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Summary

This research is concerned with Intelligent Transportation System (ITS), with
two major points of focus. The rst point is the collection and processing of data
from road tra c using smartphones and other devices (such as On-Board Units
(OBUs)). Itaims at using smartphones that are ubiquitous and host various sensors
whilst providing several communication interfaces, to collect data and to investigate
the possible bene cial applications of such data for tra ¢ management, awareness
and safety. The collected data is of high value for relevant authorities such as
city management, public transportation system, tra c police, vehicle insurance
companies, etc. The second point is the use of machine learning techniques to
predict the intensity of tra ¢ using crowd-sourced data from a small segment of the
tra c. The processed information about tra c intensity can improve the accuracy
of Advanced Tra ¢ Management System (ATMS) and reduce the costs incurred
due to the use of dedicated tra c sensing hardware.

A number of facts motivated this work, some of which are as follows. First, the
high demand for mobility: whereby more than 70% of all journeys are made by a
car in the European Union (EU). Speci cally in Italy, where the number of vehicles
per 1000 inhabitants is 625, which places it the 2" highest across the EU. Second,
the cost of tra c congestion: one consequence of high motorisation rates is tra ¢
congestion, which costs about ¢, 100 billion in the EU every year. Third, the growing
adoption rates of smartphones: smartphones are omnipresent and well-connected;
almost 80% of Internet users in the EU surfed via a mobile device in 2016; the
average Penetration Rate (PR) of smartphones in the EU is quite high at about
67.3% of its population. Fourth, the versatility of high-resolution and high-quality
mobile sensor data: smartphones have high computational power, high capacity
connectivity, and low-power Inertial Measurement Unit (IMU) which enable them
to be orientation-aware with minimal power consumption. Nearly every single
smartphone produced in the last decade has a 6 or 9-axis IMU built-in. And nally,
cloud-based data crowdsourcing trend: thanks to a ordable Internet connectivity,
cloud-based crowdsourcing for data has opened new doors for providing rich services
to users without any dedicated hardware for data collection.

To further elaborate on the rst point, ITS applications that require data re-
lated to vehicle dynamics (e.g. acceleration, yaw angle, etc.) usually have low PR



due to physical constraints on the placement of the smartphone. This work pro-
poses a procedure, which is the rst of its kind, to convert any measure taken in
real-time by a smartphone sensor into the vehicle coordinate system called Vehicle
Dynamics Data Acquisition (VDDA). It uses information from Global Position-
ing System (GPS) and low-power IMU (accelerometer and magnetometer). The
results are reasonably accurate with a very high increase in usability which is a fac-
tor of paramount importance for customer-oriented applications. This allows the
use of ITS related applications by drivers/passengers without any constraints on
the placement of their devices, which signi cantly improves the PR of such applica-
tions. This approach is embedded into a highly modular and customisable vehicle
data acquisition and processing system called Vehicle Data Acquisition Platform
(VDAP). Using VDAP and VDDA, an Android application called Driving Style
Analysis (DSA) was implemented to collect sensor data in real-time then to pro-
cess it to provide driving behaviour information to users. It does so by recognising
driving events such as left/right turns, accelerations, decelerations, lateral acceler-
ations, and stops by a freely-placed smartphone in the vehicle.

For what concerns the second point, Adaptive Tra ¢ Control Systems (ATCSs)
are crucial for smart cities; the data source for these control systems has mainly
been conventional induction loops which are expensive to instal and maintain. In
this work, a software-based mechanism for real-time road tra c sensing called Vir-
tual Induction Loop (VIL) was devised to replace or complement real induction
loops providing a nearly perfect accuracy assuming 100% PR of the technology.
The feasibility of the approach was demonstrated along with a practical integra-
tion scheme to allow Urban Tra c¢ Control (UTC) systems to bene t from VIL.
Extensive tests on real tra c patterns in the city of Turin showed that Deep Learn-
ing algorithm can be used to forecast the intensity of tra ¢ with a higher accuracy
(approx. 95%) and lower complexity as reported in the literature. The results
are not only accurate, but they have signi cant applications including optimisa-
tion of tra c light control programme and dissemination of forecasted congestion,
etc. To overcome the possible low PR of VIL, extensive modelling, simulation and
validation were performed to incorporate the concept of VIL with the bene ts of
Deep Learning. A detailed simulation of a real intersection in the City of Turin
was conducted with real tra ¢ ows in SUMO for tra c forecasting based on VIL
for tra c sensing and Gradient Boosted Machine (GBM) for tra ¢ modelling and
prediction. Extensive tests with diverse scenarios and di erent types of data sets
were conducted to replicate a real day’s tra c situation and prediction. The sys-
tem can achieve very high classi cation accuracy, up to 95% with a very low PR of
10%. Furthermore, a single trained machine can forecast the intensity of tra c at
a high-resolution with roughly 80% accuracy with a varying PR from 1% to 10%.
Moreover, tests showed that during the training phase of the real system, VIL data
can be collected only once at a xed PR, afterwards, lower PRs could be derived
from it to make the system feasible.
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Chapter 1

Introduction

This research lies in the Intelligent Transportation System (ITS) domain with
two major points of focus. The aim is to answer two questions; 1) Can smartphones
be considered as reliable sources of data to solve tra ¢ problems in modern smart
cities? 2) Can recent advances in Machine Learning be bene cial for utilising and
enriching crowd-sourced data for tra c forecasting? To achieve this, Chapter 2
proposes a mechanism to relate the dynamics of a smartphone with that of a ve-
hicle. Chapter 3 introduces a generic framework for sensor data collection and
processing. Based on the framework, a working example for analysis of driving
style is described in Chapter 4. Chapter 5 presents a novel and simple yet accurate
software-based tra c sensing solution. The feasibility of using Machine Learning
for tra c forecasting is explored in Chapter 6. Chapter 7 joins the previously dis-
cussed concepts and validates them using simulations on real tra c¢ and real road
networks.

The motivations behind this work can be grouped into 3 major points:

1. Demand for mobility and consequential congestion
2. Adoption rates and ubiquity of smartphones

3. Versatility of high-resolution mobile data and the phenomenon of crowdsourc-
ing

1.1 Mobility demand and tra c congestion

People are on the move more than ever in the world, but particularly in the
European Union (EU). In the EU, more than 70% of all journeys are made by a
car (be it a private car, a taxi or a car-sharing service). It is evident that mobility
is becoming more and more essential and vital due to ever-increasing distances.
Due to the growing urban population and consequently growing urban cities, dis-
tances between home, work, schools/colleges/universities, and other facilities are

1
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increasing. It is nearly impossible to participate in social and economic life with-
out adequate means of personal mobility for many people. All of these factors are
having a huge impact on rates of ownership of vehicles across the globe. For exam-
ple, in the EU the average number of vehicles per 1000 inhabitants (also known as
motorisation rate) is 505 [14]. This gure goes as high as 662 in the case of Lux-
embourg. In Italy, the number of vehicles per 1000 inhabitants is 625, which is the
2"d highest across Europe. In modern urban cities, people may rely on taxis and
car-sharing/on-demand services, but the problem remains more or less the same.
According to the International Energy Agency, the global number of cars on the
road will nearly double by 2040 [1].

On the other hand, the quality and quantity of roads and other infrastructure
remain more or less the same if not worse. Quality of roads network based on a
survey by the World Economic Forum, using a scale from 1 (extremely underde-
veloped) to 7 (extensive and e cient) reports that the score for EU is 4.76, while
that of Italy is 4.4. Although the index of connectivity is high at 84%, the quality
of this infrastructure is decreasing, currently at 56.4% [66].

Increasing urban population, increasing motorisation rates, decreasing quality
and relative quantity of roads is creating more and more tra c congestion. Litera-
ture presents two main approaches to the measurement of the total costs of tra ¢
congestion [54]. The rst approach uses a modelling framework in which actual
tra c conditions are compared with theoretical free- ow conditions, where there
is no congestion what-so-ever. The second approach utilises data on actual tra ¢
delays often based on police reports. Since the latter approach is based on major
documented delays and tra c jams it is likely to yield rather lower estimates of the
total costs of congestion than is the rst approach.

Regardless of how it is estimated, tra c congestion is a very costly problem.
According to the EU, it costs about 100 billion ¢ every year [12]. This amount
is roughly equal to 1% of the EU’s Gross Domestic Product (GDP). The bigger
problem is that tra c congestion is not expected to decrease, rather it is expected to
increase. By 2050, the cost due to tra ¢ congestion is expected to increase by about
50% [12]. The problem of tra c congestion is spread all over the world. Figure 1.1
shows a brief summary of peak time lost (in the year 2017) in tra c congestion
around major European cities. Across Europe, drivers may spend up to 30% of
driving time during peak hours in tra ¢ congestions. Even in comparatively smaller
cities, like Turin, this number is as high as 13%.

1.2 Smartphone adoption rates

As of 2018, there are about 2.53 billion smartphone users worldwide. This
clearly makes smartphones one of the most ubiquitous and omnipresent modern
technologies. Moreover, the number of smartphones is rapidly increasing and the

2
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Figure 1.1: Peak time lost (in the year 2017) in tra c congestion around major
European metropolitan cities [50].

same for non-smartphones (also called dumbphones) is decreasing. We are living
in an era where all of us have a device in our pockets which, compared to super-
computers and media centres from the previous decade, is more powerful, has a
faster mobile broadband connection, and is more contextually aware of its physical
surroundings. Almost 8 out of 10 Internet users in the EU surfed via a mobile
or smartphone in 2016 [13]. At year-end 2017, there were 465 million unique mo-
bile subscribers in Europe alone, equivalent to 85% of its population [36]. By
2020, smartphones will account for 76% of all mobile connections, up from 65%
in 2016 [36]. Smartphones are truly universal all around the world, especially in
Europe. Figure 1.2 shows number of smartphone users and its penetration rates
for European countries. The average penetration rate of smartphones in the EU is
about 67.3% of its population. European countries like Germany, the Netherlands,
Sweden and the United Kingdom have a smartphone penetration rate of roughly
80%.
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Figure 1.2: Top European countries by Smartphone Users and Penetration as per
the entire population [60].

1.3 High quality mobile data

Modern smartphones pack more computation power than yesteryear’s comput-
ers. They have a lot of advanced high-speed hardware to process computationally
intensive tasks. As of 2019, most of the smartphone released this year have octa-
core or quad-core Central Processing Units (CPUs) with 12 GB to 4 GB of RAM.
Multiple low-power sensors allow them to be physically and contextually aware of
their surroundings and environment. The most common sensors included in An-
droid smartphones are listed in Table 1.1. Low-power Micro-Electro-Mechanical
System (MEMS) based Inertial Measurement Unit (IMU) enable them to be orien-
tation aware with minimal power consumption. The most commonly used sensors
for the context of this research are Global Positioning System (GPS), accelerome-
ter, gyroscope, and magnetometer. These sensors allow smartphones to have 3 to
9 degrees of freedom. Most Android have built-in sensors that are capable of mea-
suring motion, orientation, and various environmental conditions. These sensors
are capable of providing raw data with high precision and accuracy, monitoring
three-dimensional device movement or positioning, or monitoring changes in the
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Sensor category Name Output Common usage
Accelerometer Acceleration force | Motion detection
in m/s? (shake, tilt, etc.)
Motion sensors Rate of rotation Rotatl_on _
Gyroscope . detection (spin,
in rad/s
turn, etc.)
Ambient air o .
. Monitoring air
Barometer pressure in hPa
pressure changes
or mbar
Ambient light
level Controlling screen
Photometer (illumination) in | brightness
Ix
Environmental Ambient room Monitoring
Thermometer .
Sensors temperature in C | temperatures

Monitoring dew

Humidity sensor Relative ambient | point,

humidity in % absolute/relative
humidity
. Ambient sound Noise level, voice
Microphone : :
level in dB recording
Location in Navigation,
GPS latitude and location-based
. longitude services
Position sensors :
Ambient Compass and
Magnetometer geomagnetic eld P

in T orientation

Table 1.1: Sensor types, output data and usage [32].

ambient environment near a device. All of these factors enable data recorded from
smartphones to be of more than decent quality.

1.3.1 Data crowdsourcing

Crowdsourcing is the practice of obtaining information or input into a task or
project by enlisting the services of a large number of people, either paid or unpaid,
typically via the Internet according to the Oxford dictionary. Cloud-based crowd-
sourcing for data has opened new doors for providing rich services to users without
any dedicated hardware for data collection. This approach consists of building large
data sets (real-time or not) with the help of a large group of people using a medium
such as a smartphone application. This phenomenon is of paramount importance in

5



Introduction

80%
—Android
70% —iOS
—SymbianOS
60% BlackBerry O%
50% —Nokia (S40)
—OQOthers
40% ‘ {

Figure 1.3: Mobile Operating System (OS) worldwide market share in percent-
age [20].

modern Smart Cities. Apart from signi cantly reducing data collection hardware
installation and maintenance costs, it also dramatically improves the smart city
dynamics because of collaboration and citizen engagement.

1.3.2 Mobile OS market share

As of 2019, there are two major competitors in the mobile OS category in the
market, namely Google’s Android and Apple’s iOS. For all the work that follows
we opted to work with Android OS. The reason for this technical choice is two-
fold. Firstly, the market share of mobile OS shows that Android is the dominant
mobile OS with a market share of roughly 75% while iOS has a share of only
roughly 22% [20]. This implies that an application that supports Android OS can
potentially be used by 75% of the market. Secondly, Apple’s iOS has some developer
restrictions that do not allow the use of background activities. This is a major
hindrance for an application that needs to collect sensor data in the background
seamlessly. Figure 1.3 shows the worldwide market share of major mobile OS from
2009 till 2019. Mobile OS market share forecast is not clear at the moment, but in
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any case, Android is expected to maintain its market share (if not increase) [49].






Chapter 2

Vehicle Dynamics Data
Acquisition (VDDA)

The ubiquity of smartphones, with sensors, high processing power, and high
bandwidth connectivity, makes them ideal candidates for hosting ITS applications
such as those described in [84], [80] and [44]. Smartphone sensors use two reference
systems: 1) smartphone’s (referred by accelerometer and gyroscope); 2) Earth’s
(referred by GPS). Therefore, the smartphone reference system and the Earth ref-
erence system must be related to each other to jointly use the measurements of both
groups [11]. In ITS applications, the relationship between smartphone and vehi-
cle coordinate systems is needed in case the smartphone must detect some vehicle
dynamics. The determination of this relationship can be, in many cases, a serious
impairment to the usability of smartphones, since whenever applications require
data related to the vehicle dynamics, only two approaches are possible: 1) to x
the position and orientation of the smartphone in the vehicle; 2) to recalculate the
orientation of the smartphone with respect to vehicle any time data are collected.
The rst solution is the simplest one but, in my opinion, few customers will be will-
ing to use applications requiring to place their smartphones in a cradle screwed on
the dashboard of their car. The second solution is still under investigation and some
solutions are already available with some limitations in their usage. My proposal
is a simple real-time procedure to convert measurements from smartphone sensors
into the vehicle coordinate system. This allows complete freedom of movement of
the smartphone while overcoming most of the limitations of current proposals, as
it will be discussed in the following sections.

Available solutions

A detailed survey and review of the major smartphone to vehicle alignment
techniques have been presented by [76]. Some prominent solutions are summarised
here as well. In Mobile sensor platform for Intelligent Recognition of Aggressive
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Driving (MIROAD) [51] the authors propose putting the smartphone in a cradle
to x its orientation with respect to the vehicle. As already pointed out that this
solution is impractical since it reduces the convenience of the driver and requires
the installation of a cradle in the vehicle. Other authors such as [4] and [56] suggest
collecting the steering wheel angle from the Controller Area Network (CAN) bus of
a vehicle using an On-Board Diagnostics (OBD) module. This method is invasive
since it requires connecting additional hardware to the vehicle which is not always
applicable. Moreover, this particular sensor might not be accessible from the OBD-
Il in all vehicles and, when accessible, usually requires the full knowledge of the
proprietary communication protocol used by the car manufacturer to retrieve these
data from the OBD-II interface. This makes the implementation of this solution
even more di cult.

The full auto-calibration proposal described in [2] uses the smartphone ac-
celerometer, gyroscope, and GPS, and translates these measures into the vehicle
coordinate system using the yaw angle between the vehicle and the smartphone.
Its value is calculated by forcing the vehicle to move forward, with no lateral ac-
celeration, until its longitudinal axis is identi ed. Nericell project by Microsoft
Research [59] also leverages on the processing of acceleration data to nd out the
device orientation: it also requires the vehicle to brake and travel in a straight line
to generate a recognisable acceleration in a known direction. In both cases, after
this initial setting phase, the orientation of the smartphone with respect to the
vehicle must be kept unchanged, which implies the use of a cradle, although in this
case, it could be a removable one.

Another solution based on an accelerometer, magnetometer and GPS [75] has a
typical settling time of 60 seconds. Although the authors claim that the smartphone
does not necessarily have to be xed with respect to the vehicle, according to the
authors’ experience, convergence is di cult to achieve when the smartphone is free
to move with respect to the vehicle (which commonly happens when the smartphone
is in the driver’s pocket or is handheld by its user) and the settling time is high.

My approach

In my opinion, for non-safety related ITS applications, the exibility and com-
fort of the driver should take precedence over the accuracy of the measurements:
forcing the driver to place his/her smartphone in a cradle to x its orientation with
respect to the vehicle would have a negative impact on the usability of the appli-
cations and consequently on their Penetration Rate (PR). This is becoming even
more evident in newer cars, in which the smartphone can be connected to the car’s
entertainment system via Universal Serial Bus (USB) to get access to many smart-
phone applications through voice, steering wheel commands and car’s dashboard
display. Any application that relies on the user putting their device in a cradle,
will either not function at all if the user does not put their device in the cradle or
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2.1 Methodology

will be highly inaccurate. Also, the accuracy of sensors (especially magnetometers)
in smartphones can be greatly degraded by magnetic cradles and modern cradles
with wireless charging facility. Therefore, applications that can work seamlessly
and without any unnecessary user interaction would likely be more acceptable. As
a result, a trade-o between accuracy and usability must be found.

In this Chapter, | propose a completely exible and adaptive solution called
Vehicle Dynamics Data Acquisition (VDDA): using data from the accelerometer,
magnetometer, and GPS our solution computes the orientation of the smartphone
with respect to the vehicle in real-time and in the smartphone itself. The driver is
not forced to place the smartphone in a cradle to x its orientation with respect
to the vehicle, thanks to its very low settling time (tens of milliseconds) which
allows the smartphone to change its orientation with respect to the vehicle while
data are collected. Such movements always occur when the smartphone is in the
pocket of the driver which is in turn lightly, but constantly, moving while driving
or when the smartphone is placed somewhere close to the driver but is not in a
cradle screwed to the vehicle. My solution is exible in terms of the placement
of the smartphone inside the vehicle and hardware compatibility (with roughly all
Android device). The smartphone can be present in the pocket the driver, placed
on the seat/dashboard or even placed in a cradle. It is adaptive thanks to its
responsiveness allowing it to adapt very quickly to the new orientation changes.

2.1 Methodology

The goal to be reached is the identi cation of the rotation matrix values to
convert between the coordinate systems of the smartphone and the vehicle in a way
fast enough to be repeated whenever it is needed. | propose a two-step procedure
able to convert any measure taken by the smartphone into the vehicle reference
system in a few milliseconds using data sampled almost simultaneously to perform
all calculations. To describe it, rstly the coordinate systems involved are de ned,
and secondly the remapping of any measure taken in its own reference system onto
that of the vehicle is shown.

2.1.1 Coordinate system de nitions

The three reference systems we are dealing with are the one of the smartphone,
the one related to Earth and, nally, the one of the vehicle. They are described in
the Table 2.1 and Figure 2.1. Please note that all three coordinate systems use the
same axes for rotational movements as they do for linear or directional movements.
Rotation is positive in the counter-clockwise direction; that is, an observer looking
from some positive location on the X, y or z-axis at a device positioned on the
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(b) relative to Earth
(a) relative to a smartphone (c) relative to a vehicle

Figure 2.1: Coordinate system de nitions relative to smartphone (a), Earth (b),
and vehicle (c).

Coordinate

X-axis y-axis z-axis
system

(zs) pointing
vertically outwards
wrt the surface of the
display

(Xe) tangential to the (y.) tangential to the (z¢) perpendicular to
ground at the current ground at the current the ground and
location and pointing location and pointing pointing towards the
towards East towards North zenith

(Xy) pointing laterally
towards the side of

(Xs) pointing to the (ys) pointing upwards
Smartphone right wrt the surface wrt the surface of the
of the display display

Earth

(yv) pointing towards (z,) pointing

. L he front of th rds verticall
Vehicle the vehicle in right t ¢ Iro tort ¢ outwards ve jcca’ y
o vehicle when viewing from the vehicle’s
direction when
from the top roof

viewing from the top

Table 2.1: Coordinate system de nitions relative to smartphone, Earth, and vehicle.

origin would report positive rotation if the device appeared to be rotating counter-
clockwise. In case the coordinate system refers to a tablet device, it is based on
landscape orientation rather than portrait since the coordinate system is always
based on the natural orientation of the device.
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2.1.2 Axis Remapping

The coordinate system remapping is done by periodically performing two oper-
ations in sequence, namely a 3D rotation followed by a 2D rotation.

1. In the rst step, the sensor data are converted from smartphone to Earth
coordinate system using Equation (2.1). The 3 x 3 rotation matrix Rsg is
computed using data from accelerometer and magnetometer as per Equa-
tion (2.2g). Notice that modern smartphone operating systems (including
Android and iOS) provide two types of sensor data i.e. calibrated and uncal-
ibrated. Corrections (such as temperature compensation, bias compensation,
scale calibration and drift) have been eliminated from calibrated sensor data.
To minimise the e ect of sensor biases, calibrated sensor data is used.

2 3 2 3

Xe Xs
gyeg = Rse 2YSg (2.1)
Ze ZS
|-{z-} |{z-}
relative to Earth relative to smartphone
9= O0x: Oy, O (2.2a)
A= Ny Ny; N, (2.2b)
H=n ¢ (2.2¢)
_ 9
o
0= (2.2¢)
¢ = 0 2.2f
g 5 (2.2f)
Rse =30 ¢, %5 (2.29)
O 0 &

The accelerometer provides the gravity vector (g) and the magnetometer pro-

vides the magnetic North vector (n). A perpendicular vector (t) is obtained
by the cross product of gravity and North vector. Another perpendicular unit
vector (%) is obtained by the cross product of gravity and ¢ unit vector. The
two cross products ensure that vectors Q, ¢ and ¢ are mutually perpendicular.
The 3D rotation matrix (Rsg) is composed of these unit vectors (i.e. Q, ¢
and @¢). Their orientation is shown in Figure 2.2. Notice that 0 and ¢ roughly
point towards West and North, respectively. Their o set depends on the rel-
ative position of the North Magnetic Pole with respect to the Geographical
North Pole as seen from the smartphone location.
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TR

>

Figure 2.2: Orientation of vectors used for computation of 3D rotation matrix
assuming that North Magnetic Pole and Geographic North Pole are coincident.

Figure 2.3: Relationship between smartphone coordinate system and Earth coor-
dinate system.

Figure 2.3 shows the relationship between smartphone and Earth coordinate
systems in the simpli ed case where the North Magnetic Pole and Geographic
North Pole are coincident. In any real case, they are not coincident, and the
North Magnetic Pole instead of the Geographic North Pole is simply used
throughout all formulas. Since the smartphone (in 3D) can be placed in any
orientation with respect to Earth, there are three angles of reference ,
and ;. Google’s Sensor Manager Application Programming Interface (API)
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is used to compute the rotation matrix [30]. Noteworthy is that the rotation
matrix can also be easily computed manually as explained earlier, but here
readily available API is used, which works the same way. Moreover, note that
the API has some limitations as stated by the o cial documentation, The
matrices returned by this function are meaningful only when the device is not
free-falling and it is not close to the magnetic north . But clearly, it is safe
to say that these limitations do not a ect our computations in most of the
cases. The 3D rotation matrix is recomputed every time there is an update
from accelerometer or magnetometer.

. In the second step the data, already referred to the Earth coordinate system,
are remapped to the vehicle reference system, as shown in Equation (2.3a)
and Equation (2.3b). To perform this 2D rotation, the 2 x 2 rotation matrix
Rev is computed using the magnetic bearing angle ( ,) which again refers
to the North Magnetic Pole, which was used in the previous 3D rotation in
place of the Geographic North Pole. The bearing is the horizontal direction
of travel of the mobile device and is not related to the device’s orientation.

# #
);v = Rgy ;(e (23a)
142} 142}
relative to vehicle relative to Earth
2.3b
114 115 (2.3)

relative to vehicle relative to Earth

To compute , from the true bearing | provided by GPS, it is necessary to
know the magnetic declination ( ng), which is de ned as the angle on the
horizontal plane between the North Magnetic Pole and the Geographic North
Pole. The World Magnetic Model produced by the United States National
Geospatial-Intelligence Agency is used to estimate the magnetic declination
anywhere on Earth based on location and time [58]. The magnetic bearing
angle is nally computed using Equation (2.4a). After this, the 2 x 2 rotation
matrix Rgy is computed using Equation (2.4b).

b = % md " (2.4a)
cos( p) sin( )

REV = sin(s) cos( 1)

(2.4b)

Figure 2.4 shows the relationship between Earth coordinate system and
vehicle coordinate system. Since under normal circumstances (travelling on
at/semi- at ground), the z-axis of Earth (z,) and the z-axis of the vehicle (z,)

15



Vehicle Dynamics Data Acquisition (VDDA)

Figure 2.4: Relationship between Earth coordinate system and vehicle coordinate
system.

are approximately parallel (i.e. assuming z.  z,), it will only be necessary to
perform the rotation in 2D (xy plane), using the previously de ned magnetic
bearing angle , to compute the four values of the 2D rotation matrix. This
matrix is recomputed every time there is an update of the bearing from GPS.

Using the above mentioned two rotation matrices, sensor data is rotated from smart-
phone coordinate system to Earth coordinate system and eventually to vehicle coor-
dinate system. This enables the mapping of the coordinate system of a smartphone
on a vehicle. Note that the novelty here is not the usage of Google’s API, the
computation of rotation matrices or the rotation of data itself, rather the com-
plete solution provided by the combination of simple techniques allowing complete
freedom of placement of the smartphone. Modern lower power accelerometer and
magnetometers can be sampled very frequently (the minimum sampling period can
be as low as 20 ms [32]). GPS receivers in smartphones provide an update every
single second. This enables my system to be adaptive and responsive to changes in
the heading of the vehicle in the great majority of cases.

2.1.3 Bearing retention

There are some conditions under which this approach fails, such as when a
vehicle moves at a very slow speed or completely stops (for example at a tra ¢
signal) and the GPS does not provide a bearing angle until the vehicle is again in
motion. In these cases, bearing retention is used which means to retain the last
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known bearing until a new bearing is available. This works simply because for
example, in case of stops, the heading direction of a vehicle before stopping and
after starting again is always the same, implying that the bearing angle remains
unchanged during the stop.

2.1.4 Handheld device

Another situation to be considered is when the user is physically interacting
with the smartphone. In this case, the rotation matrices may not be accurate at
all, since the smartphone orientation could change very quickly, faster than the
update frequency of the two matrices. One solution is to identify when a user is
interacting with the phone and to suspend data collection. User interactions can be
detected by a keypress, a touch on the screen, proximity sensor or a phone call [59].
Another possible solution could be to compute and use time averages to provide
estimates of the smartphone’s average orientation. This is a potential candidate
for further studies and was not explored during this work.

Notice however that newer vehicle usually provide a wired connection between
the driver’s smartphone and the entertainment systems (through Android Auto
and/or Apple CarPlay) which makes it less likely that the smartphone is handled
while driving. Furthermore, a majority of authorities from di erent countries have
enacted laws to ban the handheld use of mobile phones while driving due to safety
concerns. This should deter drivers from handling the device while driving in any
case.

2.1.5 Sources of error and countermeasures

The total error associated with sensor data rotation performed using axis remap-
ping can be expressed as:

error ns n n

b md

where ns is the noise in sensor readings, n, is the error in bearing reported by
GPS and n _, is the error in bearing due to magnetic declination. Notice that any
measure to reduce the e ect of the rst two error components on my data was not
applied, although there are many possible techniques to act on them. The noise in
sensor readings can be removed using a low-pass Iter as suggested by [51], median
values over a temporal window utilised by [59] or a Kalman Iter described by [5].
Smartphone sensor noise is well represented by white noise and therefore a Kalman

Iter is usually used to Iter out such noise from sensor measurements [2]. As far
as the error in the bearing reported by GPS is concerned, there are two possible
solutions. First is to again use a Kalman Iter which is applied very frequently
in Inertial Navigation System (INS) such as [35]. The second solution is to use
a snap to road technique in real-time to correct the bearing reported by GPS in

17



Vehicle Dynamics Data Acquisition (VDDA)

real-time. However, this may incur some performance degradation, since snap to
road is usually achieved by using a remote API. The o set error in bearing due to
the presence of magnetic declination can be evaluated using the World Magnetic
Model and subtracted from the bearing as reported by Equation (2.4a). Notice that
the noise component due to the presence of magnetic declination was eliminated
since it is likely the most signi cant part of noise a ecting data rotation.

2.2 Testbed and measurement dataset

My data rotation methodology was extensively tested in the eld with multiple
users and mobile devices. More than 2 million location points were collected and
processed over 16 months using 14 di erent Android smartphones. The closed beta
test included roughly 10 users in which 5 were actively participating. The testbed
consisted of an Android application and a server (0 ering a web service and data
post-processors).

The Android application collected sensor data (including accelerometer
and magnetometer) and location data (GPS), calculated rotation matrices
and rotated data in real-time. Raw and processed data were stored locally
until a Wireless Fidelity (Wi-Fi) or a mobile data connection became avail-
able. As soon as the preferred data connection was ready, locally stored data
were uploaded onto the server only for the sake of estimating the accuracy of
the data rotation.

The web service allowed the application to upload collected data onto the
server and to store them into a MySQL database.

The post processor fetched the data from the database, computed snapped
latitude (laty), longitude (Ingx) and bearing ( ). It used Google Places Snap
to Roads API to snap raw GPS trails to real roads on a map (this API takes
up to 100 GPS points collected along a route and returns a similar set of data
with the points snapped to the most likely roads the vehicle was travelling
along). The entire trip was snapped to a road in sequence by feeding the API
with a maximum of 100 GPS points at a time. Equation (2.5e) was used to
calculate snapped or true bearing along the road considering all consecutive
sets of snapped latitudes and longitudes. In the equation lat, and Ingy are
snapped latitude and longitude respectively, (x )¢ refers to the conversion of
degrees to radians, x is an angle represented in degrees while x° is an angle
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2.2 Testbed and measurement dataset

Figure 2.5: Block diagram of the testbed for the collection and processing of data.

represented in radians.

ing = (Ing,  Ing,)° (2.53)
b=sin( 1ng) cos(lat3) (2.5b)
a = cos(lat]) sin(lat}) (2.5¢)

sin(lat;) cos(lat;) cos( ing) (2.5d)
s = ((arctany(b;a)) +360 ) mod 360 (2.5e)

Figure 2.5 shows a block diagram of the testbed with all components. For the sake
of conformity, a Iter was applied to all samples to remove all location points that
have a bearing or snapped bearing equal to zero. The reason is that in Android,
if the GPS location does not have a bearing associated with it then a 0:0 value is
returned. Moreover, if the actual value of bearing was 0 then there would be no
2D rotation since a rotation by 0 generates an identity matrix, making the error
evaluation inapplicable.

The resulting dataset contained nearly 1.5 million location points. Figure 2.6
shows a sample of dataset points plotted on a map.

Figure 2.7 shows the distribution of horizontal accuracy and speed in the input
dataset as a heat map. The colour scale on the right of the gure represents
the probability. speed @aNd  speeq represent the average and standard deviation of
speed while  accuracy and  accuracy represent the average and standard deviation of
accuracy. The distribution of horizontal accuracy is bimodal with peaks at 5 m
and 12 m. This is most likely due to the fact that a diverse range of smartphone
makes and models were used to collect the data. Overall, the majority of the
location points fall in the range of 5 m to 15 m horizontal accuracy and 10 km/h
to 60 km/h speed. Moreover, the hot region centred at 135 km/h speed and 4 m
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Figure 2.6: A sample of location dataset collected from the testbed based on a
smartphone application and a central server. Each red dot corresponds to one
collected geographical location.

accuracy represent data collected during sub-urban and intercity travels. While the
two hot regions centred at 30 km/h speed and 5 m accuracy along with 30 km/h
speed and 12 m accuracy represent urban trips. It is noteworthy that Android
de nes horizontal location accuracy as the radius of 68% con dence. Also, the
accuracy estimation does not indicate the accuracy of bearing, velocity or altitude.

2.2.1 Power consumption

The proposed methodology relies on data collection from an accelerometer, mag-
netometer and GPS sensors. In modern smartphones, accelerometer, gyroscope and
magnetometer are usually coupled together in a MEMS based lower-power or ultra-
low-power IMU chip. Following are the rated current consumptions of relevant chips
from a common modern smartphone (Samsung™ Galaxy™ S8):

Accelerometer and Gyroscope: ST LSM6DSL has a nominal current con-
sumption of 0.29 mA to 0.65 mA.

Magnetometer: AKM AKO09916 has an active current consumption of 1.1
mA.
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Figure 2.7: Heat map (speed vs horizontal accuracy) of location dataset collected
from the testbed based on a smartphone application and a central server.

GPS: Broadcom BCM4774 has an average current consumption of 10 mA to
100 mA.

It is evident from the above that GPS receivers are the biggest source of power
consumption among the relevant sensors. To reduce the energy consumed by GPS
receiver, | used a variable sampling period of GPS where speed and sampling period
were inversely proportional. In other words, at a high speed, the application samples
location with a low frequency since the bearing is expected to remain the same as a
previous location point. Whereas at a low speed, the application samples location
with a higher frequency since the bearing may change (for example during a turn)
between subsequent location points.

2.3 Results

The possible noise in the 3D rotation matrix used during the 3D rotation is
not discussed here since the matrix is computed using Google Sensor Manager API
and investigating the accuracy of the API is beyond the scope of this Chapter.
However, the error from the 2D rotation depends entirely on the accuracy of the
bearing angle ( ), which is analysed in the following paragraphs. A bounded error
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Figure 2.8: Histogram of error E in bearing , highlighting average and standard
deviation

Root Mean
Min Max Average St_an_dard Square Error
() deviation ( ) (RMSE)
E -179.999 179.978 -0.417 21.073 21.077
0 179.999 8.625 19.231 21.077

Table 2.2: Statistical parameters of error E and absolute error in degrees.

in bearing (E) was calculated for the dataset. E is bounded between the closed
interval [ 180 ;+180 ]. Equation (2.6b) is used to calculate the value of error E
and Equation (2.6¢) is for calculating absolute error in bearing .

= 8b s (2.6a)
3360 ; if >180
E= > 360 cif < 180 (2.6b)
T otherwise
= JE]j (2.6¢)

Figure 2.8 and Table 2.2 show the distribution and statistical parameters of error
E. The error E is evenly distributed around 0 with an average of 0:417 . The
standard deviation is 21:073 which is also very low compared to the bounds of
error E [ 180 ;+180 ]. The average absolute error of is 8:625 .
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The computation of the rotation matrix involves the calculation of trigono-
metric ratios (sine and cosine) of the bearing angle . This implies that an er-
ror in bearing angle will result in an error in the value of the trigonometric ra-
tio. To estimate the worst-case scenario based on average absolute error ! =
max(jsin( p) sin( p )j;jcos( p) cos( p )j) is used. The worst-case re-
sults in a di erence of 0.1516 in the trigonometric ratio (when | is between the
intervals [3 ;6 ], [84 ;87 ], [93 ;96 ] and [174 ;177 ]). Considering all possible ap-
plications, this error is either negligible or manageable.

As a comparison, my average absolute error is higher than the one for full
calibration achieved by [2] (8:7 compared to 3:9 ), but my solution does not require
any action from the user for convergence such as braking or driving in a straight
line. The IMU alignment achieved by [75] (using an accelerometer, magnetometer,
and GPS) shows a typical error of 2 for each Euler angle (roll, pitch, and yaw),
while reaching a steady state in 60 seconds. On average, the error in yaw angle
estimation is in between 3:21 to 2:08 . My solution outperforms this latter one in
terms of negligible settling time (a few milliseconds) and reaches convergence even
if the smartphone is moving with respect to the vehicle. Again, this guarantees that
there are no restrictions imposed on the driver, making my solution more adaptable
to most ITS applications.

2.4 Conclusions

In this Chapter, | proposed a procedure to convert any measure taken by a
smartphone sensor into the vehicle coordinate system in real-time. It uses informa-
tion from low power IMU (accelerometer and magnetometer) and GPS to perform
data conversion, applying rst a 3D rotation (from smartphone to Earth coordi-
nates) and then a 2D rotation (from Earth to vehicle coordinates). With this
procedure, the driver of a vehicle is no more constrained to place their smartphone
in a cradle all along a trip but can leave it in a bag, pocket or even handle it for
short periods. To obtain this result, the accuracy is traded with usability; reduc-
ing the rst one to increase the second one. The result is a very low penalty in
accuracy, negligible in most ITS applications, and a very high increase in usability
which is a factor of paramount importance for any customer-oriented application.
This is the rst solution, to the best of my knowledge, that can achieve real-time
axis remapping with reasonable accuracy without placing any restrictions on the
state of the device or driver. My approach enables the implementation of numer-
ous ITS applications without installing dedicated hardware and using only already
available mobile devices.
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Chapter 3

Vehicle Data Acquisition Platform
(VDAP)

This Chapter describes the research activities related to a multi-purpose soft-
ware platform for the collection and processing of data from vehicles using a smart-
phone application. The latest advances in information technology o er new pos-
sibilities for urban mobility. Smartphone applications do not only generate new
services for the users, but also generates massive data originating from the users.
The collection and analysis of this data may open new doors to provide useful
services to users and city managers.

ITS applications have a lot in common; All of them collect some data from
the user, process it locally to some extent, transfer it to a server for extended ser-
vices, and use the back-end server to provide value-added services to multiple users.
During this research, | did not come across a generic and customisable platform
to serve this purpose. The idea is to identify the basic building blocks needed to
implement common ITS applications, design the individual blocks such that they
provide maximum functionality and exibility and implement the platform using a
modular approach.

3.1 System architecture

The system is called Vehicle Data Acquisition Platform (VDAP) and essen-
tially consists of a smartphone application platform and a server back-end. The
smartphone application and server work together to provide the ITS services to
users.

One of the biggest advantages of the system is its modularity, which allows it to
be highly customisable and optimisable for the speci ¢ application scenario. The
platform may use a simple eXtensible Markup Language (XML) based con guration
for all units and modules. This section describes the platform architecture in detail.
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3.1.1 Application platform

The smartphone application platform can be used to create a variety of mean-
ingful applications for ITS scenario. The smartphone application serves three basic
purposes:

data acquisition
initial processing
data upload

After acquisition and initial processing, some service may be provided to the user
directly. For other more complicated services, the data collected by the application
is uploaded to the server, which in turn processes it and provides other services. For
the context of this Chapter, the application will refer to an Android application.

Overview

The application platform consists of 3 basic modular units.
1. Control unit

2. Trigger unit

3. Data collection and processing unit

Figure 3.1 shows the generic relationship between the basic building blocks of the
application platform. The control unit provides basic control functionality. The
trigger unit generates stimulus to start and/or stop a vehicle trip. The data col-
lection and processing unit is responsible for acquiring data from a smartphone to
process them and transfer them to a server (if needed). In the following sections,
individual units of the application platform are described.

Control unit

The control unit acts as the main control hub of the platform. It o ers services
such as background always-on service, communication, data storage and database
management. Figure 3.2 shows some basic modules of the control unit. The data
storage module handles all storage requests made by other modules (such as data
collection and processing modules). It enables uni ed access to the storage medium
and provides services such as creating, deleting and appending data le(s).

The communication module caters for all communication-related needs of the
platform. The options for possible communication techniques are available in Sec-
tion 3.1.2. The choice of communication technique depends on the type and amount
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Figure 3.1: A high-level block diagram showing an overview of the application
platform.
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Figure 3.2: A block diagram of the control unit emphasising important modules.

of data to be sent. As an example, a short real-time location update can use a sim-
ple light-weight JavaScript Object Notation (JSON) encapsulated RESTful web
service. Whereas HyperText Markup Language (HTML) multipart form-data can
be used to upload large trip les. Furthermore, the module o ers the possibility to
use Wi-Fi only or Wi-Fi and mobile data connection options for data transfer.

The database module provides database management services for lower level
modules. The database contains a common section and an application speci ¢
portion. A common shared table between all applications can be the trip list table
or a device to vehicle association table. The unit allows applications to create their
own tables and perform queries. The database can be hosted using native SQL.ite
database or Firebase Realtime Database built using NoSQL database.

Trigger unit

The trigger unit provides multiple automatic triggers for automatic recognition
of a vehicle trip. It uses multiple APIs to achieve this functionality. Figure 3.3

27



Vehicle Data Acquisition Platform (VDAP)

7TULJIJHU XQLW

’
]

$SFWLYLM
5HFRJQLM

Figure 3.3: A block diagram of the trigger unit underlining important modules.

shows some possible modules for the trigger unit. Due to the modularity of the
entire system, new trigger modules can be added or removed from the unit.

Activity recognition: This module uses Google Play Services activity recog-
nition API to estimate the possible activity of the device with an associated
con dence. For the context of ITS, some interesting activities include: in a
vehicle, on foot (walking/running), being still or device being tilted (possibly
held in hand) etc. A sample case can be that the module generates a trip-
start trigger when the device is most likely present inside a moving vehicle
and a trip-stop trigger when the device is on the body of a walking person.

Bluetooth device: This module produces triggers based on connection and
disconnection with a known Bluetooth device. The module uses Bluetooth
connection events to recognise the connection or disconnection with a saved
Bluetooth device(s). A Bluetooth device may be associated with a particular
vehicle. A sample case can be, the module generates a trip-start trigger when
the user enters his/her vehicle and the device establishes a connection with
the Bluetooth hands-free of the vehicle. When the device disconnects from
the Bluetooth hands-free, a trip-stop trigger is generated.

Bluetooth beacon: This module produces triggers based on reception of a
Bluetooth Low Energy (BLE) message from a beacon. The module can use
Google’s Nearby Messages API to provide the desired functionality. A sample
case can be that a Bluetooth beacon is associated with a vehicle and placed
in it. When the device receives a message from this beacon, it identi es the
beacon (and vehicle) and generates a trip-start trigger. A trip-stop trigger is
generated when the device stops receiving messages from this beacon.

Wi-Fi device: This module produces triggers based on connection and dis-
connection with a known Wi-Fi device. The module uses a similar mechanism
as the Bluetooth device module. A sample case can be that when the device
disconnects from a known Wi-Fi device (such as the home network) a trip-
start trigger is generated. A trip-stop trigger is generated when the device
connects to another known Wi-Fi device (such as the o ce network).
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Figure 3.4: A block diagram of the data collection and processing unit highlighting
important modules.

Data collection and processing unit

The data collection and processing unit serves as the main unit for acquisition
and handling of all data. Figure 3.4 shows the most common modules for data
collection and processing unit.

The sensors module is capable of using multiple hardware and software sensors
available on the smartphone device. The platform supports three general classes of
Sensors:

Motion sensors: These sensors measure acceleration and rotational forces
along three axes. This class includes accelerometers, gravity sensors, gyro-
scopes, linear acceleration and rotational vector sensors.

Environmental sensors: These sensors measure various environmental pa-
rameters, such as ambient air temperature, pressure, illumination, and hu-
midity. This category includes barometers, photometers, and thermometers.

Position sensors: These sensors measure the physical position and orienta-
tion of a device within a frame of reference. This class includes orientation
sensors and magnetometers.

The processing module is where all the management and organisation of the col-
lected data is performed. It o ers multiple common and specialised algorithms and
analysis techniques depending on the requirements of the application.

The location module is another vital component for ITS applications. One of
the unique features of mobile applications is location awareness. The platform uses
Google Play services location APIs which are preferred over the Android framework
location APIs. These APIs use fused location provider to estimate the best possible
location as per the con guration or application requirements. The fused location
provider fuses location from multiple providers including GPS, mobile network
location, Wi-Fi location and BLE location. As well as the geographical location
(latitude and longitude), the API also provides further information such as the
bearing (horizontal direction of travel), altitude, and velocity of the device.
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3.1.2 Server platform

The server part of the platform o ers back-end connectivity, data storage, and
processing capabilities. The server platform is used to provide mandatory back-end
services to ITS applications. The server o ers the following basic services:

connectivity
data storage and processing

client services

Overview

The server platform consists of 3 basic modular units.
1. Messaging unit

2. Database unit

3. Post processors unit

Figure 3.5 shows the generic relationship between the basic building blocks of the
server platform. The messaging unit acts as the end-point for all communication
from smartphone applications. The database stores data for analysis and model
building. The post processors extract important information from collected data
from multiple sources. In the following sections, individual units of the server
platform are described.

Messaging unit

The messaging unit acts as a two-way communication end-point for one or
multiple messaging techniques. Depending on the application scenario, di erent
messaging techniques may be deployed to ful | the requirements. It o ers commu-
nication using the following techniques:

REpresentational State Transfer (REST) based web services
Simple Object Access Protocol (SOAP) based web services
Firebase Cloud Messaging (FCM)

FCM (previously called Google Cloud Messaging (GCM)) is a service provided by
Google which is a cross-platform messaging solution that o ers reliable delivery of
messages without any cost. As per server con guration, this unit may also provide
a push or pull based services to third-party client(s).
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Figure 3.5: A high-level block diagram illustrating the overview of the server plat-
form.

Database

The database unit o ers services in order to store and organise data collected
from applications. This unit may use any popular DataBase Management System
(DBMS) solution such as MySQL or Microsoft SQL. Database unit works closely
with the post processors in order to enhance available data. It enables the possibility
to use data mining techniques to generate new information which was otherwise
not obvious.

Post processors

The post processors unit provides a platform for multiple modules for extracting
extra information from the collected data. The post-processor is a multi-threaded
pipeline based application where each step of the pipeline performs a speci ¢ op-
eration. The unit can be con gured in order to add/remove post-processing stages
or modules depending on the application requirements. Individual threads may
work periodically or upon triggers (such as newly available data). Some examples
of common ITS post-processing operations include:

Snap to roads: Snap to roads relates raw GPS trails to physical roads on
the map. Google’s Snap to Roads web service API is used for this purpose.
The API takes a maximum of 100 location points and may return 100 or fewer
points. It relates latitude and longitude information into snapped latitude,
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snapped longitude and place ID. Place IDs uniquely identify a place in the
Google Places database and on Google Maps.

Reverse geocoding: Reverse geocoding converts location data into a human-
readable format. Google Place Details web service API is used to perform
reverse geocoding. After trips are snapped to roads, all snapped points are as-
signed a place ID. These place IDs are reverse geocoded into human readable
information using the API. The said IDs can be translated into information
such as the street address, name of business, road, neighbourhood, locality,
etc.

Trip segmentation: A reverse geocoded trip can be segmented into dif-
ferent sections based on road characteristics. The segmentation technique is
based on the reverse geocoded data. Trip segmentation helps in analysis and
comparison with other trip data.

3.2 Applications

The platform can be used to implement a variety of ITS related applications.
Some examples of such application are Driving Style Analysis (DSA), Virtual In-
duction Loop (VIL), Public Transportation System Advanced Vehicle Management
system and so on. Using VDAP, some applications including DSA (refer to Chap-
ter 4) and VIL (refer to Chapter 5) were designed, implemented and tested.

3.2.1 DSA

DSA is a system that is capable of collecting information about the driving
behaviour of a user and providing some feedback about it. The system consists of an
Android application, a back-end cloud server, and a web interface. The application
works in the background to automatically collect information from multiple sensors
of the smartphone when the user is on the move. The collected data is processed
in real-time and processed information is sent to the server. The server performs
some post-processing operations on the collected data and makes it available to the
web interface. Users can access the web interface to analyse their vehicle trips and
receive valuable feedback.

Figure 3.6 shows a detailed block diagram of the DSA Android application
implemented using the Vehicle Data Acquisition Platform. In the application, the
control unit uses the database, data storage, and communication modules. The
database module provides access to a trip list table which stores information and
status of all recorded trips. The data storage module handles all collected raw
and processed data from sensors using multiple Comma-Separated Values (CSV)

les. The communication module communicates with the back-end cloud server
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Figure 3.6: A block diagram showing the design of DSA application implemented
using the Vehicle Data Acquisition Platform.

using RESTful APIs and HyperText Transfer Protocol (HTTP)’s multipart le
upload. The trigger unit uses activity recognition, Bluetooth and Wi-Fi modules
to detect if the user is on the go or not. The triggers provided by the modules
are essential for the application to function autonomously. The data collection
and processing unit is responsible for collecting and processing data in real-time
using location, sensors, and processing modules. The location module provides
highly accurate location very frequently. The sensor module subscribes to events of
the accelerometer, magnetometer, gyroscope and linear acceleration sensors. The
processing module detects the event in real-time using an algorithm composed of
Simple Moving Average (SMA) and multiple thresholds. It also detects physical
stops of the vehicle using data from location module.

3.2.2 VIL

VIL is a system that has the potential of complementing/replacing physical
induction loops which are physically installed in road asphalt to monitor tra ¢
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intensities. The system consists of an Android application and a back-end cloud
server. The application works in the background and is fully autonomous. Virtual
loops are de ned in the server at intersections of interest and are synchronised with
the application. The application automatically detects when the user is on the
move and intelligently samples location to identify transits over virtual loops and
sends relevant information to the server. The server, then, aggregates and processes
data from multiple users and forwards information such as vehicle count, passage
time and passage speed to an Urban Tra ¢ Control (UTC) such as Urban Tra c
OPtimisation by Integrated Automation (UTOPIA).

Figure 3.7 shows a detailed block diagram of the VIL Android application im-
plemented using the Vehicle Data Acquisition Platform. In the application, the
control unit uses database and communication modules. The database module
provides access to a trip-list table and a cloud-synced table with information about
nearby virtual loops. The communication module communicates with the back-
end cloud server using RESTful APIs and Firebase Realtime Database to keep the
database table(s) in sync. The trigger unit uses activity recognition, Bluetooth and
Wi-Fi modules to detect if the user is on the go or not. The triggers provided by
the modules are essential for the application to function autonomously. The data
collection and processing unit is responsible for collecting and processing data in
real-time using location and processing modules. The location module intelligently
switches between low accuracy, less frequent and low energy location updates and
high accuracy, more frequent and high energy location updates based on proximity
to a virtual loop. Then the processing module estimates proximity to a nearby vir-
tual loop and the time of transit over a virtual loop. Lastly, the transit information
is forwarded to the server in real-time where it is processed and sent to a client.

3.3 Conclusions

This Chapter describes in detail the idea and the proposed structure of a mod-
ular platform for the collection and processing of data for ITS related applications.
The platform called VDAP consists of a smartphone and a back-end server sec-
tion. VDAP is highly customisable and can be adapted to provide a number of
ITS related services. More details about the design and implementation of two
applications using VDAP are available in Chapter 4 and Chapter 5.
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Figure 3.7: A block diagram detailing the design of VIL application implemented
using the Vehicle Data Acquisition Platform.
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Chapter 4
Driving Style Analysis (DSA)

In this Chapter, | describe the research activities related to the automatic recog-
nition of the driving style of drivers. In every sector of life, be it personal, business
or leisure, commutation is vital for us. This need to commute makes travel a ne-
cessity rather than a luxury. People strive for shorter travel times, fuel-e cient
journeys while being safe from any hazards. Safety is an indispensable concern for
both drivers as well as passengers. Driving style can characteristically be divided
into two categories: typical (non-aggressive) and atypical (aggressive). In order
to promote driver safety, studies have found that a driver’s behaviour is relatively
safer when being monitored, when feedback of speci ¢ driving events is provided,
and when reports of potentially aggressive events are recorded [51].

On an industrial scale, big companies use a large number of vehicles, usually
called a eet, to transport its technicians and personnel on sites where they re-
pair and set-up elements of the infrastructure. The management of this eet is
crucial for a company in terms of workforce productivity, cost control and safety.
Apart from these technical eets, some companies also own or maintain pick and
drop service for employees or carpooling arrangements. Usually, How’s my driv-
ing? bumper stickers are utilised to not only gather feedback for their drivers but
also to give them a sense of being monitored. This approach enables the driver
to be self-conscious and drive more responsibly [71]. If this manual approach of
monitoring can be replaced with an automatic and unbiassed system, it would not
only improve safety standards but also reduce human error in monitoring and may
provide automatic assisted safety mechanisms.

Use of smartphone

The idea is to use a freely placed smartphone to recognise the driving style
and behaviour of a driver and use this data to assist the driver not only to improve
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