmission with single
modulation format), whereas we consider traffic requests of
different volume that can be served with 6 different modulation
formats in a flexi-grid network.

Among state-of-the-art learning algorithms, Gaussian Pro-
cesses, Random Forests and Artificial Neural Networks have
been applied to perform the task of QoT estimation. In [17],
Gaussian-Processes nonlinear Regression is adopted to predict
the BER of an optical communication system using as features
the channel input power, lightpath length, symbol rate and
inter-channel spacing, whereas in [6] Random Forests are used
to predict whether the BER of unestablished lightpaths will
exceed a given threshold, based on set of features representing
the transmission parameters of the lightpath.

Artificial Neural Networks (ANNs) have proved to outper-
form other learning algorithms in the task of QoT estimation
[18]. In [19], a transfer-learning approach is adopted to ensure
portability of a Q-factor prediction model over different net-
work topologies, without retraining it from scratch: a few new
samples are used to re-train previously learned ANN weights
instead of starting from randomly initialized ones. An ANN-
based OSNR predictor is proposed in [20] and assessed using
field data gathered from an experimental testbed with WDM
channels transmitting in the range 60-100km. The authors of
[1] design a QoT estimator for intra/inter-domain lightpaths in
a multi-domain network scenario with alien wavelengths. In
[21], Deep Graph Convolutional Neural Networks are adopted
to estimate the QoT of unestablished ligthpaths, also capturing
the impact of its deployment on already established ligthpaths
in terms of crosstalk, considering a flexi-grid optical network
with multicore fibers and four different modulation formats.
The accuracy of the proposed framework is assessed in a
dynamic traffic scenario. ANNs have been adopted also in
[22] in the context of unicast/multicast networks with dynamic
traffic and their performance has been compared to that of a
traditional Q-factor model, showing under which conditions it
can be safely replaced by the data-diven ML approach.

Note that all the above mentioned learning frameworks
adopt offline supervised training or, in a few cases, on-
line learning (i.e., when training data becomes available se-
quentially, for example in mini-batches). Similarly to online
learning, in our work the training dataset size increases as
the number of iteration grows. However, while in online
learning there is usually no control on the training data that
becomes available, here we propose a principled way to deploy
lightpaths that minimize an appropriate acquisition function in
an Active Learning framework. To the best of our knowledge,
ours is the first attempt to apply an AL approach for the QoT
estimation task.

AL is a growing field of research in machine learning with
applications in robotics [23], autoML [24] and uncertainty
quantification [25]. AL is deeply rooted in the literature of
design of experiments from statistics [26] and in Bayesian
optimization [27]. Among AL methods, Gaussian process
[28] based algorithms play a prominent role andthey have
been long used, e.g., in Bayesian optimization algorithms for
global optimization tasks [29] and in the computer experiments
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literature [30], [31]. Such Bayesian optimization algorithms
were then adapted to the problem of sampling a function
around a specified threshold [25], [32], [33]. Here we propose
an AL solution for QoT estimation based on the acquisition
function presented in [25].

III. BACKGROUND

A. The framework

An AL algorithm requires two components: a ML model
that, given a training set, returns predictions at unobserved
inputs, and an acquisition function that guides the selection of
new instances to be added to the updated training set. These
two components form the core of an iterative procedure where:
(i) the ML model is fitted to the training set; (ii) the model
predictions are used to build an acquisition function; (iii) the
minimizer of the acquisition function determines the next data
point to be added to the training set; (iv) the procedure is
repeated. In the context of QoT estimation, the first component
(i.e., the ML model) could either predict whether a certain
instance is above or below the critical system threshold with
a standard classifier, or it could predict the BER value with
a regression model and then threshold the prediction. Here
we follow the second approach because the predicted BER
value is required to define the acquisition function in the active
learning phase. The predictions are obtained with Gaussian
Process (GP) regression.

B. Gaussian Processes

GPs can be considered as a Bayesian implementation of
kernel methods used in both regression and classification
tasks. They are completely characterized by a mean function
m : X→ R and a covariance kernel k : X×X→ R, a positive
semi-definite symmetric function of two arguments, see [28].
Moreover, GPs are probabilistic models that yield a posterior
distribution over the possible values of the model, which
means that they are naturally accompanied by an assessment
of their uncertainty.

In GP regression we observe a training set of ` points in
X, x` = {x1, . . . , x`}, coupled with ` response values y =
(y1, . . . , y`)

T ∈ R` where

yi = f(xi) + ε (1)

for xi ∈ X, i = 1, . . . , ` with a measurement error ε ∼
N(0, σ2

noise) and we denote by f = (f(x1), . . . , f(x`)) ∈ R`
the function values. The observation model described in (1)
can be summarized as p(y | f) = N(f , σ2

noiseI`), where
I` ∈ R`×` is the identity matrix. Note that for the problem
at hand, xi would be a vector of features describing the ith
lightpath in the training set which is coupled with yi, i.e., the
BER value observed for that lightpath.

We assume that the function f is a realization of a GP, thus
we are assuming a prior distribution for the vector f given
by p(f) = N(m,K), where m = [m(x1), . . . ,m(x`)]

T ∈
R` and K ∈ R`×` is a positive definite matrix with entries
determined by the covariance kernel k, i.e. Ki,j = k(xi, xj)
for i, j = 1, . . . , `. Given the observation model and a prior

distribution we can use the Bayes’ theorem to compute the
posterior distribution of f given the observations, i.e.

p(f | y) =
p(f)p(y | f)

p(y)
. (2)

In GP regression, the posterior has the remarkable property of
being normally distributed, with analytical expressions for the
posterior mean and covariance kernel (see [28], chapter 2).

The GP mean function m and kernel k are prior quantities
chosen before observing the data and thus encode our prior
knowledge. In particular, the kernel function determines the
smoothness of the GP regression fit and can be used to
encode prior knowledge on f . For example, if we expect f
to be periodic, we can choose a periodic kernel and all prior
realizations of the GP will be periodic functions. The BER
function we consider in this work, a priori, does not have any
specific property we can encode in k. For this reason, here we
focus on stationary kernels chosen from a parametric family,
such as the squared exponential or the Matérn family. Such
choices only encode a prior knowledge about the smoothness
of the function, as described in the following section.

The parametric families of kernels mentioned above depend
on a few hyper-parameters θ that encode the scale of the output
and the characteristic length scale of each input (see [28],
chapter 4). The hyper-parameters can be learned from data by
maximizing the marginal likelihood of the model. In the GP
regression case this function is analytical ( [28], chapter 2)
and allows for the use of fast gradient-based optimizers.

The posterior distribution of the GP (2) can be used to study
when the function f takes values above a certain threshold
T ∈ R. A central tool for this task is the posterior probability
of excursion p`(x) = P (f(x) > T | y), x ∈ X. This quantity
indicates the probability that f exceeds a threshold at an input
point x and it can be used as the output probability for a binary
classifier. For each testing point x∗ we can evaluate p`(x∗) and
classify the point as above (resp. below) the threshold T if
p`(x

∗) > γ (resp. < γ) for a certain discrimination threshold
γ. In practice, the value for γ can be chosen with different
techniques: we could fix a reference value (e.g. γ = 0.5) or
an adapted value could be chosen by looking at the ROC curve.
In this set-up, since the posterior distribution of f is Gaussian,
the posterior probability of excursion can be written as

p`(x) = Φ

(
m`(x)− T√
k`(x, x)

)
, (3)

where m` and k` denote respectively the mean and covariance
kernel of the posterior distribution of the GP. After training,
m` and k` have closed-form expressions which are fast to
compute for ` < 5000. The function p`(x) will be further used
during the AL phase to explore the feature space in order to
find instances that lead to near-to-threshold BER values.

C. Active Learning with Gaussian processes

The GP regression model introduced in the previous section
is an offline supervised training method: given a training set
(x`,y`), we build a regression model (p(f | y)) and we use
it to predict whether the response will be above or below
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the threshold T by evaluating p`(x
∗) > γ. We can improve

the classification performance of this method by adding new
instances to the training set. In AL we achieve this objective
by selecting new instances that minimize a specific acquisition
function based on the current posterior GP distribution.

In this work we are interested in selecting instances that
improve the prediction performance of the classification func-
tion 1f(x)>T that returns class 1 if the lightpath with features
corresponding to the vector x is above threshold T or class 0
otherwise. In the GP regression framework, for each x ∈ X,
f(x) is a random variable, therefore 1f(x)>T is also a random
variable with mean E`[1f(x)>T ] = P (f(x) > T ) = p`(x) and
variance p`(x)(1 − p`(x)). We can then envision a strategy
that improves the training set by adding instances in such a
way that the future variance of 1f(x)>T is minimized. More
precisely, we minimize the acquisition function defined by the
integrated variance over X, i.e.

J`(x) = E`
[∫

X
p`+1(z)(1− p`+1(z))dz | x`+1 = x

]
, (4)

where E` denotes the conditional expectation given the train-
ing data x`,y` and we are further conditioning the next input
point to be x`+1 = x. The acquisition function in (4) was
introduced in Ref. [25]. In order to compute the integral
in (4), we need to evaluate p`+1, which is unknown since the
x`+1, y`+1 are unknown, however [34] derived the following
closed-form formula for Eq. (4)

J`(x) =

∫
X

Φ2

((
a(z)
−a(z)

)
,

(
c(z) 1− c(z)

1− c(z) c(z)

))
dz,

(5)
where a(z) = (m`(z) − T )/

√
k`+1(z, z), c(z) =

k`(z, z)/k`+1(z, z) and Φ2(·; Σ) is the c.d.f. of a centered
bivariate normal with covariance Σ. The value k`+1(z, z)
can be computed analytically when evaluating J`(x) without
knowing y`+1 (see [34], [35] for more details).

Other strategies that aim at minimizing other types of uncer-
tainties are also possible: for example, Refs. [25], [34] propose
a strategy that minimizes Var

(∫
X p`+1(z)dz

)
and Refs. [33],

[36] develop strategies that minimize the uncertainties on
estimates of the whole set {x ∈ X : f(x) > T}.

IV. THE PROPOSED GP-BASED QOT ESTIMATOR

The AL procedure outlined in the previous Section can be
adapted to QoT estimation. For this purpose we need: (i) to
define a feature space X where each x ∈ X corresponds to a
lightpath; (ii) to choose an appropriate GP regression model;
(iii) to adapt the acquisition function in (4) to our problem.

A. Feature space

In this work, the GP regression model is trained by using
historical BER values associated to 5 lightpath features: num-
ber of links traversed by the lightpath, lightpath length, length
of the longest traversed link, traffic volume and modulation
format. We normalize the 5 input features to the unit hypercube
X = [0, 1]5 and we consider the function fBER : x ∈
X ⊂ R5 → R. In order to improve the fit we transform the
original values of fBER with the logarithm in base 10. This

transformation is applied here purely to increase the fitting
power of the regression method, the analysis of the results
is computed on the back-transformed values. For this reason,
in what follows, we only report back-transformed values for
fBER and T .

B. Choice of the GP model

We assume that fBER is a realization of a GP with a
prior constant mean function m(x), estimated from the data,
and prior covariance kernel k = kθ(x, x

′), where we explicit
the dependency of k on some hyper-parameters θ. Moreover,
to account for time-varying penalties affecting transmission
and for inter-channel crosstalk caused by adjacent lightpaths,
we consider the measurement y of fBER as perturbed by
a normally-distributed noise, i.e., y = fBER(x) + ε, where
ε ∼ N(0, σ2

N ).
The choice of the particular family of kernel kθ encodes

our prior assumptions on fBER. As mentioned in the previous
section we do not have strong prior information on the shape
of fBER as a function of the 5-dimensional input, therefore we
choose standard kernels that only make assumptions regarding
the regularity of the function. We consider the kernels Matérn
with smoothness parameter ν = 3/2 and 5/2 and the squared
exponential kernel. Note that (see [28], chapter 4) by choosing
a Matérn with smoothness parameter ν = q+ 1/2, q ∈ N, we
are assuming that our unknown function belongs to Cq , i.e.,
the space of functions with q continuous derivatives, and with
a square exponential that the true function belongs to C∞,
i.e., the space of differentiable functions for all degrees of
differentiation.

We fix an initial training set x`0 , y`0 of size `0 > 0.
The initial training set is used to estimate the covariance
hyper-parameters θ, by maximizing the likelihood of the GP
model (a step automatically done by most GP toolboxes). By
plugging in the maximum likelihood estimates for θ we can
then compute analytically the posterior mean and covariance.
The purpose of this initial step is mainly to provide a good
starting point for the active learning phase. In section V we
analyze numerically the effect of varying the size `0.

The trained model provides an estimator for fBER with the
posterior GP mean and the estimator for the probability of
excursion. Given the `0 instances of the initial training set,
the excursion probability at any x ∈ X can be computed with
Eq. (3) with ` = `0. Given a discrimination threshold γ, we
can classify an instance x as above T if p`(x) > γ or below
T otherwise. During the AL phase we do not need to choose
γ and p` will only be used within the acquisition function to
obtain new instances.

C. Active Learning

The aim of the AL phase is to expand the initial training set
with additional instances that exhibit near-to-threshold BER
values. As explained in the previous section we select the
next training instance x`+1 by minimizing the acquisition
function in Eq. (4). The integrand in J` is the variance of
the indicator 1fBER(x)>T and it is linked to the probability of
misclassification min(p`(x), 1−p`(x)) [25]. In particular here
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Fig. 1: The active learning framework

we use the semi-analytical form for J` described in (5). Each
evaluation of J` in this formulation requires the computation of
an integral over the input space. We compute the integral with
an importance sampling Monte Carlo algorithm [35]. However,
note that by using the unconstrained acquisition function as
defined in (5), the optimum might be a point in the feature
space that does not correspond to any feasible lightpath. For
this reason we introduce a constrained version of J`, here
denoted JC` , with hard barriers that encode the following
constraints:

x(2) ≥ x(3)

x(2) ≤ x(3) × x(1)

x(2) − x(3) ≥ (smallest link length in topology)× (x(1) − 1)

where x = (x(1), . . . , x(5))T ∈ R5 with x(2) lightpath length,
x(3) length of the longest traversed link and x(1) number of
links traversed by the lightpath. By minimizing JC` we find the
instance x`+1 coherent with the current network topology that
minimizes the integrated probability of misclassification at the
next step (`+1). The chosen training instance x`+1 is first back
transformed with a binning procedure that returns only feasible
values for the features. Then we can associate a real lightpath
on the network topology by taking the path on the graph with
the number of links, lightpath length and longest traversed
link’s length given by the back-transformed values of x(1)`+1,
x
(2)
`+1 and x

(3)
`+1 respectively. If a ligthpath with such features

does not exist on the graph, we select the lightpath with total
length and longest link length as close as possible to x(2)`+1 and
x
(3)
`+1 among all lightpaths with number of links equal to x(1)`+1;

in case of ties we select randomly among the optimal choices.
We assume that this probe lightpath is deployed with traffic
volume and modulation format given by the back-transformed
x
(4)
`+1, x(5)`+1 respectively and that its BER is measured, so

that we can evaluate fBER at point x`+1 and update the GP
model. Note that, since the objective function J` is constrained
to return only lightpath lengths and link lengths within the
values allowed by the considered network topology, we can
always associate a probe lightpath to a set of features x`+1.
The GP hyper-parameters θ are updated every 10 iterations of
the AL procedure in order to reduce the computational cost
and to avoid numerical issues associated with frequent hyper-
parameter re-estimation. We continue iterating this procedure

Fig. 2: Japan network topology

Fig. 3: NSF network topology

until either a predefined budget on the number of iterations
is reached or the acquisition function value drops below a
certain tolerance. The procedure is implemented in the R
programming language with the packages DiceKriging [37]
and KrigInv [35]. Fig. 1 represents the adopted AL solution
in a block diagram.

V. PERFORMANCE ASSESSMENT

We now apply the proposed AL solution for QoT estimation
over two realistic network topologies: the Japan and the NSF
network, depicted in Fig. 2 and Fig. 3, respectively2. We
evaluate its performance in terms of AUC. Note that our GP
model predicts the BER value, therefore we need to compute
p` and to set a threshold on the probability of excursion to
predict whether the BER value is above the threshold T or
not. In particular, the AUC is computed by first evaluating the
probability of excursion p` on test data, then, for different
threshold levels γ, we can compute the false positive rate
(FPR) and the true positive rate (TPR). By plotting FPR
versus TPR we obtain the receiver operating characteristics
curve (ROC). We can then compute the AUC by evaluating
the integral of the ROC numerically. Note that a perfect
classification would result in AUC=1, while a completely
random classifier achieves AUC=0.5.

A. Dataset generation

To generate synthetic data we use the QTool described in
[6]: given as input a candidate lightpath, a traffic amount to be

2The code and datasets to reproduce the experiments are available at https:
//bitbucket.org/darioaz/al qot 2019/
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served, and the modulation format to be adopted for transmis-
sion, the QTool calculates the BER as a function of the signal-
to-noise ratio (SNR) measured at the input of the channel
decoder. The QTool implements the approximated Additive
White GN model of dispersion uncompensated transmission
over single mode fibers [3], assuming a flexi-grid with 12.5
GHz slice width and elastic transceivers operating at 28 Gbaud
with optical bandwidth of 37.5 GHz, using one modulation
format among dual polarization (DP)-BPSK, DP-QPSK and
DP-n-QAM, with n = 8, 16, 32, 64. Traffic demands exceed-
ing the capacity of a single transceiver are accommodated in
superchannels containing multiple adjacent transceivers. The
Qtool considers transparent links of dispersion uncompensated
standard single-mode fibers with 0.2 dB loss per km, where
the signal power is restored by identical optical amplifiers
equally spaced over the links (100 km), with 20 dB gain and
5 dB noise figure. The QTool also adds randomly-distributed
penalties to account for the uncertainty of the model, according
to an exponential distribution with average of 2 dB.

For both topologies we fix a threshold T = 4 · 10−3 and
build the initial training sets with a fixed proportion τ ∈ [0, 1]
of instances with BER values above T . We consider three
settings:
• τ = 0, i.e. all instances have BER values below T .

This models a situation where the network has been
deployed according to conservative policies (i.e., applying
consistent design margins).

• τ = 0.05, in this case the number of probe lightpaths
exhibiting above threshold BER already deployed in the
network is assumed to be 5% of the total number of
monitored ligthpaths (the remaining 95% consists of
established lightpaths carrying user traffic).

• τ = 0.1, in this case the number of already deployed
probe ligthpaths is assumed to be 10% of the total amount
of monitored lightpaths.

Below we provide the specific details of the dataset for the
two topologies.

1) Japan topology: We generated an instance by randomly
choosing a source-destination node pair and a path connecting
them among the 3 shortest paths, a modulation format uni-
formly sampled among BPSK, QPSK and DP-n-QAM with
n = 8, 16, 32, 64, a traffic demand uniformly selected in the
range [50−500] Gbps with 50 Gbps granularity and evaluating
the BER with the QTool 3.

2) NSF topology: The NSF topology has links which are
significantly longer than those of the Japan topology, therefore
high BER values are more frequently obtained by uniform
random sampling of routes, modulation formats, and traffic
volumes, especially for configurations with high traffic and
highly efficient modulation formats. To limit the number of
instances with above threshold BER, the traffic demand was

3Note that a random selection of the modulation format with uniform
distribution captures the following three categories of lightpaths: i) light-
paths adopting the most spectrally efficient modulation format exhibiting a
transmission reach that exceeds the lightpath length; ii) lightpaths adopting
less aggressive modulation formats, due e.g. to more conservative design
approaches; iii) lightpaths adopting modulation formats that are not feasible
(i.e., exhibiting transmission reaches shorter than the lightpath length), such
as probe lightpaths or mistakenly deployed lightpaths.

uniformly selected in the range [50−300] Gbps, and 64-QAM
was excluded from the set of modulation formats.

For both topologies, the test set was constructed by gen-
erating a separate set of E = 2000 instances, by randomly
selecting lightpaths and evaluating the BER function following
the same mechanism adopted for the generation of the training
set.

B. AUC Evaluation on Japan topology

We consider, for all choices of τ , an initial training set
of size `0 = 100 and we repeat up to 400 AL iterations,
adding one instance at a time. We compare the AL approach
to a standard non-active (non-AL) supervised ML approach
where training is performed over a dataset of `′ = 500 samples
generated by taking the same first 100 samples as in the initial
training set of the AL and then by uniformly sampling the
remaining 400 instances in such a way that the final proportion
τend of instances above T is equal to the final proportion
obtained with the AL procedure. This way, the main difference
between the final AL dataset and the randomly sampled dataset
resides exclusively in the type of points selected and not in the
number of points above the threshold that compose the training
sets. We consider three kernel functions k: a Matérn covariance
with smoothness parameter ν = 3/2 (Mat32), Matérn with
ν = 5/2 (Mat52) and a squared exponential kernel (SE)
(see [28], chapter 4). All models use Automatic Relevance
Determination (ARD) kernels, which give an indication of the
features relevance over the output.

In Figure 4, the AUC values obtained with AL and with
random samples are represented by the dotted curves for the
three kernel functions described above. Colors and line types
denote different kernels. AL is compared to a standard offline
ML, whose performance is averaged over 20 runs and shown
with an horizontal line (note that the shaded area represents
the 90% confidence interval). In all cases, we notice how
the AL approach achieves higher values than the 90% upper
confidence interval (indicated by the crossing of the curves
with the top of the gray region) after a few iterations (less
than a hundred). This indicates that: i) an accurate choice
of the training samples is key for the classifier predictive
capabilities and ii) a limited amount of selected probes can
lead to satisfactory results, while saving a large amount of
training data.

τ = 0.00 τ = 0.05 τ = 0.10

total above T total above T total above T

Mat32 6.0% 5.8% 12.8% 15.4% 23.0% 28.9%
Mat52 9.8% 11.7% 23.8% 26.5% 24.8% 27.9%
SE 9.8% 11.2% 23.2% 29.5% 27.0% 32.3%

TABLE I: Proportion of instances (total and with BER value
above T ) required by AL procedure over random sampling to
achieve the same AUC value in the Japan topology (absolute
values reported in Appendix A).

To highlight the practical value of reducing the number of
probes needed to reach a certain targeted AUC, in Table I,
column “total”, we report the proportion of instances required
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Fig. 4: AUC values versus iteration number for the Japan topology. Performance of offline supervised learning reported as
horizontal line.

by the AL approach over the instances required by random
sampling to achieve the same AUC values. We say that AL
and random sampling achieved the same AUC when the value
for AL is equal to the 90% confidence upper bound of the
random sampling AUC. When the initial proportion of points
above T is smaller, AL requires much fewer instances than
random sampling to achieve similar AUC. For example, in
the case τ = 0 we notice how AL requires only between
6% and 10% of the instances needed for random sampling.
This percentage tends to increase when τ gets larger, while
always remaining below 27%. Table I also shows, in column
“above T”, the proportion of the number of instances with
BER above T required by AL over the number of instances
with BER above T required by random sampling. This metric
is important in practice because BER values above T imply
that transmission along those lightpaths violates service level
agreements, thus such lightpaths must be used exclusively
for probing and cannot carry user generated traffic. While
this quantity shows the same behavior as the total number
of instances, it is interesting to note that as τ increases the
competitive advantage of AL decreases and, even accounting
for the initial number of instances above T , AL requires a
larger proportion of instances. This seems to indicate that the
choice of the instances above T is a key factor to achieve
good performance, in fact when many instances above T are
chosen randomly (τ = 0.1) we observe that AL requires more
instances outdo random sampling. This further reinforces the
idea that AL is especially useful at the early stages of the
deployment of a new network, when only a limited amount of
ligthpaths are installed and monitored.

Both Table I and Figure 4 do not show large differences
between the three kernels tested for the GP method. The
Matérn kernel with ν = 3/2 shows a faster increase and
achieves larger AUC values than the other kernels; Matérn 5/2
is also slightly better than the squared exponential kernel. This
indicates that the function fBER might not be very smooth,
with discontinuities in the first or in the second derivatives.

We evaluated the active learning procedure with the AUC
metric which is independent of the discrimination threshold

chosen. In practice, however, for a given discrimination thresh-
old a high rate for false positives has an important impact on
network operations. The acquisition function chosen in the
AL procedure forces exploration of the feature space thus
also reducing false positives [25]. In Appendix C we show
on one representative example that AL reduces on average
false positives faster than random sampling as the training set
size increase.

C. Impact of initial training set size in the Japan topology

In the previous section the size of the initial training set
was chosen large enough to avoid any numerical issue in the
optimization of the hyper-parameters for any kernel. We now
study the impact of the choice of `0 (i.e., the size of the initial
training set) on the results discussed above, for the Matérn
kernel with ν = 3/2.

We consider the dataset introduced in the previous section
and we fix a prior constant mean estimated from the data. We
conduct the same experiment with `0 = 25, 50, 75, 100 and
we run the active learning procedure for 200 iterations. We
compare the results for τ = 0, 0.05, 0.1. Figure 5 shows the
AUC values as a function of the total number of evaluations,
i.e. the initial training set plus the AL iterations. In the case
`0 = 100 we observe that, for all τ , the method achieves high
AUC values after a few iterations. On the other hand, in case of
a small `0, such as `0 = 25, we see that the starting AUC value
is lower and it takes a higher number of iterations to achieve
good AUC values. Nonetheless, `0 = 25 achieves higher or
comparable AUC values to `0 = 100 after 225 (25 initial
plus 200 AL iterations or 100 initial plus 125 AL iterations)
function evaluations.

The results of this experimental study suggest that the size
`0 of the initial training set might not be a key parameter
for the procedure as we observe a relatively fast convergence
to high AUC values for all choices of `0. Here, however,
we consider synthetic data and an application of the same
procedure on real-world measurements might be subject to
much higher noise and might require larger `0 in order to
achieve stable results.
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Fig. 5: AUC values versus iteration number, using the Mat32 kernel. Comparison of different initial designs for the Japan
topology.

D. AUC evaluation on NSF topology

For the NSF topology, we consider an initial training set of
size `0 = 100 for each choice of τ and we repeat 500 AL
iterations adding one instance at the time to the training set.
In this case, we consider a larger number of iterations because
the method results in more unstable AUC values. Again, we
compare AL with a standard non-AL approach trained on
a dataset composed by the same initial training set of the
AL method augmented with 500 instances sampled uniformly
among all lightpaths compatible with the NSF topology. The
final proportion τend of instances with BER values above T in
the random sampling case is equal to the proportion obtained
with the AL approach. We consider the same three kernel
functions as for the Japan topology: Mat32, Mat52 and SE.
Figure 6 compares the AUC values obtained with AL and non-
AL. The AUC performance of AL is plotted as a function of
the iteration number, the average AUCs obtained from 20 runs
of the non-AL approach are reported as horizontal lines and
the 90% confidence bound is identified by the shaded area.

In the case τ = 0, we observe that AL crosses the upper
90% confidence bound after as few as 222 iterations. In this
case, more iterations than in the Japan topology are needed
to achieve similar performance to the non-AL approach. This
can be explained as, based on the output of the QTool, we
observed that BER values above T in this topology are often
much higher than T , thus making the exploration of the feature
space for values around the threshold harder. Both the AL and
the non-AL approaches then choose rather similar instances,
resulting in smaller performance gains of the AL approach
compared to the Japan topology. A reduced exploration of the
feature space around T (see also results reported in Appendix
B for test datasets restricted to instances exhibiting T > 10−5)
also makes hyper-parameter estimation harder, resulting in
AUC performances which are more unstable, as shown by
the jumps in AUC values in Figure 6. Table II shows the
proportion of instances required by AL to achieve better
performance than the non-AL approach. Note that here we
considered AL better than non-AL only if the AUC value
obtained by AL remained higher than non-AL for all the

successive iterations. For example, in the case τ = 10% with
Mat32 kernel (rightmost plot in Fig. 6, red solid line), AL was
considered better than non-AL from iteration 470 and not from
the first crossing at iteration 111, because of the oscillations
of the AL AUC value around the 90% confidence bound.

τ = 0.00 τ = 0.05 τ = 0.10

total above T total above T total above T

Mat32 44.0% 46.8% 72.8% 75.6% 93.8% 94.2%
Mat52 41.4% 43.2% 84.8% 86.8% 89.8% 91.0%
SE 59.8% 62.4% 93.8% 94.0% 83.8% 86.9%

TABLE II: Proportion of instances (total and with BER value
above T ) required by AL procedure over random sampling
to achieve the same AUC value, when applied to the NSF
topology (absolute values reported in Appendix A).

Similarly to the results obtained for the Japan topology, also
here we notice that the performance does not vary greatly
between different kernels. The Matérn kernel with ν = 3/2
obtains slightly better performance, possibly indicating that the
functionfBER is not very smooth. More importantly, it is also
more stable in the hyper-parameter estimation phase, leading
to more stable AUC performances.

As for the Japan topology, AL achieves the best perfor-
mance gains in the case τ = 0 for all kernels, thus making a
strong argument for using AL directly in the early deployment
phase of an optical network.

Finally, Table III shows the average time in seconds required
for the different operations in the AL procedure for the
NSF topology. We report two GP training times: (1) includes
the hyper-parameter optimization, which is computed only
every 10 iterations, (2) is the GP training time at fixed
hyper-parameters. The overall time required by the procedure
increases from 40 seconds in iteration number 100 to 203
seconds in iteration number 500.

According to the results reported in this Section, we ob-
tained reductions of at least 73% in the training set size
needed to achieve satisfactory classification performance, w.r.t.
a standard offline supervised learning approach on the Japan
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Fig. 6: AUC values versus iteration number achieved by the AL approach applied to the NSF topology. Performance of offline
supervised learning as horizontal line.

τ = 0 τ = 0.05 τ = 0.10

train (1) 30.0 s (7.4 s) 32.0 s (10.9 s) 32.0 s (10.5 s)
train (2) 34.8 ms (14.7 ms) 39.2 ms (22.3 ms) 33.5 ms (14.5 ms)
AL 59.8 s (38.6 s) 56.97 s (41.9 s) 57.42 s (35.8 s)
QTool 12.4 s (4.7 s) 12.9 s (5.2 s) 11.9 s (4.1 s)

test time 0.218 ms (2.86 · 10−2 ms)

TABLE III: Average times in seconds (standard deviation in
parenthesis) for the operations required by the AL procedure
in the NSF topology.

topology. For the NSF topology, the reduction in training set
size is more limited. However, for an initial training set created
on a network where consistent design margins were applied
(case τ = 0), we still achieve a reduction of around 65%. The
different performance in the two network topologies is linked
to the behavior of fBER around T . In the Japan topology,
probably due to the reduced length of the network links, it is
possible to explore the feature space at instances with fBER
values close to T = 4 ·10−3. In the NSF topology instead, we
observe that most of the instances with BER values above T
achieve much higher values, for example, a random sampling
of 500 instances with 84% of the values above T has a mean
BER value equal to 0.10, much higher than T . AL also chooses
most instances with BER values much higher than T , thus the
performance gains are reduced in this case.

VI. CONCLUSION

This paper explores how active learning can be used for QoT
estimation when the number of lightpaths available to collect
BER training instances is limited. Using an active learning
approach based on Gaussian Processes, we obtained reductions
up to 75% in the training set size needed to achieve satisfactory
classification performance, w.r.t. a standard offline supervised
learning approach. These results are extremely promising for
an effective application of active learning for QoT estimation
in network deployments where availability of above threshold
probes is scarce, but the extent of the reduction on the amount
of required data shall be validated in presence of real field data.

As future work, the use of kernels especially developed
for BER function regression could bring substantial improve-
ments, whereas more recent, safe learning objective functions
[33] could improve the stability of the results. Moreover,
additional features to capture wavelength-dependent effects
such as cross-phase modulation and fluctuations in amplifiers
gain profiles could be integrated in the learning model.
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APPENDIX

A. Additional results

In this appendix we report some additional results to com-
plement Section V.

Tables IV and V report the number of instances saved by the
AL procedure with respect to a random sampling. The AUC
compared are the AL procedure and the 90% upper bound
value obtained from 20 random sampling experiments.

τ = 0.00 τ = 0.05 τ = 0.10

total above T total above T total above T

Mat32 376 259 349 236 308 197
Mat52 361 250 305 208 301 204
SE 361 253 307 189 292 193

TABLE IV: Number of instances (total and with BER value
above T ) saved by AL procedure compared to 90% upper
bound for random sampling in the Japan topology.

τ = 0.00 τ = 0.05 τ = 0.10

total above T total above T total above T

Mat32 280 225 136 103 31 25
Mat52 293 239 76 56 51 39
SE 201 161 31 25 81 55

TABLE V: Number of instances (total and with BER value
above T ) saved by AL procedure compared to 90% upper
bound for random sampling in the NSF topology.
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B. Near-to-treshold test dataset

Here we also consider a restricted version of the test dataset
used in Section V. In order to evaluate the performance of the
classifier for instances around the threshold value we consider
a dataset where all BER values are greater or equal to 1·10−5.
In this case, the AUC values are always smaller than for the
full test dataset considered in Section V, see Table VI and
table VII.

τ = 0.00 τ = 0.05 τ = 0.10

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

Mat32 0.9932 0.9688 0.9921 0.9692 0.9920 0.9676
Mat52 0.9929 0.9694 0.9916 0.9678 0.9917 0.9671
SE 0.9929 0.9686 0.9922 0.9695 0.9915 0.9665

TABLE VI: Japan topology, best AUC values obtained with
AL in full (Test 1) and reduced (Test 2) test dataset.

τ = 0.00 τ = 0.05 τ = 0.10

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

Mat32 0.9923 0.9840 0.9928 0.9821 0.9933 0.9832
Mat52 0.9919 0.9837 0.9928 0.9866 0.9927 0.9844
SE 0.9926 0.9853 0.9918 0.9847 0.9926 0.9844

TABLE VII: NSF topology, best AUC values obtained with
AL in full (Test 1) and reduced (Test 2) test dataset.

Tables VIII and IX show the proportion of instances re-
quired by AL over a random sampling scheme. The results
can be interpreted as explained in Section V for the full test
dataset. Also in this case we see the same trends already shown
in the main text with a proportion of instances increasing as τ
increases. Note that for the restricted test data, the proportions
of instances needed by the AL approach to outdo the random
sampling approach are not very different than the proportions
obtained on the full test dataset. This indicates that the method
should perform well also in the extreme case of testing only
instances near to the threshold T .

τ = 0.00 τ = 0.05 τ = 0.10

total above T total above T total above T

Mat32 11.2% 12.0% 12.8% 15.4% 23.5% 29.2%
Mat52 15.0% 17.3% 23.5% 26.5% 24.8% 27.9%
SE 12.8% 14.3% 24.8% 31.7% 71.0% 74.3%

TABLE VIII: Proportion of instances (total and with BER
value above T ) required by AL over random sampling to
achieve the same AUC. Japan topology, reduced test dataset.

τ = 0.00 τ = 0.05 τ = 0.10

total above T total above T total above T

Mat32 43.6% 46.3% 49.2% 53.1% 50.4% 53.9%
Mat52 41.2% 43.2% 31.0% 35.7% 89.8% 91.0%
SE 59.8% 62.3% 81.8% 83.1% 83.8% 86.9%

TABLE IX: Proportion of instances (total and with BER value
above T ) required by AL over random sampling to achieve the
same AUC value. NSF topology, reduced test dataset.
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Fig. 7: IFP values versus iteration number, using the Mat32
kernel. Random sampling versus AL for the Japan topology.

C. Study on false positives

Since the occurence of false positive from ML QoT estima-
tor results in the deployment of an unfeasible path (a highly
undesirable situation for an operator), in this subsection we
empirically show on one example that AL tends to reduce
false positives faster than random sampling. First of all note
that our classification algorithm is probabilistic, therefore com-
paring false positive would require choosing a discrimination
threshold for each iteration. Since we are comparing models
trained on different datasets, there is no unique choice for
a discrimination threshold which makes the comparison fair.
Therefore we consider the following quantity

IFP :=
1

Vol({true false})

∫
{true false}

p`(x)dx

which takes values in [0, 1], called here integrated false pos-
itive, IFP. In the ideal case of a perfect classification, IFP
would be zero as the classifier would predict a positive class
with probability 0 for all negative cases, i.e., there are no false
positive for any discrimination threshold. On the other hand,
in case of a classifier that assigns equal probabilities to both
classes, IFP would be equal to 0.5.

Figure 7 shows the integrated false positive value for each
iteration of the AL and random procedures. We consider the
Japan test case with τ = 0 and Matern kernel with ν = 3/2.
The new instances selected by the AL procedure lead to a
smaller IFP, while increasing the size of the training set with
randomly selected instances does not necessarily decrease it.


