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Summary

This research is concerned with Intelligent Transportation System (ITS), with
two major points of focus. The first point is the collection and processing of data
from road traffic using smartphones and other devices (such as On-Board Units
(OBUs)). It aims at using smartphones that are ubiquitous and host various sensors
whilst providing several communication interfaces, to collect data and to investigate
the possible beneficial applications of such data for traffic management, awareness
and safety. The collected data is of high value for relevant authorities such as
city management, public transportation system, traffic police, vehicle insurance
companies, etc. The second point is the use of machine learning techniques to
predict the intensity of traffic using crowd-sourced data from a small segment of the
traffic. The processed information about traffic intensity can improve the accuracy
of Advanced Traffic Management System (ATMS) and reduce the costs incurred
due to the use of dedicated traffic sensing hardware.

A number of facts motivated this work, some of which are as follows. First, the
high demand for mobility: whereby more than 70% of all journeys are made by a
car in the European Union (EU). Specifically in Italy, where the number of vehicles
per 1000 inhabitants is 625, which places it the 2nd highest across the EU. Second,
the cost of traffic congestion: one consequence of high motorisation rates is traffic
congestion, which costs about € 100 billion in the EU every year. Third, the growing
adoption rates of smartphones: smartphones are omnipresent and well-connected;
almost 80% of Internet users in the EU surfed via a mobile device in 2016; the
average Penetration Rate (PR) of smartphones in the EU is quite high at about
67.3% of its population. Fourth, the versatility of high-resolution and high-quality
mobile sensor data: smartphones have high computational power, high capacity
connectivity, and low-power Inertial Measurement Unit (IMU) which enable them
to be orientation-aware with minimal power consumption. Nearly every single
smartphone produced in the last decade has a 6 or 9-axis IMU built-in. And finally,
cloud-based data crowdsourcing trend: thanks to affordable Internet connectivity,
cloud-based crowdsourcing for data has opened new doors for providing rich services
to users without any dedicated hardware for data collection.

To further elaborate on the first point, ITS applications that require data re-
lated to vehicle dynamics (e.g. acceleration, yaw angle, etc.) usually have low PR
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due to physical constraints on the placement of the smartphone. This work pro-
poses a procedure, which is the first of its kind, to convert any measure taken in
real-time by a smartphone sensor into the vehicle coordinate system called Vehicle
Dynamics Data Acquisition (VDDA). It uses information from Global Position-
ing System (GPS) and low-power IMU (accelerometer and magnetometer). The
results are reasonably accurate with a very high increase in usability which is a fac-
tor of paramount importance for customer-oriented applications. This allows the
use of ITS related applications by drivers/passengers without any constraints on
the placement of their devices, which significantly improves the PR of such applica-
tions. This approach is embedded into a highly modular and customisable vehicle
data acquisition and processing system called Vehicle Data Acquisition Platform
(VDAP). Using VDAP and VDDA, an Android application called Driving Style
Analysis (DSA) was implemented to collect sensor data in real-time then to pro-
cess it to provide driving behaviour information to users. It does so by recognising
driving events such as left/right turns, accelerations, decelerations, lateral acceler-
ations, and stops by a freely-placed smartphone in the vehicle.

For what concerns the second point, Adaptive Traffic Control Systems (ATCSs)
are crucial for smart cities; the data source for these control systems has mainly
been conventional induction loops which are expensive to instal and maintain. In
this work, a software-based mechanism for real-time road traffic sensing called Vir-
tual Induction Loop (VIL) was devised to replace or complement real induction
loops providing a nearly perfect accuracy assuming 100% PR of the technology.
The feasibility of the approach was demonstrated along with a practical integra-
tion scheme to allow Urban Traffic Control (UTC) systems to benefit from VIL.
Extensive tests on real traffic patterns in the city of Turin showed that Deep Learn-
ing algorithm can be used to forecast the intensity of traffic with a higher accuracy
(approx. 95%) and lower complexity as reported in the literature. The results
are not only accurate, but they have significant applications including optimisa-
tion of traffic light control programme and dissemination of forecasted congestion,
etc. To overcome the possible low PR of VIL, extensive modelling, simulation and
validation were performed to incorporate the concept of VIL with the benefits of
Deep Learning. A detailed simulation of a real intersection in the City of Turin
was conducted with real traffic flows in SUMO for traffic forecasting based on VIL
for traffic sensing and Gradient Boosted Machine (GBM) for traffic modelling and
prediction. Extensive tests with diverse scenarios and different types of data sets
were conducted to replicate a real day’s traffic situation and prediction. The sys-
tem can achieve very high classification accuracy, up to 95% with a very low PR of
10%. Furthermore, a single trained machine can forecast the intensity of traffic at
a high-resolution with roughly 80% accuracy with a varying PR from 1% to 10%.
Moreover, tests showed that during the training phase of the real system, VIL data
can be collected only once at a fixed PR, afterwards, lower PRs could be derived
from it to make the system feasible.
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Chapter 1

Introduction

This research lies in the Intelligent Transportation System (ITS) domain with
two major points of focus. The aim is to answer two questions; 1) Can smartphones
be considered as reliable sources of data to solve traffic problems in modern smart
cities? 2) Can recent advances in Machine Learning be beneficial for utilising and
enriching crowd-sourced data for traffic forecasting? To achieve this, Chapter 2
proposes a mechanism to relate the dynamics of a smartphone with that of a ve-
hicle. Chapter 3 introduces a generic framework for sensor data collection and
processing. Based on the framework, a working example for analysis of driving
style is described in Chapter 4. Chapter 5 presents a novel and simple yet accurate
software-based traffic sensing solution. The feasibility of using Machine Learning
for traffic forecasting is explored in Chapter 6. Chapter 7 joins the previously dis-
cussed concepts and validates them using simulations on real traffic and real road
networks.

The motivations behind this work can be grouped into 3 major points:

1. Demand for mobility and consequential congestion

2. Adoption rates and ubiquity of smartphones

3. Versatility of high-resolution mobile data and the phenomenon of crowdsourc-
ing

1.1 Mobility demand and traffic congestion
People are on the move more than ever in the world, but particularly in the

European Union (EU). In the EU, more than 70% of all journeys are made by a
car (be it a private car, a taxi or a car-sharing service). It is evident that mobility
is becoming more and more essential and vital due to ever-increasing distances.
Due to the growing urban population and consequently growing urban cities, dis-
tances between home, work, schools/colleges/universities, and other facilities are
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increasing. It is nearly impossible to participate in social and economic life with-
out adequate means of personal mobility for many people. All of these factors are
having a huge impact on rates of ownership of vehicles across the globe. For exam-
ple, in the EU the average number of vehicles per 1000 inhabitants (also known as
motorisation rate) is 505 [14]. This figure goes as high as 662 in the case of Lux-
embourg. In Italy, the number of vehicles per 1000 inhabitants is 625, which is the
2nd highest across Europe. In modern urban cities, people may rely on taxis and
car-sharing/on-demand services, but the problem remains more or less the same.
According to the International Energy Agency, the global number of cars on the
road will nearly double by 2040 [1].

On the other hand, the quality and quantity of roads and other infrastructure
remain more or less the same if not worse. Quality of roads network based on a
survey by the World Economic Forum, using a scale from 1 (extremely underde-
veloped) to 7 (extensive and efficient) reports that the score for EU is 4.76, while
that of Italy is 4.4. Although the index of connectivity is high at 84%, the quality
of this infrastructure is decreasing, currently at 56.4% [66].

Increasing urban population, increasing motorisation rates, decreasing quality
and relative quantity of roads is creating more and more traffic congestion. Litera-
ture presents two main approaches to the measurement of the total costs of traffic
congestion [54]. The first approach uses a modelling framework in which actual
traffic conditions are compared with theoretical “free-flow” conditions, where there
is no congestion what-so-ever. The second approach utilises data on actual traffic
delays often based on police reports. Since the latter approach is based on major
documented delays and traffic jams it is likely to yield rather lower estimates of the
total costs of congestion than is the first approach.

Regardless of how it is estimated, traffic congestion is a very costly problem.
According to the EU, it costs about 100 billion € every year [12]. This amount
is roughly equal to 1% of the EU’s Gross Domestic Product (GDP). The bigger
problem is that traffic congestion is not expected to decrease, rather it is expected to
increase. By 2050, the cost due to traffic congestion is expected to increase by about
50% [12]. The problem of traffic congestion is spread all over the world. Figure 1.1
shows a brief summary of peak time lost (in the year 2017) in traffic congestion
around major European cities. Across Europe, drivers may spend up to 30% of
driving time during peak hours in traffic congestions. Even in comparatively smaller
cities, like Turin, this number is as high as 13%.

1.2 Smartphone adoption rates
As of 2018, there are about 2.53 billion smartphone users worldwide. This

clearly makes smartphones one of the most ubiquitous and omnipresent modern
technologies. Moreover, the number of smartphones is rapidly increasing and the
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Figure 1.1: Peak time lost (in the year 2017) in traffic congestion around major
European metropolitan cities [50].

same for non-smartphones (also called dumbphones) is decreasing. We are living
in an era where all of us have a device in our pockets which, compared to super-
computers and media centres from the previous decade, is more powerful, has a
faster mobile broadband connection, and is more contextually aware of its physical
surroundings. Almost 8 out of 10 Internet users in the EU surfed via a mobile
or smartphone in 2016 [13]. At year-end 2017, there were 465 million unique mo-
bile subscribers in Europe alone, equivalent to 85% of its population [36]. By
2020, smartphones will account for 76% of all mobile connections, up from 65%
in 2016 [36]. Smartphones are truly universal all around the world, especially in
Europe. Figure 1.2 shows number of smartphone users and its penetration rates
for European countries. The average penetration rate of smartphones in the EU is
about 67.3% of its population. European countries like Germany, the Netherlands,
Sweden and the United Kingdom have a smartphone penetration rate of roughly
80%.
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1.3 High quality mobile data
Modern smartphones pack more computation power than yesteryear’s comput-

ers. They have a lot of advanced high-speed hardware to process computationally
intensive tasks. As of 2019, most of the smartphone released this year have octa-
core or quad-core Central Processing Units (CPUs) with 12 GB to 4 GB of RAM.
Multiple low-power sensors allow them to be physically and contextually aware of
their surroundings and environment. The most common sensors included in An-
droid smartphones are listed in Table 1.1. Low-power Micro-Electro-Mechanical
System (MEMS) based Inertial Measurement Unit (IMU) enable them to be orien-
tation aware with minimal power consumption. The most commonly used sensors
for the context of this research are Global Positioning System (GPS), accelerome-
ter, gyroscope, and magnetometer. These sensors allow smartphones to have 3 to
9 degrees of freedom. Most Android have built-in sensors that are capable of mea-
suring motion, orientation, and various environmental conditions. These sensors
are capable of providing raw data with high precision and accuracy, monitoring
three-dimensional device movement or positioning, or monitoring changes in the
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Sensor category Name Output Common usage

Motion sensors

Accelerometer Acceleration force
in m/s2

Motion detection
(shake, tilt, etc.)

Gyroscope Rate of rotation
in rad/s

Rotation
detection (spin,
turn, etc.)

Environmental
sensors

Barometer
Ambient air
pressure in hPa
or mbar

Monitoring air
pressure changes

Photometer

Ambient light
level
(illumination) in
lx

Controlling screen
brightness

Thermometer Ambient room
temperature in ◦C

Monitoring
temperatures

Humidity sensor Relative ambient
humidity in %

Monitoring dew
point,
absolute/relative
humidity

Microphone Ambient sound
level in dB

Noise level, voice
recording

Position sensors

GPS
Location in
latitude and
longitude

Navigation,
location-based
services

Magnetometer
Ambient
geomagnetic field
in µT

Compass and
orientation

Table 1.1: Sensor types, output data and usage [32].

ambient environment near a device. All of these factors enable data recorded from
smartphones to be of more than decent quality.

1.3.1 Data crowdsourcing
Crowdsourcing is the practice of obtaining information or input into a task or

project by enlisting the services of a large number of people, either paid or unpaid,
typically via the Internet according to the Oxford dictionary. Cloud-based crowd-
sourcing for data has opened new doors for providing rich services to users without
any dedicated hardware for data collection. This approach consists of building large
data sets (real-time or not) with the help of a large group of people using a medium
such as a smartphone application. This phenomenon is of paramount importance in
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Figure 1.3: Mobile Operating System (OS) worldwide market share in percent-
age [20].

modern Smart Cities. Apart from significantly reducing data collection hardware
installation and maintenance costs, it also dramatically improves the smart city
dynamics because of collaboration and citizen engagement.

1.3.2 Mobile OS market share
As of 2019, there are two major competitors in the mobile OS category in the

market, namely Google’s Android and Apple’s iOS. For all the work that follows
we opted to work with Android OS. The reason for this technical choice is two-
fold. Firstly, the market share of mobile OS shows that Android is the dominant
mobile OS with a market share of roughly 75% while iOS has a share of only
roughly 22% [20]. This implies that an application that supports Android OS can
potentially be used by 75% of the market. Secondly, Apple’s iOS has some developer
restrictions that do not allow the use of background activities. This is a major
hindrance for an application that needs to collect sensor data in the background
seamlessly. Figure 1.3 shows the worldwide market share of major mobile OS from
2009 till 2019. Mobile OS market share forecast is not clear at the moment, but in
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any case, Android is expected to maintain its market share (if not increase) [49].
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Chapter 2

Vehicle Dynamics Data
Acquisition (VDDA)

The ubiquity of smartphones, with sensors, high processing power, and high
bandwidth connectivity, makes them ideal candidates for hosting ITS applications
such as those described in [84], [80] and [44]. Smartphone sensors use two reference
systems: 1) smartphone’s (referred by accelerometer and gyroscope); 2) Earth’s
(referred by GPS). Therefore, the smartphone reference system and the Earth ref-
erence system must be related to each other to jointly use the measurements of both
groups [11]. In ITS applications, the relationship between smartphone and vehi-
cle coordinate systems is needed in case the smartphone must detect some vehicle
dynamics. The determination of this relationship can be, in many cases, a serious
impairment to the usability of smartphones, since whenever applications require
data related to the vehicle dynamics, only two approaches are possible: 1) to fix
the position and orientation of the smartphone in the vehicle; 2) to recalculate the
orientation of the smartphone with respect to vehicle any time data are collected.
The first solution is the simplest one but, in my opinion, few customers will be will-
ing to use applications requiring to place their smartphones in a cradle screwed on
the dashboard of their car. The second solution is still under investigation and some
solutions are already available with some limitations in their usage. My proposal
is a simple real-time procedure to convert measurements from smartphone sensors
into the vehicle coordinate system. This allows complete freedom of movement of
the smartphone while overcoming most of the limitations of current proposals, as
it will be discussed in the following sections.

Available solutions
A detailed survey and review of the major smartphone to vehicle alignment

techniques have been presented by [76]. Some prominent solutions are summarised
here as well. In Mobile sensor platform for Intelligent Recognition of Aggressive
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Driving (MIROAD) [51] the authors propose putting the smartphone in a cradle
to fix its orientation with respect to the vehicle. As already pointed out that this
solution is impractical since it reduces the convenience of the driver and requires
the installation of a cradle in the vehicle. Other authors such as [4] and [56] suggest
collecting the steering wheel angle from the Controller Area Network (CAN) bus of
a vehicle using an On-Board Diagnostics (OBD) module. This method is invasive
since it requires connecting additional hardware to the vehicle which is not always
applicable. Moreover, this particular sensor might not be accessible from the OBD-
II in all vehicles and, when accessible, usually requires the full knowledge of the
proprietary communication protocol used by the car manufacturer to retrieve these
data from the OBD-II interface. This makes the implementation of this solution
even more difficult.

The full auto-calibration proposal described in [2] uses the smartphone ac-
celerometer, gyroscope, and GPS, and translates these measures into the vehicle
coordinate system using the yaw angle between the vehicle and the smartphone.
Its value is calculated by forcing the vehicle to move forward, with no lateral ac-
celeration, until its longitudinal axis is identified. Nericell project by Microsoft
Research [59] also leverages on the processing of acceleration data to find out the
device orientation: it also requires the vehicle to brake and travel in a straight line
to generate a recognisable acceleration in a known direction. In both cases, after
this initial setting phase, the orientation of the smartphone with respect to the
vehicle must be kept unchanged, which implies the use of a cradle, although in this
case, it could be a removable one.

Another solution based on an accelerometer, magnetometer and GPS [75] has a
typical settling time of 60 seconds. Although the authors claim that the smartphone
does not necessarily have to be fixed with respect to the vehicle, according to the
authors’ experience, convergence is difficult to achieve when the smartphone is free
to move with respect to the vehicle (which commonly happens when the smartphone
is in the driver’s pocket or is handheld by its user) and the settling time is high.

My approach
In my opinion, for non-safety related ITS applications, the flexibility and com-

fort of the driver should take precedence over the accuracy of the measurements:
forcing the driver to place his/her smartphone in a cradle to fix its orientation with
respect to the vehicle would have a negative impact on the usability of the appli-
cations and consequently on their Penetration Rate (PR). This is becoming even
more evident in newer cars, in which the smartphone can be connected to the car’s
entertainment system via Universal Serial Bus (USB) to get access to many smart-
phone applications through voice, steering wheel commands and car’s dashboard
display. Any application that relies on the user putting their device in a cradle,
will either not function at all if the user does not put their device in the cradle or

10



2.1 – Methodology

will be highly inaccurate. Also, the accuracy of sensors (especially magnetometers)
in smartphones can be greatly degraded by magnetic cradles and modern cradles
with wireless charging facility. Therefore, applications that can work seamlessly
and without any unnecessary user interaction would likely be more acceptable. As
a result, a trade-off between accuracy and usability must be found.

In this Chapter, I propose a completely flexible and adaptive solution called
Vehicle Dynamics Data Acquisition (VDDA): using data from the accelerometer,
magnetometer, and GPS our solution computes the orientation of the smartphone
with respect to the vehicle in real-time and in the smartphone itself. The driver is
not forced to place the smartphone in a cradle to fix its orientation with respect
to the vehicle, thanks to its very low settling time (tens of milliseconds) which
allows the smartphone to change its orientation with respect to the vehicle while
data are collected. Such movements always occur when the smartphone is in the
pocket of the driver which is in turn lightly, but constantly, moving while driving
or when the smartphone is placed somewhere close to the driver but is not in a
cradle screwed to the vehicle. My solution is flexible in terms of the placement
of the smartphone inside the vehicle and hardware compatibility (with roughly all
Android device). The smartphone can be present in the pocket the driver, placed
on the seat/dashboard or even placed in a cradle. It is adaptive thanks to its
responsiveness allowing it to adapt very quickly to the new orientation changes.

2.1 Methodology
The goal to be reached is the identification of the rotation matrix values to

convert between the coordinate systems of the smartphone and the vehicle in a way
fast enough to be repeated whenever it is needed. I propose a two-step procedure
able to convert any measure taken by the smartphone into the vehicle reference
system in a few milliseconds using data sampled almost simultaneously to perform
all calculations. To describe it, firstly the coordinate systems involved are defined,
and secondly the remapping of any measure taken in its own reference system onto
that of the vehicle is shown.

2.1.1 Coordinate system definitions
The three reference systems we are dealing with are the one of the smartphone,

the one related to Earth and, finally, the one of the vehicle. They are described in
the Table 2.1 and Figure 2.1. Please note that all three coordinate systems use the
same axes for rotational movements as they do for linear or directional movements.
Rotation is positive in the counter-clockwise direction; that is, an observer looking
from some positive location on the x, y or z-axis at a device positioned on the
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(a) relative to a smartphone
(b) relative to Earth

(c) relative to a vehicle

Figure 2.1: Coordinate system definitions relative to smartphone (a), Earth (b),
and vehicle (c).

Coordinate
system x-axis y-axis z-axis

Smartphone
(xs) pointing to the
right wrt the surface
of the display

(ys) pointing upwards
wrt the surface of the
display

(zs) pointing
vertically outwards
wrt the surface of the
display

Earth

(xe) tangential to the
ground at the current
location and pointing
towards East

(ye) tangential to the
ground at the current
location and pointing
towards North

(ze) perpendicular to
the ground and
pointing towards the
zenith

Vehicle

(xv) pointing laterally
towards the side of
the vehicle in right
direction when
viewing from the top

(yv) pointing towards
the front of the
vehicle when viewing
from the top

(zv) pointing
outwards vertically
from the vehicle’s
roof

Table 2.1: Coordinate system definitions relative to smartphone, Earth, and vehicle.

origin would report positive rotation if the device appeared to be rotating counter-
clockwise. In case the coordinate system refers to a tablet device, it is based on
landscape orientation rather than portrait since the coordinate system is always
based on the natural orientation of the device.
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2.1.2 Axis Remapping
The coordinate system remapping is done by periodically performing two oper-

ations in sequence, namely a 3D rotation followed by a 2D rotation.

1. In the first step, the sensor data are converted from smartphone to Earth
coordinate system using Equation (2.1). The 3 x 3 rotation matrix RSE is
computed using data from accelerometer and magnetometer as per Equa-
tion (2.2g). Notice that modern smartphone operating systems (including
Android and iOS) provide two types of sensor data i.e. calibrated and uncal-
ibrated. Corrections (such as temperature compensation, bias compensation,
scale calibration and drift) have been eliminated from calibrated sensor data.
To minimise the effect of sensor biases, calibrated sensor data is used.

⎡⎢⎣xe

ye

ze

⎤⎥⎦
⏞ ⏟⏟ ⏞

relative to Earth

= RSE

⎡⎢⎣xs

ys

zs

⎤⎥⎦
⏞ ⏟⏟ ⏞

relative to smartphone

(2.1)

g⃗ =
(︂
gx, gy, gz

)︂
(2.2a)

n⃗ =
(︂
nx, ny, nz

)︂
(2.2b)

u⃗ = n⃗ × g⃗ (2.2c)

ĝ = g⃗

∥g⃗∥
(2.2d)

û = u⃗

∥u⃗∥
(2.2e)

v̂ = ĝ × û (2.2f)

RSE =

⎡⎢⎣ûx ûy ûz

v̂x v̂y v̂z

ĝx ĝy ĝz

⎤⎥⎦ (2.2g)

The accelerometer provides the gravity vector (g⃗) and the magnetometer pro-
vides the magnetic North vector (n⃗). A perpendicular vector (u⃗) is obtained
by the cross product of gravity and North vector. Another perpendicular unit
vector (v̂) is obtained by the cross product of gravity and u⃗ unit vector. The
two cross products ensure that vectors û, v̂ and ĝ are mutually perpendicular.
The 3D rotation matrix (RSE) is composed of these unit vectors (i.e. û, v̂
and ĝ). Their orientation is shown in Figure 2.2. Notice that û and v̂ roughly
point towards West and North, respectively. Their offset depends on the rel-
ative position of the North Magnetic Pole with respect to the Geographical
North Pole as seen from the smartphone location.
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Figure 2.2: Orientation of vectors used for computation of 3D rotation matrix
assuming that North Magnetic Pole and Geographic North Pole are coincident.

Figure 2.3: Relationship between smartphone coordinate system and Earth coor-
dinate system.

Figure 2.3 shows the relationship between smartphone and Earth coordinate
systems in the simplified case where the North Magnetic Pole and Geographic
North Pole are coincident. In any real case, they are not coincident, and the
North Magnetic Pole instead of the Geographic North Pole is simply used
throughout all formulas. Since the smartphone (in 3D) can be placed in any
orientation with respect to Earth, there are three angles of reference θx, θy

and θz. Google’s Sensor Manager Application Programming Interface (API)

14



2.1 – Methodology

is used to compute the rotation matrix [30]. Noteworthy is that the rotation
matrix can also be easily computed manually as explained earlier, but here
readily available API is used, which works the same way. Moreover, note that
the API has some limitations as stated by the official documentation, “The
matrices returned by this function are meaningful only when the device is not
free-falling and it is not close to the magnetic north”. But clearly, it is safe
to say that these limitations do not affect our computations in most of the
cases. The 3D rotation matrix is recomputed every time there is an update
from accelerometer or magnetometer.

2. In the second step the data, already referred to the Earth coordinate system,
are remapped to the vehicle reference system, as shown in Equation (2.3a)
and Equation (2.3b). To perform this 2D rotation, the 2 x 2 rotation matrix
REV is computed using the magnetic bearing angle (θb) which again refers
to the North Magnetic Pole, which was used in the previous 3D rotation in
place of the Geographic North Pole. The bearing is the horizontal direction
of travel of the mobile device and is not related to the device’s orientation.

[︄
xv

yv

]︄
⏞ ⏟⏟ ⏞

relative to vehicle

= REV

[︄
xe

ye

]︄
⏞ ⏟⏟ ⏞

relative to Earth

(2.3a)

zv⏞⏟⏟⏞
relative to vehicle

≈ ze⏞⏟⏟⏞
relative to Earth

(2.3b)

To compute θb from the true bearing θ′
b provided by GPS, it is necessary to

know the magnetic declination (θmd), which is defined as the angle on the
horizontal plane between the North Magnetic Pole and the Geographic North
Pole. The World Magnetic Model produced by the United States National
Geospatial-Intelligence Agency is used to estimate the magnetic declination
anywhere on Earth based on location and time [58]. The magnetic bearing
angle is finally computed using Equation (2.4a). After this, the 2 x 2 rotation
matrix REV is computed using Equation (2.4b).

θb = θ′
b − θmd (2.4a)

REV =
[︄

cos(θb) sin(θb)
− sin(θb) cos(θb)

]︄
(2.4b)

Figure 2.4 shows the relationship between Earth coordinate system and
vehicle coordinate system. Since under normal circumstances (travelling on
flat/semi-flat ground), the z-axis of Earth (ze) and the z-axis of the vehicle (zv)
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Figure 2.4: Relationship between Earth coordinate system and vehicle coordinate
system.

are approximately parallel (i.e. assuming ze ≈ zv), it will only be necessary to
perform the rotation in 2D (xy plane), using the previously defined magnetic
bearing angle θb to compute the four values of the 2D rotation matrix. This
matrix is recomputed every time there is an update of the bearing from GPS.

Using the above mentioned two rotation matrices, sensor data is rotated from smart-
phone coordinate system to Earth coordinate system and eventually to vehicle coor-
dinate system. This enables the mapping of the coordinate system of a smartphone
on a vehicle. Note that the novelty here is not the usage of Google’s API, the
computation of rotation matrices or the rotation of data itself, rather the com-
plete solution provided by the combination of simple techniques allowing complete
freedom of placement of the smartphone. Modern lower power accelerometer and
magnetometers can be sampled very frequently (the minimum sampling period can
be as low as 20 ms [32]). GPS receivers in smartphones provide an update every
single second. This enables my system to be adaptive and responsive to changes in
the heading of the vehicle in the great majority of cases.

2.1.3 Bearing retention
There are some conditions under which this approach fails, such as when a

vehicle moves at a very slow speed or completely stops (for example at a traffic
signal) and the GPS does not provide a bearing angle until the vehicle is again in
motion. In these cases, bearing retention is used which means to retain the last
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known bearing until a new bearing is available. This works simply because for
example, in case of stops, the heading direction of a vehicle before stopping and
after starting again is always the same, implying that the bearing angle remains
unchanged during the stop.

2.1.4 Handheld device
Another situation to be considered is when the user is physically interacting

with the smartphone. In this case, the rotation matrices may not be accurate at
all, since the smartphone orientation could change very quickly, faster than the
update frequency of the two matrices. One solution is to identify when a user is
interacting with the phone and to suspend data collection. User interactions can be
detected by a keypress, a touch on the screen, proximity sensor or a phone call [59].
Another possible solution could be to compute and use time averages to provide
estimates of the smartphone’s average orientation. This is a potential candidate
for further studies and was not explored during this work.

Notice however that newer vehicle usually provide a wired connection between
the driver’s smartphone and the entertainment systems (through Android Auto
and/or Apple CarPlay) which makes it less likely that the smartphone is handled
while driving. Furthermore, a majority of authorities from different countries have
enacted laws to ban the handheld use of mobile phones while driving due to safety
concerns. This should deter drivers from handling the device while driving in any
case.

2.1.5 Sources of error and countermeasures
The total error associated with sensor data rotation performed using axis remap-

ping can be expressed as:

error ≈ ns ± nθb
± nθmd

where ns is the noise in sensor readings, nθb
is the error in bearing reported by

GPS and nθmd
is the error in bearing due to magnetic declination. Notice that any

measure to reduce the effect of the first two error components on my data was not
applied, although there are many possible techniques to act on them. The noise in
sensor readings can be removed using a low-pass filter as suggested by [51], median
values over a temporal window utilised by [59] or a Kalman filter described by [5].
Smartphone sensor noise is well represented by white noise and therefore a Kalman
filter is usually used to filter out such noise from sensor measurements [2]. As far
as the error in the bearing reported by GPS is concerned, there are two possible
solutions. First is to again use a Kalman filter which is applied very frequently
in Inertial Navigation System (INS) such as [35]. The second solution is to use
a snap to road technique in real-time to correct the bearing reported by GPS in
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real-time. However, this may incur some performance degradation, since snap to
road is usually achieved by using a remote API. The offset error in bearing due to
the presence of magnetic declination can be evaluated using the World Magnetic
Model and subtracted from the bearing as reported by Equation (2.4a). Notice that
the noise component due to the presence of magnetic declination was eliminated
since it is likely the most significant part of noise affecting data rotation.

2.2 Testbed and measurement dataset
My data rotation methodology was extensively tested in the field with multiple

users and mobile devices. More than 2 million location points were collected and
processed over 16 months using 14 different Android smartphones. The closed beta
test included roughly 10 users in which 5 were actively participating. The testbed
consisted of an Android application and a server (offering a web service and data
post-processors).

• The Android application collected sensor data (including accelerometer
and magnetometer) and location data (GPS), calculated rotation matrices
and rotated data in real-time. Raw and processed data were stored locally
until a Wireless Fidelity (Wi-Fi) or a mobile data connection became avail-
able. As soon as the preferred data connection was ready, locally stored data
were uploaded onto the server only for the sake of estimating the accuracy of
the data rotation.

• The web service allowed the application to upload collected data onto the
server and to store them into a MySQL database.

• The post processor fetched the data from the database, computed snapped
latitude (latx), longitude (lngx) and bearing (θs). It used Google Places Snap
to Roads API to snap raw GPS trails to real roads on a map (this API takes
up to 100 GPS points collected along a route and returns a similar set of data
with the points snapped to the most likely roads the vehicle was travelling
along). The entire trip was snapped to a road in sequence by feeding the API
with a maximum of 100 GPS points at a time. Equation (2.5e) was used to
calculate snapped or true bearing along the road considering all consecutive
sets of snapped latitudes and longitudes. In the equation latx and lngx are
snapped latitude and longitude respectively, (x◦)c refers to the conversion of
degrees to radians, x◦ is an angle represented in degrees while xc is an angle
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2.2 – Testbed and measurement dataset

Figure 2.5: Block diagram of the testbed for the collection and processing of data.

represented in radians.

∆lng = (lng◦
2 − lng◦

1)c (2.5a)
b = sin(∆lng) × cos(latc

2) (2.5b)
a = cos(latc

1) × sin(latc
2) (2.5c)

− sin(latc
1) × cos(latc

2) × cos(∆lng) (2.5d)
θs = ((arctan2(b, a))◦ + 360◦) mod 360◦ (2.5e)

Figure 2.5 shows a block diagram of the testbed with all components. For the sake
of conformity, a filter was applied to all samples to remove all location points that
have a bearing or snapped bearing equal to zero. The reason is that in Android,
if the GPS location does not have a bearing associated with it then a 0.0◦ value is
returned. Moreover, if the actual value of bearing was 0◦ then there would be no
2D rotation since a rotation by 0◦ generates an identity matrix, making the error
evaluation inapplicable.

The resulting dataset contained nearly 1.5 million location points. Figure 2.6
shows a sample of dataset points plotted on a map.

Figure 2.7 shows the distribution of horizontal accuracy and speed in the input
dataset as a heat map. The colour scale on the right of the figure represents
the probability. µspeed and σspeed represent the average and standard deviation of
speed while µaccuracy and σaccuracy represent the average and standard deviation of
accuracy. The distribution of horizontal accuracy is bimodal with peaks at 5 m
and 12 m. This is most likely due to the fact that a diverse range of smartphone
makes and models were used to collect the data. Overall, the majority of the
location points fall in the range of 5 m to 15 m horizontal accuracy and 10 km/h
to 60 km/h speed. Moreover, the hot region centred at 135 km/h speed and 4 m
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Figure 2.6: A sample of location dataset collected from the testbed based on a
smartphone application and a central server. Each red dot corresponds to one
collected geographical location.

accuracy represent data collected during sub-urban and intercity travels. While the
two hot regions centred at 30 km/h speed and 5 m accuracy along with 30 km/h
speed and 12 m accuracy represent urban trips. It is noteworthy that Android
defines horizontal location accuracy as the radius of 68% confidence. Also, the
accuracy estimation does not indicate the accuracy of bearing, velocity or altitude.

2.2.1 Power consumption
The proposed methodology relies on data collection from an accelerometer, mag-

netometer and GPS sensors. In modern smartphones, accelerometer, gyroscope and
magnetometer are usually coupled together in a MEMS based lower-power or ultra-
low-power IMU chip. Following are the rated current consumptions of relevant chips
from a common modern smartphone (Samsung® Galaxy® S8):

• Accelerometer and Gyroscope: ST LSM6DSL has a nominal current con-
sumption of 0.29 mA to 0.65 mA.

• Magnetometer: AKM AK09916 has an active current consumption of 1.1
mA.
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Figure 2.7: Heat map (speed vs horizontal accuracy) of location dataset collected
from the testbed based on a smartphone application and a central server.

• GPS: Broadcom BCM4774 has an average current consumption of 10 mA to
100 mA.

It is evident from the above that GPS receivers are the biggest source of power
consumption among the relevant sensors. To reduce the energy consumed by GPS
receiver, I used a variable sampling period of GPS where speed and sampling period
were inversely proportional. In other words, at a high speed, the application samples
location with a low frequency since the bearing is expected to remain the same as a
previous location point. Whereas at a low speed, the application samples location
with a higher frequency since the bearing may change (for example during a turn)
between subsequent location points.

2.3 Results
The possible noise in the 3D rotation matrix used during the 3D rotation is

not discussed here since the matrix is computed using Google Sensor Manager API
and investigating the accuracy of the API is beyond the scope of this Chapter.
However, the error from the 2D rotation depends entirely on the accuracy of the
bearing angle (θb), which is analysed in the following paragraphs. A bounded error

21



Vehicle Dynamics Data Acquisition (VDDA)

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180
Error [degree]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

R
el

at
iv

e 
pr

ob
ab

ili
ty

-

+

Figure 2.8: Histogram of error E in bearing θb highlighting average µ and standard
deviation σ.

Min Max Average
(µ)

Standard
deviation (σ)

Root Mean
Square Error

(RMSE)
E -179.999 179.978 -0.417 21.073 21.077
ϵ 0 179.999 8.625 19.231 21.077

Table 2.2: Statistical parameters of error E and absolute error ϵ in degrees.

in bearing (E) was calculated for the dataset. E is bounded between the closed
interval [−180◦, +180◦]. Equation (2.6b) is used to calculate the value of error E
and Equation (2.6c) is for calculating absolute error ϵ in bearing θb.

∆ = θb − θs (2.6a)

E =

⎧⎪⎪⎨⎪⎪⎩
360◦ − ∆, if ∆ > 180◦

−360◦ − ∆, if ∆ < −180◦

∆, otherwise
(2.6b)

ϵ = |E| (2.6c)

Figure 2.8 and Table 2.2 show the distribution and statistical parameters of error
E. The error E is evenly distributed around 0◦ with an average of −0.417◦. The
standard deviation σ is 21.073◦ which is also very low compared to the bounds of
error E [−180◦, +180◦]. The average absolute error µ of ϵ is 8.625◦.
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The computation of the rotation matrix involves the calculation of trigono-
metric ratios (sine and cosine) of the bearing angle θb. This implies that an er-
ror in bearing angle will result in an error in the value of the trigonometric ra-
tio. To estimate the worst-case scenario based on average absolute error ω =
max(|sin(θb) − sin(θb ± µϵ)| , |cos(θb) − cos(θb ± µϵ)|) is used. The worst-case re-
sults in a difference of 0.1516 in the trigonometric ratio (when θb is between the
intervals [3◦,6◦], [84◦,87◦], [93◦,96◦] and [174◦,177◦]). Considering all possible ap-
plications, this error is either negligible or manageable.

As a comparison, my average absolute error is higher than the one for full
calibration achieved by [2] (8.7◦ compared to 3.9◦), but my solution does not require
any action from the user for convergence such as braking or driving in a straight
line. The IMU alignment achieved by [75] (using an accelerometer, magnetometer,
and GPS) shows a typical error of 2◦ for each Euler angle (roll, pitch, and yaw),
while reaching a steady state in 60 seconds. On average, the error in yaw angle
estimation is in between 3.21◦ to 2.08◦. My solution outperforms this latter one in
terms of negligible settling time (a few milliseconds) and reaches convergence even
if the smartphone is moving with respect to the vehicle. Again, this guarantees that
there are no restrictions imposed on the driver, making my solution more adaptable
to most ITS applications.

2.4 Conclusions
In this Chapter, I proposed a procedure to convert any measure taken by a

smartphone sensor into the vehicle coordinate system in real-time. It uses informa-
tion from low power IMU (accelerometer and magnetometer) and GPS to perform
data conversion, applying first a 3D rotation (from smartphone to Earth coordi-
nates) and then a 2D rotation (from Earth to vehicle coordinates). With this
procedure, the driver of a vehicle is no more constrained to place their smartphone
in a cradle all along a trip but can leave it in a bag, pocket or even handle it for
short periods. To obtain this result, the accuracy is traded with usability; reduc-
ing the first one to increase the second one. The result is a very low penalty in
accuracy, negligible in most ITS applications, and a very high increase in usability
which is a factor of paramount importance for any customer-oriented application.
This is the first solution, to the best of my knowledge, that can achieve real-time
axis remapping with reasonable accuracy without placing any restrictions on the
state of the device or driver. My approach enables the implementation of numer-
ous ITS applications without installing dedicated hardware and using only already
available mobile devices.
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Chapter 3

Vehicle Data Acquisition Platform
(VDAP)

This Chapter describes the research activities related to a multi-purpose soft-
ware platform for the collection and processing of data from vehicles using a smart-
phone application. The latest advances in information technology offer new pos-
sibilities for urban mobility. Smartphone applications do not only generate new
services for the users, but also generates massive data originating from the users.
The collection and analysis of this data may open new doors to provide useful
services to users and city managers.

ITS applications have a lot in common; All of them collect some data from
the user, process it locally to some extent, transfer it to a server for extended ser-
vices, and use the back-end server to provide value-added services to multiple users.
During this research, I did not come across a generic and customisable platform
to serve this purpose. The idea is to identify the basic building blocks needed to
implement common ITS applications, design the individual blocks such that they
provide maximum functionality and flexibility and implement the platform using a
modular approach.

3.1 System architecture
The system is called Vehicle Data Acquisition Platform (VDAP) and essen-

tially consists of a smartphone application platform and a server back-end. The
smartphone application and server work together to provide the ITS services to
users.

One of the biggest advantages of the system is its modularity, which allows it to
be highly customisable and optimisable for the specific application scenario. The
platform may use a simple eXtensible Markup Language (XML) based configuration
for all units and modules. This section describes the platform architecture in detail.
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3.1.1 Application platform
The smartphone application platform can be used to create a variety of mean-

ingful applications for ITS scenario. The smartphone application serves three basic
purposes:

• data acquisition

• initial processing

• data upload

After acquisition and initial processing, some service may be provided to the user
directly. For other more complicated services, the data collected by the application
is uploaded to the server, which in turn processes it and provides other services. For
the context of this Chapter, the application will refer to an Android application.

Overview

The application platform consists of 3 basic modular units.

1. Control unit

2. Trigger unit

3. Data collection and processing unit

Figure 3.1 shows the generic relationship between the basic building blocks of the
application platform. The control unit provides basic control functionality. The
trigger unit generates stimulus to start and/or stop a vehicle trip. The data col-
lection and processing unit is responsible for acquiring data from a smartphone to
process them and transfer them to a server (if needed). In the following sections,
individual units of the application platform are described.

Control unit

The control unit acts as the main control hub of the platform. It offers services
such as background always-on service, communication, data storage and database
management. Figure 3.2 shows some basic modules of the control unit. The data
storage module handles all storage requests made by other modules (such as data
collection and processing modules). It enables unified access to the storage medium
and provides services such as creating, deleting and appending data file(s).

The communication module caters for all communication-related needs of the
platform. The options for possible communication techniques are available in Sec-
tion 3.1.2. The choice of communication technique depends on the type and amount
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Trigger unit

Control unit

Data collection and processing unit

Operating 
System

Figure 3.1: A high-level block diagram showing an overview of the application
platform.

Control unit

Communication 
module

Database
module

Data storage 
module

Figure 3.2: A block diagram of the control unit emphasising important modules.

of data to be sent. As an example, a short real-time location update can use a sim-
ple light-weight JavaScript Object Notation (JSON) encapsulated RESTful web
service. Whereas HyperText Markup Language (HTML) multipart form-data can
be used to upload large trip files. Furthermore, the module offers the possibility to
use Wi-Fi only or Wi-Fi and mobile data connection options for data transfer.

The database module provides database management services for lower level
modules. The database contains a common section and an application specific
portion. A common shared table between all applications can be the trip list table
or a device to vehicle association table. The unit allows applications to create their
own tables and perform queries. The database can be hosted using native SQLite
database or Firebase Realtime Database built using NoSQL database.

Trigger unit

The trigger unit provides multiple automatic triggers for automatic recognition
of a vehicle trip. It uses multiple APIs to achieve this functionality. Figure 3.3
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Trigger unit

Activity 
Recognition Bluetooth Wi-Fi

Figure 3.3: A block diagram of the trigger unit underlining important modules.

shows some possible modules for the trigger unit. Due to the modularity of the
entire system, new trigger modules can be added or removed from the unit.

• Activity recognition: This module uses Google Play Services activity recog-
nition API to estimate the possible activity of the device with an associated
confidence. For the context of ITS, some interesting activities include: in a
vehicle, on foot (walking/running), being still or device being tilted (possibly
held in hand) etc. A sample case can be that the module generates a trip-
start trigger when the device is most likely present inside a moving vehicle
and a trip-stop trigger when the device is on the body of a walking person.

• Bluetooth device: This module produces triggers based on connection and
disconnection with a known Bluetooth device. The module uses Bluetooth
connection events to recognise the connection or disconnection with a saved
Bluetooth device(s). A Bluetooth device may be associated with a particular
vehicle. A sample case can be, the module generates a trip-start trigger when
the user enters his/her vehicle and the device establishes a connection with
the Bluetooth hands-free of the vehicle. When the device disconnects from
the Bluetooth hands-free, a trip-stop trigger is generated.

• Bluetooth beacon: This module produces triggers based on reception of a
Bluetooth Low Energy (BLE) message from a beacon. The module can use
Google’s Nearby Messages API to provide the desired functionality. A sample
case can be that a Bluetooth beacon is associated with a vehicle and placed
in it. When the device receives a message from this beacon, it identifies the
beacon (and vehicle) and generates a trip-start trigger. A trip-stop trigger is
generated when the device stops receiving messages from this beacon.

• Wi-Fi device: This module produces triggers based on connection and dis-
connection with a known Wi-Fi device. The module uses a similar mechanism
as the Bluetooth device module. A sample case can be that when the device
disconnects from a known Wi-Fi device (such as the home network) a trip-
start trigger is generated. A trip-stop trigger is generated when the device
connects to another known Wi-Fi device (such as the office network).
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Data collection and processing unit

Location 
module Sensors module Processing 

module

Figure 3.4: A block diagram of the data collection and processing unit highlighting
important modules.

Data collection and processing unit

The data collection and processing unit serves as the main unit for acquisition
and handling of all data. Figure 3.4 shows the most common modules for data
collection and processing unit.

The sensors module is capable of using multiple hardware and software sensors
available on the smartphone device. The platform supports three general classes of
sensors:

• Motion sensors: These sensors measure acceleration and rotational forces
along three axes. This class includes accelerometers, gravity sensors, gyro-
scopes, linear acceleration and rotational vector sensors.

• Environmental sensors: These sensors measure various environmental pa-
rameters, such as ambient air temperature, pressure, illumination, and hu-
midity. This category includes barometers, photometers, and thermometers.

• Position sensors: These sensors measure the physical position and orienta-
tion of a device within a frame of reference. This class includes orientation
sensors and magnetometers.

The processing module is where all the management and organisation of the col-
lected data is performed. It offers multiple common and specialised algorithms and
analysis techniques depending on the requirements of the application.

The location module is another vital component for ITS applications. One of
the unique features of mobile applications is location awareness. The platform uses
Google Play services location APIs which are preferred over the Android framework
location APIs. These APIs use fused location provider to estimate the best possible
location as per the configuration or application requirements. The fused location
provider fuses location from multiple providers including GPS, mobile network
location, Wi-Fi location and BLE location. As well as the geographical location
(latitude and longitude), the API also provides further information such as the
bearing (horizontal direction of travel), altitude, and velocity of the device.
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3.1.2 Server platform
The server part of the platform offers back-end connectivity, data storage, and

processing capabilities. The server platform is used to provide mandatory back-end
services to ITS applications. The server offers the following basic services:

• connectivity

• data storage and processing

• client services

Overview

The server platform consists of 3 basic modular units.

1. Messaging unit

2. Database unit

3. Post processors unit

Figure 3.5 shows the generic relationship between the basic building blocks of the
server platform. The messaging unit acts as the end-point for all communication
from smartphone applications. The database stores data for analysis and model
building. The post processors extract important information from collected data
from multiple sources. In the following sections, individual units of the server
platform are described.

Messaging unit

The messaging unit acts as a two-way communication end-point for one or
multiple messaging techniques. Depending on the application scenario, different
messaging techniques may be deployed to fulfil the requirements. It offers commu-
nication using the following techniques:

• REpresentational State Transfer (REST) based web services

• Simple Object Access Protocol (SOAP) based web services

• Firebase Cloud Messaging (FCM)

FCM (previously called Google Cloud Messaging (GCM)) is a service provided by
Google which is a cross-platform messaging solution that offers reliable delivery of
messages without any cost. As per server configuration, this unit may also provide
a push or pull based services to third-party client(s).
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Figure 3.5: A high-level block diagram illustrating the overview of the server plat-
form.

Database

The database unit offers services in order to store and organise data collected
from applications. This unit may use any popular DataBase Management System
(DBMS) solution such as MySQL or Microsoft SQL. Database unit works closely
with the post processors in order to enhance available data. It enables the possibility
to use data mining techniques to generate new information which was otherwise
not obvious.

Post processors

The post processors unit provides a platform for multiple modules for extracting
extra information from the collected data. The post-processor is a multi-threaded
pipeline based application where each step of the pipeline performs a specific op-
eration. The unit can be configured in order to add/remove post-processing stages
or modules depending on the application requirements. Individual threads may
work periodically or upon triggers (such as newly available data). Some examples
of common ITS post-processing operations include:

• Snap to roads: Snap to roads relates raw GPS trails to physical roads on
the map. Google’s Snap to Roads web service API is used for this purpose.
The API takes a maximum of 100 location points and may return 100 or fewer
points. It relates latitude and longitude information into snapped latitude,
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snapped longitude and place ID. Place IDs uniquely identify a place in the
Google Places database and on Google Maps.

• Reverse geocoding: Reverse geocoding converts location data into a human-
readable format. Google Place Details web service API is used to perform
reverse geocoding. After trips are snapped to roads, all snapped points are as-
signed a place ID. These place IDs are reverse geocoded into human readable
information using the API. The said IDs can be translated into information
such as the street address, name of business, road, neighbourhood, locality,
etc.

• Trip segmentation: A reverse geocoded trip can be segmented into dif-
ferent sections based on road characteristics. The segmentation technique is
based on the reverse geocoded data. Trip segmentation helps in analysis and
comparison with other trip data.

3.2 Applications
The platform can be used to implement a variety of ITS related applications.

Some examples of such application are Driving Style Analysis (DSA), Virtual In-
duction Loop (VIL), Public Transportation System Advanced Vehicle Management
system and so on. Using VDAP, some applications including DSA (refer to Chap-
ter 4) and VIL (refer to Chapter 5) were designed, implemented and tested.

3.2.1 DSA
DSA is a system that is capable of collecting information about the driving

behaviour of a user and providing some feedback about it. The system consists of an
Android application, a back-end cloud server, and a web interface. The application
works in the background to automatically collect information from multiple sensors
of the smartphone when the user is on the move. The collected data is processed
in real-time and processed information is sent to the server. The server performs
some post-processing operations on the collected data and makes it available to the
web interface. Users can access the web interface to analyse their vehicle trips and
receive valuable feedback.

Figure 3.6 shows a detailed block diagram of the DSA Android application
implemented using the Vehicle Data Acquisition Platform. In the application, the
control unit uses the database, data storage, and communication modules. The
database module provides access to a trip list table which stores information and
status of all recorded trips. The data storage module handles all collected raw
and processed data from sensors using multiple Comma-Separated Values (CSV)
files. The communication module communicates with the back-end cloud server
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Figure 3.6: A block diagram showing the design of DSA application implemented
using the Vehicle Data Acquisition Platform.

using RESTful APIs and HyperText Transfer Protocol (HTTP)’s multipart file
upload. The trigger unit uses activity recognition, Bluetooth and Wi-Fi modules
to detect if the user is on the go or not. The triggers provided by the modules
are essential for the application to function autonomously. The data collection
and processing unit is responsible for collecting and processing data in real-time
using location, sensors, and processing modules. The location module provides
highly accurate location very frequently. The sensor module subscribes to events of
the accelerometer, magnetometer, gyroscope and linear acceleration sensors. The
processing module detects the event in real-time using an algorithm composed of
Simple Moving Average (SMA) and multiple thresholds. It also detects physical
stops of the vehicle using data from location module.

3.2.2 VIL
VIL is a system that has the potential of complementing/replacing physical

induction loops which are physically installed in road asphalt to monitor traffic
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intensities. The system consists of an Android application and a back-end cloud
server. The application works in the background and is fully autonomous. Virtual
loops are defined in the server at intersections of interest and are synchronised with
the application. The application automatically detects when the user is on the
move and intelligently samples location to identify transits over virtual loops and
sends relevant information to the server. The server, then, aggregates and processes
data from multiple users and forwards information such as vehicle count, passage
time and passage speed to an Urban Traffic Control (UTC) such as Urban Traffic
OPtimisation by Integrated Automation (UTOPIA).

Figure 3.7 shows a detailed block diagram of the VIL Android application im-
plemented using the Vehicle Data Acquisition Platform. In the application, the
control unit uses database and communication modules. The database module
provides access to a trip-list table and a cloud-synced table with information about
nearby virtual loops. The communication module communicates with the back-
end cloud server using RESTful APIs and Firebase Realtime Database to keep the
database table(s) in sync. The trigger unit uses activity recognition, Bluetooth and
Wi-Fi modules to detect if the user is on the go or not. The triggers provided by
the modules are essential for the application to function autonomously. The data
collection and processing unit is responsible for collecting and processing data in
real-time using location and processing modules. The location module intelligently
switches between low accuracy, less frequent and low energy location updates and
high accuracy, more frequent and high energy location updates based on proximity
to a virtual loop. Then the processing module estimates proximity to a nearby vir-
tual loop and the time of transit over a virtual loop. Lastly, the transit information
is forwarded to the server in real-time where it is processed and sent to a client.

3.3 Conclusions
This Chapter describes in detail the idea and the proposed structure of a mod-

ular platform for the collection and processing of data for ITS related applications.
The platform called VDAP consists of a smartphone and a back-end server sec-
tion. VDAP is highly customisable and can be adapted to provide a number of
ITS related services. More details about the design and implementation of two
applications using VDAP are available in Chapter 4 and Chapter 5.
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Figure 3.7: A block diagram detailing the design of VIL application implemented
using the Vehicle Data Acquisition Platform.
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Chapter 4

Driving Style Analysis (DSA)

In this Chapter, I describe the research activities related to the automatic recog-
nition of the driving style of drivers. In every sector of life, be it personal, business
or leisure, commutation is vital for us. This need to commute makes travel a ne-
cessity rather than a luxury. People strive for shorter travel times, fuel-efficient
journeys while being safe from any hazards. Safety is an indispensable concern for
both drivers as well as passengers. Driving style can characteristically be divided
into two categories: typical (non-aggressive) and atypical (aggressive). In order
to promote driver safety, studies have found that a driver’s behaviour is relatively
safer when being monitored, when feedback of specific driving events is provided,
and when reports of potentially aggressive events are recorded [51].

On an industrial scale, big companies use a large number of vehicles, usually
called a fleet, to transport its technicians and personnel on sites where they re-
pair and set-up elements of the infrastructure. The management of this fleet is
crucial for a company in terms of workforce productivity, cost control and safety.
Apart from these technical fleets, some companies also own or maintain pick and
drop service for employees or carpooling arrangements. Usually, How’s my driv-
ing? bumper stickers are utilised to not only gather feedback for their drivers but
also to give them a sense of being monitored. This approach enables the driver
to be self-conscious and drive more responsibly [71]. If this manual approach of
monitoring can be replaced with an automatic and unbiassed system, it would not
only improve safety standards but also reduce human error in monitoring and may
provide automatic assisted safety mechanisms.

Use of smartphone
The idea is to use a freely placed smartphone to recognise the driving style

and behaviour of a driver and use this data to assist the driver not only to improve
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Figure 4.1: x-IMU from x-IO; an IMU with Bluetooth interface.

his/her driving style, but also to provide assisted-safety mechanisms in case of a pre-
dicted incident. A 3-axis accelerometer, 3-axis gyroscope, and 3-axis magnetome-
ter can be used to recognise normal turns, normal accelerations and decelerations,
abrupt or aggressive turns, aggressive accelerations and decelerations, and others.
By monitoring data from sensors of a smartphone freely placed in a vehicle, it may
be possible to understand the behaviour of the driver and the (so-called) driving
events. This information can also be used to not only alarm, notify or penalise
drivers but also to help them improve their driving skills. Using new generation
networking capabilities, such information can be stored and further analysed at a
remote server for research purposes. Also, an analysis of a driver’s driving style
history can be used to recognise his/her mood or physical state (tired, sleepy etc.).

Use of dedicated hardware
Another source of motion data may be a dedicated hardware device present in

the vehicle. Such a device can be a simple data logger with a 9-axis IMU. This
device may have capabilities to store the inertial and rotational data locally and,
at the end of a trip, upload the information to a server using a built-in mobile
data connection. Such a device may also function alongside a smartphone device.
The IMU can sample and record data locally, later on, it can send the data via
Bluetooth interface to the smartphone where it is uploaded to a server. At the
server, analysis can be performed to identify driving events and trips. An example
of a simple IMU device is shown in Figure 4.1. The x-IMU from x-IO hosts onboard
sensors, algorithms, configurable auxiliary port and real-time communication via
USB, Bluetooth or Universal Asynchronous Receiver-Transmitter (UART).

4.1 DSA application
DSA is an Android application designed to collect and process data from motion

and position sensors of an Android smartphone device. Motion sensors are useful for
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Figure 4.2: DSA system high-level block diagram.

monitoring device movement such as tilt, shake, rotation, or swing. The movement
is usually a reflection of direct user input (for example, a user steering a car in a
game or a user controlling a ball in a game), but it can also be a reflection of the
physical environment in which the device is sitting (for example, moving with you
while you drive your car) [25]. Position sensors are useful for determining a device’s
physical position in the world’s frame of reference. For example, you can use the
geomagnetic field sensor in combination with the accelerometer to determine a
device’s position relative to the magnetic North Pole [28]. Analysis of driving style
can be broken up into recognising driving events or manoeuvres and creating a
driving profile of each individual driver. The current driving style of a driver can
be then compared with their known driving profile (or also possibly with other
users’ driving profile).

To support the DSA application, some other entities are implemented including
several RESTful web services, MySQL based database, a post processor, and a web
interface for analysis and visualisation. Figure 4.2 shows a high-level block diagram
of the entire system.

The DSA application uses a number of motion and position sensors to collect
and process data. A number of APIs are used to achieve the functionality. Figure 4.3
shows a high-level block diagram of the application.

4.1.1 Android sensor API
All smartphones produced within the last decade have a multitude of motion,

orientation, and various environmental sensors. These sensors are capable of pro-
viding raw data with high precision and accuracy and are useful if it is required to
monitor three-dimensional device movement, positioning, or changes in the ambient
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Figure 4.3: DSA application system block diagram.

environment near a device. Figure 2.1a shows the coordinate system that is used
by all sensor APIs. Some of the relevant sensors provided by Android Sensor API
are as follows:

Accelerometer

An acceleration sensor measures the acceleration applied to the device, including
the force of gravity. All values are in SI units (m/s2). The Android Sensor API
for accelerometer (Sensor.TYPE_ACCELEROMETER [29]) provides the following
data:

• Acceleration force along the x-axis (including gravity)

• Acceleration force along the y-axis (including gravity)

• Acceleration force along the z-axis (including gravity)

Linear acceleration sensor

The linear acceleration sensor provides a three-dimensional vector representing
acceleration along each device axis, excluding gravity. All values are in SI units
(m/s2). The Android Sensor API for linear acceleration sensor (Sensor.TYPE-
_LINEAR_ACCELERATION [29]) provides the following data:

• Acceleration force along the x-axis (excluding gravity)

• Acceleration force along the y-axis (excluding gravity)

• Acceleration force along the z-axis (excluding gravity)
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Gyroscope

The gyroscope measures the rate of rotation around a device’s x, y, and z-axis.
Rotation is positive in the counterclockwise direction. All values are in SI units
(rad/s). The Android Sensor API for gyroscope (Sensor.TYPE_GYROSCOPE [29])
provides the following data:

• Angular speed around the x-axis

• Angular speed around the y-axis

• Angular speed around the z-axis

Geomagnetic field sensor

The magnetometer estimates magnetic field at a given point on Earth, and
in particular, computes the magnetic declination from true north. It provides a
measure of the ambient magnetic field in the x, y and z-axis. All values are in SI
units (µ T). The Android Sensor API for geomagnetic field sensor (Sensor.TYPE-
_MAGNETIC_FIELD [29]) provides the following data:

• Ambient magnetic field on the x-axis

• Ambient magnetic field on the y-axis

• Ambient magnetic field on the z-axis

4.1.2 Google play services location API
Google Play Services [26] provide highly optimised interface for receiving loca-

tion updates. The Fused Location provider fuses location information from multiple
sources (such as GPS, Wi-Fi or Network) to provide the best possible location in-
formation while balancing accuracy and power consumption. The API may provide
the following information:

• Latitude: the latitude, in degrees.

• Longitude: the longitude, in degrees.

• Speed: the speed (if available), in metre/second over ground.

• Altitude: the altitude (if available), in metres above the World Geodetic
System (WGS) 84 reference ellipsoid.

• Bearing: the bearing (if available), in degrees. The bearing is the horizontal
direction of travel of the device and is not related to the device orientation.
It is guaranteed to be in the range [0.0, 360.0].
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• Accuracy: the estimated accuracy of this location, in metres. Accuracy is
defined as the radius of 68% confidence.

4.1.3 Activity recognition
Activity Recognition API [21] from Google Play Services provides the ability

to recognise a number of physical activities being performed by the user (or the
physical state of the device). The API is able to identify the following activities:

• In vehicle: The device is in a vehicle, such as a car.

• On bicycle: The device is on a bicycle.

• On foot: The device is on a user who is walking or running.

• Running: The device is on a user who is running.

• Still: The device is still (not moving).

• Tilting: The device angle relative to gravity changed significantly.

• Walking: The device is on a user who is walking.

The API also provides a level of confidence for each activity in percentage. At the
same time, multiple activities may have high confidence values.

4.1.4 Sensor data collection
The application uses a background service to collect and process data. The

service has the ability to auto-start on start-up of the device. The service waits
in idle mode until it is triggered by one of the available triggers. As of now, the
following triggers are implemented in the app:

• Manual user trigger

– Manually start and stop the trip using buttons in the app.

• Automatic activity recognition trigger

– If the activity recognition API detects that the user is in a vehicle and
the confidence level of this activity is beyond a certain threshold (in my
experiments a value of 75% is reasonable) a detection session is initiated.
The session may be terminated manually by the user or by the activity
recognition API in case it is detected that user is on foot (implying that
he has left the vehicle).

• Automatic Bluetooth device connection trigger

42



4.1 – DSA application

– If the device connects/disconnects to/from a saved Bluetooth device, a
trip is triggered. If there is no saved device, the application notifies
the user in case a Bluetooth connection is established. ACTION_ACL-
_CONNECTED [22] and ACTION_ACL_DISCONNECTED [22] broad-
casts are used to start and stop a trip respectively.

During a session, raw data from multiple motion and position sensors are acquired
and saved in CSV format on the internal memory of the device. In case the device
has an external memory, the data is stored in external memory. The data files are
available in the following location:

• “Internal storage\Download\SensorMonitorLog” if the device has no external
memory card installed.

• “External storage\Download\SensorMonitorLog” if the device has an external
memory card installed.

Data from following sensors are recorded by the service:

• Accelerometer: For calculating Rotation Matrix (refer to Equation 2.2g).

• Linear Acceleration: For identifying driving manoeuvres based on acceler-
ation.

• Gyroscope: For identifying driving manoeuvres based on rotation.

• Magnetic field: For calculating Rotation Matrix (refer to Equation 2.2g).

Along with sensor data, location data is also recorded and stored as a CSV file.
The sensor data are sampled at a very high sampling frequency in order to achieve
a high level of definition of raw data. The sampling period is set to SENSOR-
_DELAY_UI [31] which is defined as rate suitable for user interface and is roughly
between 40 ms to 60 ms. For location updates, the inexact update interval is 2 sec
while the exact maximum interval between location updates is 1 sec.

4.1.5 Definition of driving manoeuvres
The driving manoeuvres can be classified as follows:

• Rotation based (refer to Figure 4.4a)

– left: a counter-clockwise rotation along the z-axis of vehicle
– right: a clockwise rotation along the z-axis of vehicle

• Acceleration based (refer to Figure 4.4b)
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(a) rotation based (b) acceleration based

(c) location based

Figure 4.4: Driving manoeuvres classification w.r.t. vehicle.

– accelerate: a positive acceleration along y-axis of vehicle
– decelerate: a negative acceleration along y-axis of vehicle
– lateral acceleration: an acceleration along x-axis of vehicle
– vertical acceleration/bump: an acceleration along z-axis of vehicle

• Location based (refer to Figure 4.4c)

– stop: a halt in an area with low or zero speed
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4.1.6 Data processing
In order to recognise driving manoeuvres, the raw data collected from sensors

has to be related with the coordinate system of the vehicle. All raw data from
sensors are originally referred to the coordinate system of the device. Since the
device can be placed in any orientation or position in the vehicle, it is not possible
to establish a fixed relationship between the reference system of device and vehicle.
Furthermore, the device can be moved inside the vehicle during a driving session.
Due to this, the relationship between the coordinate system of a device and a vehicle
is established in a 2 step procedure.

Using the procedure explained in Chapter 2, raw data from the linear acceler-
ation sensor and gyroscope are rotated from the device’s coordinate system to the
vehicle’s coordinate system. After the data has been correctly rotated and is refer-
enced to the vehicle’s coordinate system, a combination of simple moving average
and thresholds are used to identify driving manoeuvres. A SMA is the unweighted
mean of the previous n data. SMA is calculated for the last n readings of sensor
data values vx. If those readings are represented as vM , vM−1, · · · , vM−(n−1) then
the formula for calculating SMA is mentioned in Equation 4.1. In my experiments,
using 10 as the value of n is a decent choice.

SMA = vM + vM−1 + · · · + vM−(n−1)

n
(4.1)

The timeline of an event has been illustrated in Figure 4.5. The Figure shows
gyroscope data with reference to z-axis. The green region is an event recognised as
right turn and the pink region as a left turn. THupper and THlower are defined as
the upper and lower thresholds.

• A: At point A, |SMA| < THupper, so no event is identified.

• B: At point B, |SMA| = THupper, so the start point of turn event is identified.

• C: Between point B and D, |SMA| > THlower and SMA < 0, so the event is
recognised as a right turn event.

• D: At point D, |SMA| = THlower, so the end point of turn event is identified.

• E: Between point D and F, |SMA| < THupper, so no event is identified.

• F: At point F, |SMA| = THupper, so the start point of turn event is identified.

• G: Between point F and H, |SMA| > THlower and SMA > 0, so the event is
recognised as a left turn event.

• H: At point H, |SMA| = THlower, so the end point of turn event is identified.

• I: At point I, |SMA| < THupper, so no event is identified.
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Figure 4.5: Example of gyroscope z-axis component and simple moving average.

According to my experiments, following values of threshold are suitable.

• SMA window size = 10 samples

• For left and right turns:

– THupper = 0.2 rad/s
– THlower = 0.1 rad/s

• For acceleration and deceleration:

– THupper = 0.8 m/s2

– THlower = 0.4 m/s2

• For lateral acceleration:

– THupper = 1.0 m/s2

– THlower = 0.5 m/s2

• For vertical acceleration:
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– THupper = 0.7 m/s2

– THlower = 0.35 m/s2

• For stop:

– Speed <= 5km/h
– Radius <= 25m

4.1.7 Driving manoeuvres ranking
After the driving manoeuvres are recognised, they are ranked by a whole num-

ber. The rank of an event gives an idea about the intensity or aggressiveness of an
event. A higher ranked event is similar to an impulsive event, such as an emergency
brake. The event rank is calculated at the end of every event. Equation 4.2b is
used to calculate the rank of an event. In the equation, i = 0 signifies the start of
an event and i = x signifies the end of the same event.

event rank =
⌊︄

event SMA aggregate
event time interval

⌉︄
(4.2a)

=
⌊︄∑︁x

i=0 |SMAi|
tx − t0

⌉︄
(4.2b)

4.1.8 Automatic data upload
The data collected by the application needs to be uploaded to a server. In order

to create a driver’s profile based on his/her historic driving styles, the server needs
data from that driver in a database. The background service collects a lot of data
from multiple sources including accelerometer, rotated accelerometer, linear accel-
eration, rotated linear acceleration, gyroscope, rotated gyroscope, magnetometer,
location, activity recognition, acceleration events, and rotation events. Due to the
high sampling frequency of all sensor data, it would be traffic intensive to upload
all data to a server on mobile data connection. For this reason, as soon as there is
a new trip ready to be uploaded to the server, a lightweight background service is
started to handle the upload.

The service checks if there is an active Wi-Fi connection available, if there is,
the service uses standard HTTP POST’s multipart form data uploading feature
to upload big files to the RESTful web services. In case if a Wi-Fi connection is
not available, the service waits in the background for a working Wi-Fi connection.
Also, roughly every hour, the service activates and checks if there is a trip in the
queue to be uploaded to the server and handles it accordingly.
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4.2 Post processing
In order to process extra information from the collected data, a post-processing

application is implemented in Java language. The post-processor is a multi-threaded
pipeline based application where each step of the pipeline performs a specific op-
eration. Every individual thread waits for a trip that is ready to be processed,
periodically.

4.2.1 Driving events parsing
All driving events are identified by the DSA application in real-time. After the

data is uploaded using DSA RESTful APIs, it needs to be parsed to compute certain
parameters for the detected events. This significantly improved the performance
of the JavaScript-based DSA web application. All types of events are parsed and
inserted in tables. The information related to each event includes the ID of trip, the
type of event, the rank of event (in case of STOP event is duration in seconds), the
start timestamp of event, the stop timestamp of event, timestamp of the nearest
(in time) location point, and timestamp in local timezone.

4.2.2 Reverse geocoding
Reverse geocoding converts location data into a human-readable format. Google

Place Details web service API [24] is used to perform reverse geocoding. After trips
are snapped to road, all snapped points are assigned a place ID. These place IDs
are reverse geocoded into human readable information using the API. The said IDs
are translated into the following information:

• Name of the road (route)

• Name of Country

• Names of administrative area level 1 to 5 (if available)

In case route name is not available, it is replaced with NA.

4.2.3 Segment statistics computation
After a trip has been segmented and all driving events are parsed, certain statis-

tics related to each trip segment are computed and stored in a database table. The
following statistics are computed in relation to each segment:

• Average speed

• Maximum speed
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• Duration in seconds

• Snapped length in km

• The number of rotation, acceleration and stop events

• The average range of rotation, acceleration and stop events

The distance between two location points is calculated using Equation 4.3e.

∆lng = (lng◦
2 − lng◦

1)c (4.3a)
x1 = sin(latc

1) × sin(latc
2) (4.3b)

x2 = cos(latc
1) × cos(latc

2) × cos(∆lng) (4.3c)
x = x1 + x2 (4.3d)

distancekm = arccos(x)◦ × 60 × 1.1515 × 1.609344 (4.3e)

4.2.4 Snap to roads
After a trip is successfully uploaded to the DSA server, it is snapped to roads.

This relates raw GPS trails to physical roads on the map. Google’s Snap to Roads
web service API [33] is used for this purpose. The API takes a maximum of 100
location points and may return 100 or less points. It relates latitude and longitude
information into snapped latitude, snapped longitude and place ID [27]. Place IDs
uniquely identify a place in the Google Places database and on Google Maps [27].
This information is saved into the database.

4.2.5 Snapped bearing computation
After a trip has been snapped to roads, its new snapped bearing is calculated

using snapped latitudes and longitudes. Bearing between two points is calculated
using Equation 4.4d.

∆lng = (lng◦
2 − lng◦

1)c (4.4a)
a = cos(latc

1) × sin(latc
2) − sin(latc

1) × cos(latc
2) × cos(∆lng) (4.4b)

b = sin(∆lng) × cos(latc
2) (4.4c)

θs = ((arctan2(b, a))◦ + 360◦) mod 360◦ (4.4d)

4.2.6 Activity recognition confidence averages computation
The confidence averages for activity recognition data are computed using Equa-

tion 4.5a. All of the data is saved in the database. In the equation i = 1 signifies
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the 2nd sample of data and i = N signifies the last sample of data.

average confidence activityx = aggregate activityx

ttotal

(4.5a)

aggregate activityx =
N∑︂

i=1
confidence activityx(i) × (t(i) − t(i − 1))

(4.5b)
ttotal = t(N − 1) − t(0) (4.5c)

4.2.7 Trip length computation
The distance between two location points is calculated using Equation 4.3e.

The distance between all of the snapped location points are summed up to obtain
the length of trip.

4.2.8 Trip segmentation
After the trip has been reverse geocoded, it is segmented into different sections

based on road characteristics. The segmentation is based on the route name reverse
geocoded data. After segmentation, information to identify a segment is saved
in database, which includes trip ID, route name, country name, and names of
administrative levels from 1 to 5.

4.3 Analysis interface

4.3.1 MatLab analysis scripts
In order to visually inspect the large amounts of data collected by the applica-

tion, an interface was required to visualise the data. At first a couple of MatLab
scripts were designed in order to parse the group of CSV files produced by the ap-
plication. In order to visually inspect collected data, it was necessary to relate the
detected events with location information on a map. Unfortunately due to the ab-
sence of a native mapping API for MatLab from major map vendors, the inspection
was very limited in functionality and had a poor performance. Figure 4.6 shows a
screenshot of the basic interface. The interface shows location points plotted on a
static map image alongwith the speed of location points on a color scale and recog-
nised events with a symbol (i.e. < for left, > for right , ⃝ for acceleration, △ for
acceleration (bearing), ▽ for deceleration (bearing) and ⋆ for lateral acceleration).
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Figure 4.6: A sample screenshot of visual output from MatLab.

Figure 4.7: Block diagram of web interface for driving style analysis using CSV
files as an input.

4.3.2 Driving style analysis web interface
Google Maps provides a fully functional high-performance API for JavaScript.

To increase the functionality and improve the performance of MatLab analysis
scripts a web interface was designed to use Google Maps JavaScript API. The
development was done in two stages. In the first stage, the web application used
JavaScript alongside Google Maps JavaScript API [23] and jQuery APIs [15] to
parse the group of CSV files. At this stage, the CSV files were uploaded manually
by the user to the web application. The JavaScript parsed all CSV files in order to
provide an output for visual inspection of trips and driving events. Figure 4.7 shows
a block diagram of the first stage for the driving style analysis web application.
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Figure 4.8: Block diagram of web interface for driving style analysis using MySQL
database as data input.

(a) raw GPS mode (b) snapped to roads mode (c) segmented mode

Figure 4.9: Example of visualisation modes in DSA web interface.

The second stage of development benifited greatly from the automatic data upload
feature which enabled the storage of all trip data from multiple users in a central
MySQL based database. The web application was extended in order to allow users
to visualise the trip data directly from the MySQL database server without the need
to manually upload CSV files. Figure 4.8 shows a block diagram of the new web
interface which uses the MySQL database as a data source. The DSA web interface
provides 3 visualisation modes to analyse data shown in Figure 4.9 including raw
GPS location mode, snapped to roads location mode and segmented view mode.
The interface also provides various information and statistics such as:

• List of all trips by a user

• Confidence averages of activity recognition

• Location route with speed, bearing and accuracy in original mode
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• Snapped location route with speed and snapped bearing in snapped mode

• Trip segments in segmented mode

• Driving events (refer to Section 4.1.5) with event rank and duration

• Trip and segment statistics

– Average speed
– Maximum speed
– Length
– Duration
– Driving events’ count and average ranks

• Observations in the segmented mode in comparison with comparison base
related to

– Average speed
– Maximum speed
– Driving events’ average ranks

• Trip overall driving score based on scoring scheme (refer to Section 4.3.2)

Scoring scheme

In order to give a quantitative number to each recognised driving event and to
estimate the entire trip’s driving score quantitatively, a simple scoring scheme was
created. This is a comparative scoring scheme which penalises higher than average
values more than lower than average values. For each comparison parameter under
observation, a comparison base is created. The comparison base can be created in
one of two ways from all data available for the segment under consideration; 1)
from all users, 2) only current user. In order words, the system can compare a
users’ data in a particular stretch of road to their own past behaviours or with the
behaviours of all other users who have driven on the same stretch of road. After the
choice of the comparison base, an average is calculated for each parameter under
observation. Then the relative difference is computed between the comparison
parameter and the average of the comparison base. Based on this difference, range
and score are allocated to each segment of the trip. The complete scoring scheme
is shown in Figure 4.10. For example, if a user’s average speed in a segment is 35%
higher than the average of the comparison base, a score of -3 will be given. On
the other hand, if the average speed in a segment was 35% lower than the average
of the comparison base, then a score of 0 will be given for this segment. After
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Figure 4.10: Scoring scheme for comparison of comparison parameters with com-
parison base.

scores are calculated for all segments of a trip, they are presented individually and
as a cumulative sum of all scores. A positive overall score represents good driving
behaviour, while a negative score implies bad driving behaviour. The scores are
implemented as a lookup table in the database for easy configuration.

4.4 Conclusions
This Chapter demonstrates a sample use case of VDAP for the recognition and

analysis of the driving style of a driver with a freely placed smartphone. The
algorithm utilises VDDA for full-calibration and data rotation of IMU. The Chap-
ter discusses in detail the APIs used from Android’s Software Development Kit
(SDK). DSA is essentially a two-part approach consisting of: 1) recognition of
driving events or manoeuvres; 2) assignment of driving scores. DSA is able to
recognise left/right turns, acceleration, deceleration, lateral acceleration and stop
events with quite a high accuracy. The driving scores are constructed using the
ranks (or intensities) of individual events and a comparison with other drivers’
trips on that particular stretch of road. A scoring scheme is used to penalise higher
or lower compared values (such as average speed, event ranks etc.).
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Chapter 5

Virtual Induction Loop (VIL)

UTC system is an integral part of any smart city scenario. Efficient use of road
resources and infrastructure became essential due to the ever-growing number of
road vehicles. To achieve traffic flow control and coordination, UTC systems mon-
itor, distribute and control the traffic flows [82]. Mainly, a UTC system consists
of a model of the physical infrastructure, sensors, a single or multiple controllers,
and actuators. The most common type of a road-traffic sensor is the Induction
Loop (IL) detector which is usually buried under the road surface and identifies
the passage of a vehicle through the changes in its inductance. The actuator (such
as a traffic light) controls the flow of traffic according to the instructions of the
controller. The controller constantly monitors and forecasts the traffic status and
optimises the control strategy according to flow efficiency and/or environmental
criteria. Adaptive Traffic Control System (ATCS) is a traffic light control pro-
gramme which provides fully responsive traffic signal control based on real-time
traffic conditions [68].

Urban intersections, being the hotspots of urban traffic networks, provide a
very interesting case-study to demonstrate the potential of connected mobility.
However, UTC systems heavily rely on data gathered from induction loops [3] to
estimate the traffic situation and optimise the traffic flow and are not designed to
include data from mobile devices. [53] mentions that the installation, maintenance,
and operation of these infrastructure-based detectors lead to substantial costs for
municipalities and road operators. Moreover, in the case of faulty or inoperative
induction loops, the performance of the UTC system suffers significantly. In many
cities, the percentage of induction loops that are out of service forces the operators
to change the traffic signal control to fixed-time control, which leads to reduced
performance.

In this Chapter, the aim is to supersede the induction loop detectors with VIL,
a feasible and practical software-based solution which consists of an Android ap-
plication and a central server in the cloud. While [34] discusses a VIL solution
based on cooperative vehicular communication, it requires placement of Road Side
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Units (RSUs) as well as vehicles with GPS that are capable of one-hop wireless
communication. The goal of this Chapter is to study how a mobile application can
be used as VIL and how such an application can be functionally integrated with a
UTC system and particularly in UTOPIA described by [57].

5.1 System description
VIL is a system consisting of an Android application and a central server in the

cloud. The application works in the background and is fully autonomous. Virtual
loops are defined in the server at intersections of interest and are synchronised
with the application. The application automatically detects when the user is on
the move, intelligently samples location to identify transits over virtual loops and
sends relevant information to the VIL server. The server aggregates and processes
data from multiple users then forwards information such as vehicle count, passage
time and passage speed to a UTC system.

5.1.1 Automatic trip start/stop detection
The Android application is able to detect that the user is on the move using

one of the following techniques:

• Activity Recognition: using the smartphone’s sensors to detect the possible
activity being performed by the user; refer to [63]

• Bluetooth: based on connection/disconnection to/from a known Bluetooth
device (such as the vehicle’s hands-free);

• Bluetooth beacon: based on the presence of a Bluetooth beacon emitted by
a known Bluetooth beacon associated with the vehicle.

The application automatically samples location with a variable sampling period
(to save energy) based on information from the above-mentioned techniques. For
example, the application samples location with high sampling period (around 10
to 20 seconds) to save energy. On the other hand, when the application detects
the device is in the vicinity of a virtual loop, it samples location with a higher
frequency (every 2 to 4 seconds) to increase accuracy.

5.1.2 Definition of a VIL
In order to detect the passage of a vehicle through a goal or a VIL in real-time,

which may coincide with a real IL, goals need to be defined. A database of all goals
is defined using the following parameters.
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• Goal ID: a unique identifier of the goal

• Latitude: in signed decimal degrees

• Longitude: in signed decimal degrees

• Bearing: in degrees

5.1.3 Goal passage timestamp evaluation
To identify the passage of a vehicle over a goal, the distance and bearing differ-

ence between the vehicle and the goal were assessed. When a car is moving towards
a goal, the distance between them will decrease. On the other hand, if the car is
moving away, the distance will increase. At some point there will be two successive
minimum distances, one is computed just before the goal and the other one right
after it. However, detecting these minimum distances is not sufficient, because the
distance does not take into account the direction.

Each measurement should have a speed value and a timestamp value; v0, t0
before the goal and v1, t1 after the goal. Assuming a constant linear acceleration, the
equation holds a = ∆v

∆t
= v1−v0

t1−t0
. The acceleration can be used to utilise kinematic

equations, which can be used to find the time t (the time of passage over point G).
Based on the position of the car relative to the goal, there may be two different
application modes i.e. forward mode and backward mode. In the forward mode,
the vehicle is approaching the goal and moving forward towards it. In the backward
mode, the vehicle is moving away from the goal. By carefully choosing the signs
of the parameters, all possible cases can be addressed to find the unknown time of
passage t.

5.1.4 GPS accuracy problem
Naturally, the accuracy of the time of passage evaluation heavily depends on

the accuracy of the location information from GPS. Since the GPS is not always
an exact system, it may return biassed coordinates. A generic scenario of such a
problem can be seen in Figure 5.1. A and B are two location points with different
accuracies and an offset error, whereas point G is the VIL under consideration.
Coordinates of point G are known and are snapped to the road so that there is no
error in its coordinates. Due to the error in location A and B, the distance between
the goal and the projected location of the vehicle on the stretch of road need to be
computed. To solve and evaluate this problem, a number of different approaches
are applied.
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A
B

G

VIL

Location 
accuracy

Figure 5.1: A generic scenario showing GPS accuracy problem with two location
points A and B and a goal point G.

(a) (b)

Figure 5.2: Trigonometry application, portion (a) before and (b) after the goal.

First approach: Trigonometry

The first approach exploits trigonometric calculations. Let us analyse the trian-
gle in Figure 5.2a, the triangle formed by three points: the goal G, the last location
before goal A and the first location after goal B. It is assumed that the bearing of
the point A and B is the same. The distance needed to apply the forward mode is
the result of a projection of the segment AG over the straight line passing through
the bearing vector. In the same way, it is possible to compute the projection of the
segment GB over the same straight line to apply the backward mode.

Using the area of △ABG and law of sines, the angles α, β and γ can be found.
The angle φ is computed as the difference between the bearing of G and B. The
angle α1 is computed by subtracting φ from α. The angle γ1 is computed by
subtracting α1 and 90° from 180°. In the triangle △AKG, the adjusted distance,
namely the value of the segment AK, is found applying the proportion given by
the law of sines. Similarly, in backward mode the adjusted distance BK shown
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Figure 5.3: Plane geometry application.

in Figure 5.2b can be found.

Second approach: Plane geometry

The second approach exploits plane geometry. The x-axis is the equator line,
the y-axis is the prime meridian (Greenwich) and a point on Earth is determined
by its latitude and longitude. Again, the scenario consists of three points forming
a triangular shape: the goal G, the point before the goal A and the one after B as
shown in Figure 5.3. The distance needed to apply the forward mode is the result
of a projection of the segment AG over the straight line parallel to the bearing
vector. The distance between K and A is the projection of the segment AG.

First, the slope of straight lines parallel to bearing vector u, m = tan(θ) is found,
where θ is the angle measured anticlockwise from the x-axis. The coordinates of K
i.e. (yK , xK) can be found using the slope-intercept form of a line parallel to bearing
vector and passing through A i.e. y − yA = m(x − xA), and a line perpendicular
to bearing vector and passing through G i.e. y − yG = − 1

m
(x − xG). Similarly, it

is possible to compute the projection of the segment GB to apply the backward
mode.

Third approach: Roto-translation

The third approach performs a rotation and translation centred around the goal
as shown in Figure 5.4a, where the black axes are the old reference system and the
blue axes are the new reference system. All geographical coordinates are converted
to Cartesian coordinates expressed in metres for getting more precise results.

First, the origin of the reference system is shifted to the goal. The coordinates of
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(a) (b)

Figure 5.4: (a) Pre and (b) Post roto-translation application.

the goal are subtracted from the coordinates (x, y) of A and B using the translation
equations x′ = x − xG and y′ = y − yG. In this way the goal is at the origin and
other points are located according to the new reference. Secondly, the reference
system is rotated around G (the new origin) such that the rotation angle is θ =
90° − β. The new rotated coordinates (X, Y ) of the points A and B are computed
as X = x′ · cos θ + y′ · sin θ and Y = −x′ · sin θ + y′ · cos θ.

After the roto-translation, the scenario appears like Figure 5.4b. In the roto-
translated reference system, the modulus of the x-component of A and B represents
the distance between the point and the goal. The sign of the x-component indicates
whether the point is before (negative) or after (positive) the goal.

5.2 Results
In order to prove the accuracy of the different approaches, a number of tests

were performed to access the error in passage timestamp, CPU time and success
rate. Location data collected from multiple users using an Android application was
used as input for the tests. For the sake of conformity, a filter was applied to the
input data to remove some of the collected data points which do not satisfy the
following criteria:

• Sample bearing must be within ±10° of goal bearing. This ensures that only
location points on a straight stretch of road are used and turns are avoided
(since the bearing experiences significant change in a turn).

• Sample accuracy must be less than a threshold. Analysis of the test-set
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Method Average
(µ) Min Max Standard

deviation (σ)
No-adjustment 1.62e-2 -4.62e-4 4.99 0.4837
Trigonometry 1.63e-2 -2.42e-6 5.00 0.4990
Plane Geometry 5.22e-2 1.72e-4 5.03 0.4717
Roto-translation 3.38e-2 1.00e-3 4.99 0.4786

Table 5.1: Average, minimum, maximum and standard deviations of timestamp
error in seconds for each method.

suggests a threshold of around 20-25 m.

• Samples must not be placed too far apart i.e. d(A, G) > rA + rG.

• Samples must not be placed too close to each other (such as nearly overlapped
location points at a traffic signal).

Out of the test-set data, five random trips were selected for the tests. In every trip,
after performing the above-mentioned filtering, tests were run. For every trip, every
location sample is iterated over, considering three consecutive location samples at
one time and taking the middle one as the goal. The computed timestamp is the
average of the result from forward and backward mode, if both exist, otherwise the
timestamp is equal to the only result successfully computed. Furthermore, a linear
constant acceleration is assumed throughout the analysis.

5.2.1 Timestamp error
Since three consecutive location samples (triplets) are used at once for analysis,

the difference between computed timestamp (timestamp of passage) and actual
timestamp can be easily calculated. A comparison is presented between the different
approaches.

Figure 5.5 shows the distributions of the timestamp error using the four different
methods over a random sample of more than 700 triplets. The negative values in
the distribution imply that the computed timestamp is smaller than the actual
timestamp and vice versa for the positive ones. It is clear that the majority of the
values are concentrated in the vicinity of zero. The values tend to form a bell-
shaped curve which is symmetric around zero. Comparing the four distributions,
there are no major differences, but only with plane geometry there is a small trend
of returning timestamps greater than the actual timestamp. It is clear after this
analysis that overall no adjustment is required for error correction. The method
without any adjustment/error correction is quite accurate on its own.
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Figure 5.5: Error distribution in computed time of passage for different approaches.

Table 5.1 lists the average (µ), minimum, maximum and standard deviation (σ)
of timestamp errors achieved by all methods. The table shows that the average
error is very small regardless of the method used, which is predictable since the
distribution is symmetric around zero. The minimum error is quite low in each
case, whereas apparently, the maximum error depends mainly on the nature of the
trip since it is very similar for all methods. The standard deviations of the samples
are not so high in all cases with respect to the average. This means that the values
in all cases are quite close to the mean rather than spread out over a wide range.

5.2.2 Execution time
An important parameter to be analysed is the execution time for each method.

The complexity of the algorithms influences the CPU execution time. To evaluate
the execution time, five random trips were selected as before and the algorithm
was executed on all triplets in the data sample. All four variants of the algorithm
were run one by one. To measure the CPU execution time of each method a Java
Profiler was used, profiling each method separately in order to avoid inaccuracies
due to the scheduling.
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Figure 5.6: CPU execution time comparison for all algorithms.

Figure 5.6a shows the distribution of the CPU execution time of the four meth-
ods. The chart shows that the values are well distributed with a sharp peak concen-
trated around 20 µs for the no-adjustment method. For other methods, the values
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have relatively flatter peaks concentrated between 25 to 30 µs. Figure 5.6b shows
a comparison bar chart of average and standard deviation of the CPU execution
time for all four methods. The no-adjustment method is the fastest with the best
average and low standard deviation due to the fact that it does not involve any
extra adjustment calculations. Methods with adjustments do not show diversity
in averages and standard deviations. However, the analysis for the other three
methods is indecisive.

5.2.3 Success rate
The success rate is the fraction or percentage of success among a number of at-

tempts. Due to the nature of mathematical calculations involved in the algorithms,
it is possible that a method may result in a failure. As an example, when dealing
with distances based on high accuracy latitude/longitudes, a fraction may have a
numerator and/or denominator so small that it is approximated to a 0. This would
result in a 0

0 , which is an undefined operation, returning NaN. Note that the re-
turned timestamp is the average of the two timestamps from forward and backward
modes if they both exist. Otherwise, it is equal to either of the valid timestamps.
This makes success rate an important parameter to be analysed.

Figure 5.7a shows the distribution of the success rate for all methods. The no-
adjustment and roto-translation methods exhibit similar behaviour with a concen-
tration between 99% and 100%. Plane geometry method also shows concentrated
distribution towards a high success rate, whereas the trigonometry method shows
the worst performance due to the nature of calculations. Figure 5.7b shows a com-
parison bar chart of averages and standard deviations for all methods. The best
success rate is achieved by the method without adjustment and roto-translation.
Since no-adjustment and roto-translation methods show the same parameters, this
implies that in this case, the few failures do not depend on the adjustment calcu-
lations, but rather on the kinematics mathematical model.

5.3 Integration
The information generated by the VIL system can be highly valuable to a UTC

system. UTC systems consume data from conventional sources (such as IL detec-
tors). In the following sections, a UTC system is introduced called UTOPIA and
comment on the possible integration mechanism with UTOPIA.

5.3.1 UTOPIA/SPOT
UTOPIA is an adaptive UTC system that has been successfully implemented

in many cities around the world and optimises traffic flow by taking into account
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Figure 5.7: Success rate comparison for all algorithms.

both private traffic and public transport vehicles. The goal of the optimisation is
to minimise the total travel time in the network. UTOPIA is a closed loop con-
trol system, where the control actions (i.e. signal timings) are decided based on
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UTOPIA
(central level)

SPOT
(local level)

SPOT
(local level)

SPOT
(local level)
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Figure 5.8: Hierarchical architecture of UTOPIA/SPOT.
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(Minimization of Total Travel Time)

Figure 5.9: Control loop of UTOPIA/SPOT.

real-time traffic estimation. Induction loops are used to measure traffic flow and
update the traffic estimation every 3 seconds, whereas traffic actuation takes place
every second. To deal with the complexity of the signal optimisation problem in
a traffic network consisting of numerous intersections, UTOPIA applies the closed
loop approach in two levels (hierarchical system). The upper level (central level)
monitors and controls the whole network consisting of areas with several intersec-
tions. The lower level (local level) controls single intersections while taking into
account also adjacent intersections and the central level. The core intelligence of
the system is located on the local level where the SPOT unit plays the role of the
local observer and controller. Figure 5.8 shows the hierarchical approach of UTOPI-
A/SPOT and Figure 5.9 depicts the control loop of UTOPIA/SPOT based on [57]
and [62].

5.3.2 Functional Integration of VIL
For the integration of VILs in the UTOPIA/SPOT system, I propose the com-

munication of the VIL server with the local units (SPOT) and not with the central
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UTOPIA
(central level)

SPOT
(local level)VIL Server SPOT

(local level)
SPOT

(local level)
SPOT

(local level)

Figure 5.10: Integration of VIL server at the local level.

ControllerObserver
(Traffic model, forecast)

Example of functions of the local observer 
that can be updated every cycle, 
based on data from the VIL server:

• Estimation of turning rates
• Estimation of saturation flow
• Queue length correction

Local level
(SPOT)

VIL Server

• VIL ID
• VIL Position
• Timestamp
• Average speed

Figure 5.11: Integration details of VIL at the local observer.

level (UTOPIA) (refer to Figure 5.10 and Figure 5.11). The reason is that the local
observer is already designed to update the estimation of certain crucial parame-
ters every traffic signal cycle (typically around 70-90 seconds). If the VIL server
contains information on an intersection that is proven to be more reliable than the
information coming from stationary loop detectors, it can be allowed to update the
estimated values for certain cycles. This information will then be communicated
also to the central level and to the neighbouring intersections due to the inherent
communication of the UTOPIA/SPOT system. The VIL should not be modelled
as a typical IL in the SPOT unit, because of the completely different detection
rate i.e. it cannot be expected that every passing vehicle is equipped with such an
application. There are two possible approaches: Either the local observer has to be
extended in order to translate the information from VIL into parameter estimation
or the VIL server has to deliver the estimated parameter and its precision.

5.4 Conclusions
Intelligent traffic control systems are crucial for modern cities. The data source

for these control systems has mainly been conventional induction loops which are
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expensive to install and maintain. While [34] discusses the possibility of switching
traditional loops with virtual induction loops, the suggested VILs are also another
piece of hardware. I propose a completely software-based solution with already
available and ubiquitous hardware, i.e. smartphones. The Chapter proves the
feasibility of using smartphones to collect data and provide highly accurate infor-
mation about a passage of a user over pre-defined goals. Simulation results based
on real vehicular traces show negligible timestamp calculation errors with nearly
100% success rate. Moreover, due to the flexible and scalable nature of VIL, the
goals can be defined in real-time to focus on areas of special interest. I also pro-
posed a practical integration scheme to allow UTC systems, such as UTOPIA, to
benefit from VIL.
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Chapter 6

Traffic forecasting

Without traffic forecasting, UTC systems can only rely on the current situa-
tion of traffic, estimated by road sensors, which is not sufficient for planning and
optimisation [81]. The aim of traffic flow prediction is to estimate the number of
vehicles per unit time at a given location point or road segment [85]. It allows
the implementation of several ITS solutions, such as ATCS, traffic management
systems, advanced public transportation systems and logistics management. Fore-
casting is achieved using multi-sourced historical and real-time data processed by
multiple types of forecasting and prediction models [83].

Machine learning is seeing more advancements and application than ever. Ever
since the revival of Deep Learning [52], there has been more and more applications in
self-driving cars, robotics, image/object recognition, voice recognition, healthcare,
cancer diagnosis, earthquake prediction and weather forecasting. Deep Learning
is a type of machine learning which uses multiple-layer architectures to extract
inherent features and structure in data from the lowest to highest level. According
to the Gartner hype cycle for emerging technologies of 2017, machine learning is at
its peak of inflated expectations and is expected to reach a plateau within 2 to 5
years [77].

Available solutions
Traffic prediction approaches have been extensively researched in literature

and generally can be grouped into three basic categories, i.e. parametric, non-
parametric and simulation-based models. Parametric models include time-series
models [19], Kalman filtering models [61], etc. Non-parametric models include Sup-
port Vector Regression (SVR) methods [8], Artificial Neural Network (ANN) [69],
etc. Simulation-based approaches use traffic simulation tools to predict traffic
flow [64].

Reviews of short-term traffic forecasting indicate that models are becoming more
and more data-driven rather than analytical, due to an increase in computational
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intelligence [73]. Researchers have been proposing traffic flow prediction models
as early as in the seventies. For example, the Auto-Regressive Integrated Moving
Average (ARIMA) model and its derivations have been used to predict short-term
flows of traffic for over 3 decades [7]. Although, now the focus has moved from
classical statistical models to neural-network based models [74]. Non-parametric
models have also been extensively researched due to the non-linear nature of traffic
flow. Apart from the three basic categories of prediction models, hybrid models,
which combine one or more techniques have also been proposed [47]. A Stacked
Auto-Encoder (SAE) based model was proposed for 15 to 60 min traffic flow pre-
diction [83]. This model generates predictions with reasonable accuracy, but is
computationally complex due to the need for a higher number of hidden layers and
hidden units in the learner.

In summary, many traffic prediction models have been proposed in the liter-
ature to provide real-time traffic flow information in ITS, UTC and smart cities.
Extensive comparison and review studies suggest that there is no technique that
clearly outperforms other methods in all situations [45, 73, 6].

My approach
In this Chapter, I propose a short-term urban traffic forecasting solution apply-

ing supervised window-based regression analysis using Deep Learning. Experiments
were performed with multiple configurations and prediction schemes to optimise the
learning and prediction process. The resulting model is much simpler than other
Deep Learning based traffic models proposed in the literature, yet it still outper-
forms them.

6.1 The Dataset
The dataset used to train the Artificial Intelligence (AI) machine is publicly

available at the Uniform Resource Locator (URL) http://opendata.5t.torino.
it/get_fdt in XML format [70]. It provides information about the number and
average speed of the vehicles travelling in the urban area of Turin, detected by
the means of ILs or aerial sensors. The dataset contains a single table with the
following columns:

• start_time: Timestamp for the start of the period to which the data are
referred

• end_time: Timestamp for the end of the period to which the data are
referred

• period: Aggregation period [min]
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• lat: Latitude in the WGS 84 system of the measuring station

• lng: Longitude in the WGS 84 system of the measuring station

• Road_name: Name of the road where the measuring station is located

• Road_LCD: Traffic Message Channel (TMC) code of the road on which the
measuring station is present

• lcd1: Code of the initial node or TMC code of the initial location of the
source arc

• direction: TMC direction (positive or negative)

• accuracy: Accuracy of the measurement [percentage]

• offset: Distance from the start of the arc along the direction of travel [m]

• flow: Vehicular flow [vehicle/hour]

• speed: Average speed [km/h]

The table contains roughly 130 data sources that are updated every 5 minutes.
In the analysis that follows, the data sources that are inside the boundaries of
Metropolitan City of Turin (some 126 observation points) were considered. This
data is collected by UTOPIA project [57]. UTOPIA is a hierarchical decentralised
traffic light control system that has been implemented and tested in a large area
within the city of Turin.

6.1.1 Dataset analysis
Figure 6.1 shows the map of all data sources in the urban region of Turin. The

data sources are well spread out over major city roads and intersections. I developed
a simple data logging tool to fetch real-time traffic data from 5T and locally archive
it in a database. The source code for this logger are publically available [40]. For
the sake of this analysis and tests, data was collected from 01-Oct-2017 till 28-Feb-
2018. During this period there were 103 weekdays, 20 Saturdays, 21 Sundays and
7 holidays.

The analysis of the dataset shows that the data can be categorised into four
types of days [16]:

1. Weekdays (from Monday till Friday)

2. Saturdays

3. Sundays
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Figure 6.1: Geographical location of all data sources (red dots) in the urban area
of Turin.

4. Holidays (national and local holidays)

The average vehicular flow in the city changes according to the type of day, as
seen in the Figure 6.2. As expected, weekdays show the highest flow while holidays
experience the lowest flow. During weekdays, the two highest peaks are from 07:40
until 8:50 and from 17:10 until 18:35. These peaks are due to commuters travelling
between home and workplace. Saturdays and Sundays experience much less traffic
than weekdays and the highest peaks are between 12:05 and 12:50. The average
speed in the city is shown in Figure 6.3. Saturdays, Sundays and holidays follow
a very similar trend and the average stays at roughly 29 km/h. On weekdays,
traffic slows down during peak hours (i.e. from 07:20 till 09:55 and from 16:55 till
19:25). This is due to the high vehicular flow during those periods, which generates
congestion.
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Figure 6.2: Average vehicular flow in the city of Turin categorised by type of day
(bands represent 95% confidence interval).

Figure 6.3: Average vehicular speed of vehicular flows in the city of Turin cate-
gorised by type of day (bands represent 95% confidence interval).
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Figure 6.4: Prediction work-flow for supervised Deep Learning based regression for
windowed time series forecasting.

6.2 Methodology
To predict the intensity of traffic, supervised window-based regression analysis

with Deep Learning was used. Regression analysis is a set of statistical processes for
estimating the relationships among variables. Supervised learning is the machine
learning task of inferring a function from labelled training data. Deep Learning is
based on a multi-layer feed-forward ANN that is trained with stochastic gradient
descent using back-propagation. A feed-forward Neural Network (NN) is an ANN
wherein connections between the units do not form a cycle.

The process of machine learning usually involves gathering data, preparing data,
selecting a model, training the model, evaluating its performance, tuning model
parameters, and finally generating predictions. Figure 6.4 shows prediction work-
flow for forecasting this time series. Firstly, the labelled training dataset is read
from the database. Then it passes through a few pre-processing steps depending
on the type of test being performed. An explanation related to the different pre-
processing steps can be found in Section 6.2.1. The labelled training dataset is
passed to the Deep Learning machine which creates a model of the data. The
unlabelled testing dataset is read and passed through the same pre-processing steps
to evaluate the performance of the generated model. Once the testing dataset is
labelled, it is evaluated using measures described in Section 6.2.5.

It is very important to highlight here that labelled and unlabelled datasets never
overlap each other i.e. they never belong to the same period of time (day, week,
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month). For example, if the labelled dataset contains 2 weeks of training data,
the unlabelled dataset belongs to a different week of testing data (which is never
before observed by the Deep Learning machine). In fact, this is also different from
a k-fold cross-validation scheme in which training and testing datasets are chosen
from within the same dataset.

Deep Learning and other medium and sometimes shallow NNs are mostly in-
ferred as black boxes. Although they have superior accuracy, their validation solely
relies on empirical evidence and not theoretical proof. It is very difficult in case
of complex NNs to trace a prediction back to an important feature or to under-
stand the reason of an outcome over another. My method, which relies on the
same Deep Learning technique, is not free from this well-known and documented
intrinsic behaviour [55, 78].

For the sake of conducting tests, multiple intersections across the city were
randomly selected as data sources. All of them were tested individually and results
were very consistent across all intersections. In the following, as an example, the
intersection between Corso Giovanni Agnelli (CGA) and Via Filadelfia (VF) is
chosen as the data source. At this intersection, two data sources are available in the
open data, specifically for northbound traffic (towards city centre) and southbound
traffic (away from the city centre). The data source with northbound traffic was
selected for the discussion that follows.

6.2.1 Pre-processing
To further enhance and enrich the collected data, some pre-processing opera-

tions are performed. Their description is provided below.

Date to numerical

Date to numerical converts a text-based timestamp into an integer number
indicating the minutes from the origin of the dataset. For example, in the case of
weekdays and weeks dataset, 00:00 Monday is set to number 0 and 00:05 Monday
to 5 and so on. For weekends dataset, 0 is set to Saturday midnight. This allows
the machine to treat the string-based timestamp attribute as an index.

Replace missing values

Replace missing values fills in gaps in a series due to missing data. A simple
linear interpolation is applied to the data if one value is missing in the series. If
more than one value is missing, the missing portion is replaced with the minimum
value of the series.
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Moving average

Moving average is commonly used with time series data to smooth out short-
term fluctuations and highlight long-term trends or cycles. In other words, moving
average works like a low-pass filter. A triangular weighted window function is
applied to the data with a window width of five (5 × 5 mins = 25 mins) and the
result of the weighted average is inserted at the end of the window.

Time series windowing

Time series windowing is a very popular pre-processing step used in time series
analysis and prediction. It takes any time series data and transforms it into a cross-
sectional format. It essentially converts time values into cross-sectional attributes
on which any predictive modelling algorithm can be used to predict future values.
In other words, it transforms the given example set containing series data into a
new example set containing single valued examples. For this purpose, windows
with a specified window size (the width of the used window) and step size (the
distance between the first values) are moved across the series and the attribute
value lying horizon (the distance between the last window value and the value to
predict) values after the window end is used as the label which should be predicted.

As an example, in case of the vehicular flow time series of one data source, a
window size of six, a step size of one, and a horizon of one would mean:

• The window considers the vehicular flow of last 30 mins;

• The window is moved 5 mins per step;

• The window is used to predict the vehicular flow of the next 5 mins.

Figure 6.5 shows a visual representation of the same example. The solid line boxes
represent the input values while the dotted box represents the future value to be
predicted.

Shuffled order

Shuffled order pre-processing step shuffles the order or sequence of a windowed
data table in a random fashion. The purpose of adding a shuffled order pre-
processor is to further verify that the learner can correctly predict the traffic
flow without timestamp even when the order of samples is shuffled (after win-
dowing). Figure 6.6 shows a sample windowed data table randomly shuffled.

6.2.2 Pre-processing schemes
Experiments with six different combinations of pre-processing schemes were

performed to investigate the best approach for traffic prediction, including:
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6.2 – Methodology

Figure 6.5: An example of original time series to windowed cross-sectional format
conversion.

label flow-0 flow-1 label flow-0 flow-1
144 96 264 180 180 132

60 144 96 180 132 60

132 60 144 60 180 180

180 132 60 144 96 264

180 180 132 132 60 144

60 180 180 60 144 96

Original windowed data table
Randomly shuffled 

windowed data table

Figure 6.6: An example of random shuffling of windowed data table.

A. Standard: This scheme involves no special pre-processing other than convert-
ing the date to a number, replacing missing values and windowing.

B. Moving average: This scheme uses data passed through the date to a number,
replacing missing values, moving average and windowing blocks.

C. Moving average without timestamp input: The dataset for this test does not
contain any attribute related to time. The pre-processing steps include re-
placing missing values, moving average and windowing.
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Figure 6.7: A comparison of all pre-processing scheme pipelines.

D. Moving average without timestamp input and shuffled order : The dataset for
this test does not contain any attribute related to time. At the testing stage,
the test dataset is shuffled to remove any chronology associated with it. The
pre-processing steps include replacing missing values, moving average and
windowing.

E. No timestamp input: The dataset for this test does not contain any attribute
related to time. The pre-processing steps include replacing missing values
and windowing.

F. No timestamp input with shuffled order : The dataset for this test does not
contain any attribute related to time. At the testing stage, the test dataset
is shuffled to remove any chronology associated with it. The pre-processing
steps include replacing missing values and windowing.

Figure 6.7 shows a comparison between all pre-processing scheme pipelines. Note
that the alphabets on the left of the Figure correspond with items in the list.
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6.2 – Methodology

Hyper-parameter Grid range
Min Max Steps Scale

Window size 2 12 10 Linear
Epochs 10 200 10 Linear
Learning rate 0.0 1.0 5 Linear

Table 6.1: Grid search based hyper-parameter optimisation configuration.

6.2.3 Hyper-parameter optimisation
A very important step involved in machine learning is tuning the model and the

pre-processing parameters. Hyper-parameter optimisation is the process of choosing
a set of optimal hyper-parameters for a learning algorithm. A hyper-parameter is
a parameter whose value is set before the learning process begins. By contrast, the
values of other parameters are derived via training. An exhaustive grid search based
hyper-parameter optimisation was used to optimise the window size of windowing
pre-processor and the number of epochs and learning rate of the Deep Learning
machine. The loss function is based on Mean Relative Error (MRE). The grid
search configuration for all hyper-parameters is shown in Table 6.1. This results in
726 total combinations of hyper-parameters per pre-processing scheme. The best
combination of hyper-parameters is chosen based on the minimum value of MRE.
Please note that the number of hidden layers and the number of neurons per hidden
layer are fixed to two and 50, respectively.

6.2.4 Software configuration
For the experimentation, RapidMiner version 7.6 [65] was used. RapidMiner

is a data science software platform that provides an integrated environment for
data preparation, machine learning, Deep Learning, text mining, and predictive
analytics. The specific implementation of Deep Learning algorithm used in these
tests is included in H2O 3.8.2.6 [39]. H2O is an open source in-memory platform
for distributed and scalable machine learning.

6.2.5 Error measures
The error measures used to evaluate the accuracy of the predictions are listed

below.

• RMSE is the averaged root-mean-squared error such that:

RMSE =

⌜⃓⃓⎷ 1
N

N∑︂
i=1

(f̂ i − fi)2 (6.1)
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where f̂ is the predicted value, f is the true value and N is the total number
of readings.

• MRE is the averaged absolute deviation of the prediction from the actual
value divided by the actual value such that:

MRE = 1
N

N∑︂
i=1

⃓⃓⃓⃓
⃓⃓ f̂ i − fi

fi

⃓⃓⃓⃓
⃓⃓ (6.2)

where f̂ is the predicted value, f is the true value and N is the total number
of readings.

• Correlation (COR) is the averaged correlation coefficient between the label
and prediction attributes.

6.3 Results
The results for six different pre-processing schemes applied to three different sets

of data is presented. Table 6.2 shows the summary of all test results for all schemes.
The results presented in the table are the best results after hyper-parameter opti-
misation for each pre-processing scheme. In general, the machines can follow the
general trend of vehicular flow and the results are quite promising.

The moving average pre-processor improves the accuracy of the predictions sig-
nificantly. On average for all datasets, RMSE, MRE and COR for all schemes with-
out moving average are 120.82, 27.69% and 93.51% respectively. The same values
for schemes with moving average improve as much as 36.29, 8.15% and 99.38%.
This constitutes up to 70% improvement in RMSE and MRE and 6% improvement
in COR due to moving average. Figure 6.8b and Figure 6.8a shows the comparison
between predicted and true value of vehicular flow for the same dataset with and
without moving average respectively.

The machine can generate an accurate model of the data with and without
timestamp as an input. On average, for all datasets, it shows a degradation of
only 0.9% in MRE without timestamp as an input. This implies that the machine
can model traffic without being aware of the time domain at all. It is possible
to generate a very high accuracy prediction just by observing a few samples of
vehicular flow in the past. Also, by removing time as an input attribute to the
learner, it simplifies the complexity of the learner, resulting in faster training and
predictions.

Figure 6.10 shows the comparison between the predicted and true value of ve-
hicular flow for the same dataset with moving average and without timestamp as
an input. In this case, a single learner was trained to predict the entire week’s
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(a) using pre-processing scheme A (No special pre-processing)

(b) using pre-processing scheme B (Moving average)

Figure 6.8: Predicted traffic flow vs actual traffic flow for CGA intersection VF
northbound dataset consisting of a weekday.

vehicular flow. Please note that the x-axis of the Figure was just added for illustra-
tion purposes since the actual dataset does not contain any time frame reference.
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6.3 – Results

Figure 6.9: Predicted traffic flow vs actual traffic flow for CGA intersection VF
northbound dataset consisting of weekends (Saturday and Sunday) using pre-
processing scheme B (Moving average).

The best overall results are achieved by pre-processing schemes B and C.
My assumption is that the learner can correctly predict the flow of traffic without

timestamp or index or any information about the order or sequence of a prediction.
Results show that this assumption is true since on average for all datasets, with
and without shuffled order schemes show negligible difference in error measures (4
RMSE, 0.4% MRE and 0.18% COR). This proves that the learner predicts every
prediction individually and does not rely on previous or future predictions.

As far as the window size is concerned, results show that it does not have a major
impact on the performance of the learner. The best three combinations of hyper-
parameters show negligible difference in error measures with a major variation in
the value of window size. Overall, in my experience, a window size of 10 to 30
minutes is reasonable for generating high accuracy predictions.

To further demonstrate the robustness of my approach, a cross-examination
among different datasets was performed. A machine trained with one type of
dataset (such as two weekdays) was used to predict the traffic flow of a different
dataset (such as a weekend). Table 6.3 shows a summary of best results achieved
after this cross-examination. Please note that all tests are performed using pre-
processing scheme C (moving average without timestamp input). Results suggest
that a machine trained with an entire week of traffic flow is the most suited to
predict traffic flow on any day of the week. This hypothesis is confirmed by the
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Figure 6.10: Predicted traffic flow vs actual traffic flow for CGA intersection VF
northbound dataset consisting of an entire week using pre-processing scheme C
(Moving average without timestamp input).

Training data Testing data RMSE MRE COR

2 weekdays 1 weekend 36.41 8.49% 98.90%
1 week 43.30 9.03% 99.20%

2 weekends 1 weekday 61.97 10.57% 98.90%
1 week 64.61 10.65% 98.70%

2 weeks 1 weekday 41.78 7.99% 99.30%
1 weekend 35.60 8.19% 99.00%

Table 6.3: Summary of vehicular flow prediction errors with cross-examination
among different datasets using Deep Learning.

machine trained using a set of data covering two full weeks instead of two week-
days or two weekends. This machine shows an improvement of on average 12.88 in
RMSE, 1.6% in MRE and 0.23% in COR.

84
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6.3.1 Comparison with state-of-the-art
In comparison, the best results achieved by Deep Learning Architecture (DLA)

based forecasting method by [48] are around 90% Mean Accuracy (MA) (MA =
1−MRE) using three hidden layers with 128 hidden units each and 40 epochs with
data aggregated using a window size of 60 mins. Authors claim that these results are
better than those of the ARIMA model [7] (which is a simple model-based predictor
using auto-regression and moving average over past data values), the Bayesian
model [72], the SVR model [8], the Locally Weighted Learning (LWL) model [67],
the multivariate non-parametric regression model [10], the NN model [69], and the
NN-S model [46]. My solution outperforms these results with MA of 94.2% while
being much less complex (2 hidden layers with 50 hidden units each with data
aggregated using a window size of 25).

The best results achieved by SAE based Deep Learning forecasting method
by [83] are around 6.48% MRE using 3 hidden layers with 400 hidden units each
with data aggregated using a window size of 15 mins. According to authors, these
results are better than those achieved by the Back Propagation Neural Network
(BPNN), the Random Walk (RW), the Support Vector Machine (SVM) and the
Radial Basis Function Neural Network (RBFNN). Again, my solution outperforms
these results in terms of higher accuracy and lower complexity (MRE of 5.8%; two
hidden layers with 50 hidden units each).

6.4 Conclusions
This Chapter proposes a system for forecasting urban traffic over a short time

period using Deep Learning. The prediction is accurate while being simple in terms
of complexity. It also proposes and analyses the effects of multiple pre-processing
schemes to improve the accuracy of forecasting. From experiments on a real traffic
flow dataset from the City of Turin, it is evident that my Deep Learning machine
performs better than state-of-the-art DLAs. Results show that my solution outper-
forms other DLAs with nearly 4% accuracy improvements while being much simpler
in terms of complexity (hidden layers and hidden neurons). The most effective way
to pre-process data is to use a simple moving average without timestamp as an
input. This means that the machine can generate a prediction with only the traffic
flow of past few minutes without any knowledge of the time. Moreover, to estab-
lish the robustness of my approach, a cross-examination of my architecture with
different datasets was done. Results show that a single Deep Learning machine
with only two hidden layers of 50 units each trained with traffic flow data of a week
can predict the flow on any day of the week as well as holidays with remarkable
accuracy.

The results are not only accurate, but they have significant applications. By
accurately determining the intensity of traffic in the near future, ATCS can optimise
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the traffic light control programme to minimise congestion. Moreover, when applied
at multiple intersections, a forecasted traffic congestion can be distributed over
multiple intersections to lower the overall impact. Furthermore, when using a
multi-plan based traffic light control (e.g. low, medium, high . . . ) for an urban
area, accurate predictions can be used as an indication to swap the current plan
with a more appropriate plan. Although my focus was on the forecasting of urban
traffic, the devised methodology for pre-processing and prediction of traffic intensity
time series can be easily adapted to other time series with minor modifications as
per the domain of prediction.
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Chapter 7

Traffic forecasting with VIL

The concept of VIL for real-time traffic sensing was introduced in Chapter 5
and the use of machine learning techniques for traffic forecasting in Chapter 6. The
next question to be investigated is if VIL, operating alongside with traffic prediction,
would work with real traffic flow on a real road network. To validate this idea, a
setup site needs to be installed and data should be collected from vehicles. The
validation was done using simulation tools due to the complexity and cost of such
a demanding task. To make the simulation scenario as close as possible to reality,
part of a real road network was modelled and simulated with real traffic flow. Later,
data was collected from this simulation and various tests were performed to find
the best methodology for traffic forecasting in a semi-realistic scenario.

Several relevant traffic sensing state-of-the-art techniques are mentioned in Chap-
ter 6. There are other traffic sensing techniques as well that rely on a completely
different methodology of detection and prediction. One recent example is the use
of distributed optical fibre belonging to an operational telecom network to detect
vehicle speed and density [79]. However, the focus of this work is on the use of
machine learning techniques applied to the data collected from smartphones for
traffic sensing.

7.1 Simulation setup
The entire simulation setup is described in details in the following sections. In

summary, the steps involved are simulation network creation, traffic routes gener-
ation and data collection scripting and simulation run.

7.1.1 Network creation
In order to to create a realistic simulation network for Simulation of Urban

MObility (SUMO), the basic road network structure was exported from Open-
StreetMap (OSM). OSM is a free and editable collaborative mapping project. For
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(a) Selected traffic network for traffic simu-
lation marked on Google Maps.

(b) Reconstructed simulation network from
the real network on SUMO.

Figure 7.1: Visual comparison of simulation network.

this part of the work, the intersection between Corso Giovanni Agnelli (CGA) and
Via Filadelfia (VF) and traffic light were selected. To make the traffic queues at
the traffic light more realistic, the intersections and traffic lights between CGA
and Corso Sebastopoli (CS) on one side and CGA and Via San Marino (VSM) on
the other side were included. Figure 7.1a shows the section of network of interest.
SUMO provides a useful script called osmWebWizard.py [17]. This script opens a
web browser and allows selecting a geographic region on a map to be converted to
a SUMO compatible simulation network.

The exported network was manually cleaned to keep only the main features of
the network including CGA, VSM, VF and CS. Again, to better reflect the ground
truth, some features to the network were added including:

1. Early convergence: Due to the nature of the intersections and the width of
lanes on CGA, moving traffic usually moves in a single lane, while queues
are double-laned. Moreover, when vehicles start moving after a traffic light,
they usually merge together in a single lane after a few metres. To mimic
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Figure 7.2: SUMO simulation network: Early convergence at CGA and VF inter-
section.

this driver’s behaviour in the simulation model, early convergence at the
intersection was added. The main segments of CGA are single-laned while the
waiting queue area and entry into the next segment right after the intersection
is double laned. Figure 7.2 represents the two areas with different colours.

2. Neighbour lanes: To enable opposite-direction-driving on the segments on
CGA between all traffic lights, the adjacency information for opposite direc-
tion lanes was defined in the network file. This was done using the <neigh>
element in the edge file.

3. Parking lanes on secondary entry roads: the secondary entry roads like VSM,
VF and CS have diagonal and parallel parking lanes on them. These features
are also represented in the simulation network.

4. Traffic light phases: Three traffic light plans are designed to ensure a smooth
flow of traffic. Table 7.1, Table 7.2 and Table 7.3 shows the plans for intersec-
tions at VF, VSM and CS respectively. Figure 7.3 shows the TLS link index
numbers as an example. The other two intersections are also numbered in
a similar fashion (clockwise; outwards). All three TLSs have a period of 99
sec. The time offset between VSM and VF is 30 sec while it is 22 sec between
VF and CS. Please refer to SUMO’s documentation for the meaning of TLS
characters [18].

The final simulation networks looks like Figure 7.1b. Figure 7.4 provides a close up
look of the intersection between CGA and VF. The final simulation network file is
publically available [42].
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7.1 – Simulation setup

Figure 7.3: Traffic Light Sequence (TLS) link indexes between CGA and VF inter-
section. Figure also highlights all inter-lane connections.

Figure 7.4: SUMO simulation network: Zoom up view of CGA and VF intersection.
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Figure 7.5: SUMO simulation network: Distribution of traffic flow.

7.1.2 Routes generation
In 5T open traffic data, there are two ILs available on CGA (intersection with

VF) for north and southbound traffic. The real traffic intensities of these ILs are
broken down into multiple flows emerging from VSM, VF and CS as shown in Fig-
ure 7.5. In the Figure, all blue flows are monitored by the southbound IL and red
flows by northbound IL. Furthermore, to improve the realism in simulation, espe-
cially the east and westbound queues on VF, extra traffic flows were added. These
extra or dummy flows are arbitrarily chosen to be equal to 15% of the northbound
traffic and are not accounted for by any of the ILs. A sample routes file is publically
available [42].

7.1.3 Data collection script
Once the simulation network and route files are ready, the simulation is started

using a simple Python script. The Python script interacts with SUMO using Traffic
Control Interface (TraCI). TraCI allows access to a running road traffic simulation
to retrieve values of simulated objects and to manipulate their behaviour online.
Every simulation is started with a simulation step size of 1 second and a maximum
simulation length of approximately 24 hours. The logic behind the approximation
is that all routes are generated from a real 24 hour day. The vehicles generated
during the last part of the day may take a few extra minutes to leave the network.
Every route file (generated from a specific real day) is assigned a unique random
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number to be used as the seed for all random processes in the simulation. The
Python script samples the timestamp, ID, speed, x (or latitude) & y (or longitude)
positions and bearing of all vehicles at every step of the simulation. The Python
script for running the simulation and collecting data is publically available [42].

7.2 Data processing
After the simulation runs are completed, the raw data (contained in the CSV

file) collected from SUMO is stored in a MySQL table. The data are processed
by virtually placing VILs at multiple points on the network. This entire process
described below is done by a data processer which I implemented. The source code
for this processor are publically available [41].

7.2.1 VIL positions
All VILs are identified by a latitude, longitude, radius and direction (or bear-

ing). Figure 7.6a shows a simple placement plan of 8 VILs. This plan can be used
to calculate average speeds at all VILs as well as the time difference (delta time)
between passage of a vehicle over two VILs. Figure 7.6b and 7.6c show more ad-
vanced VIL placement plans with 15 and 17 VILs respectively. The INT VIL is
an omni-directional VIL, hence all vehicles passing through the intersection in any
direction are captured by it. All other VILs are uni-directional.

7.2.2 Headings and margins
The intersection between CGA and VF is orthogonal. CGA is oriented at

approximately 28◦ from North while VF is 118◦. CGA heading towards North is
named as H1, VF heading towards East is named as H2 and so on in a clockwise
fashion. The upper and lower bounds for all bearing angles are ±15◦ (i.e. α =
30◦). Figure 7.7 shows all headings and their upper and lower bounds.

7.2.3 Sample SQL statements
Temporary tables are created from raw simulation data to identify all passages

over VILs. Structured Query Language (SQL) statement for creating temporary
table containing IDs, transit times and transit speeds of all passing vehicles over a
VIL is shown below.
DROP TEMPORARY TABLE IF EXISTS TABLE_NAME;
CREATE TEMPORARY TABLE TABLE_NAME ENGINE=MEMORY
SELECT id , AVG( s tep ) AS trans itTime , AVG( speed ) AS

t r an s i tSpeed
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(a) 8 VILs plan (b) 15 VILs plan

(c) 17 VILs plan

Figure 7.6: Multiple VIL plans for CGA and VF intersection.

FROM INPUT_TABLE_NAME
WHERE ST_DISTANCE(POINT( posit ionX , pos i t ionY ) , POINT(VIL_X,

VIL_Y) ) < VIL_RADIUS AND ( IF ( ( ang le ) >= H1_LOWER OR (
ang le ) < H1_UPPER, "H1" , IF ( ( ang le ) >= H2_LOWER AND (
ang le ) < H2_UPPER, "H2" , IF ( ( ang le ) >= H3_LOWER AND (
ang le ) < H3_UPPER, "H3" , IF ( ( ang le ) >= H4_LOWER AND (
ang le ) < H4_UPPER, "H4" , "HX" ) ) ) ) ) LIKE VIL_HEADING
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H1U

H1L

H2L

H2U
H3L

H3U

H4L

H4U

H1

H2

H3

H4

Figure 7.7: Heading names for CGA and VF intersection.

GROUP BY id ;
TABLE_NAME, INPUT_TABLE_NAME, VIL_X, VIL_Y, VIL_RADIUS and VIL_HEADING must
be provided to the statement. Hx_UPPER and Hx_LOWER are shown in Figure 7.7.

VIL data can be calculated after the passages table is ready. SQL statement
for calculating average speed of all vehicles passing over a VIL during a given time
period is shown below.
SELECT AVG( t r an s i tSpeed ) AS averageSpeed
FROM VIL_TABLE_NAME
WHERE t rans i tTime > STEP_FROM AND t rans i tTime <= STEP_TO

AND id REGEXP ID_REG_EXP;
TABLE_NAME, VIL_TABLE_NAME, STEP_FROM, STEP_TO and ID_REG_EXP must be pro-
vided to the statement.

Similarly, delta of transit time can also be calculated from the passages table.
SQL statement for calculating delta of transit time for a vehicle between two VILs
during a given time period is shown below.
SELECT AVG(EXIT_VIL_TABLE_NAME. trans i tTime −

ENTRY_VIL_TABLE_NAME. trans i tTime ) AS deltaTime
FROM EXIT_VIL_TABLE_NAME
LEFT JOIN ENTRY_VIL_TABLE_NAME ON EXIT_VIL_TABLE_NAME. id =

ENTRY_VIL_TABLE_NAME. id
WHERE EXIT_VIL_TABLE_NAME. trans i tTime > STEP_FROM AND

EXIT_VIL_TABLE_NAME. trans i tTime <= STEP_TO;
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ENTRY_TABLE_NAME, EXIT_TABLE_NAME, STEP_FROM and STEP_TO must be provided
to the statement.

This processing results in two processed data tables; one for average speed
and another for delta time. The table for average speed with 15 VILs (similar
to Figure 7.6b) has the following structure:

STEP_FROM
STEP_TO
FLOW_NORTH
FLOW_SOUTH
VIL-A

VIL-B
VIL-C
VIL-D
VIL-E
VIL-F

VIL-INT
VIL-INT-A2C
VIL-INT-B2C
VIL-INT-D2C
VIL-INT-C2A

VIL-INT-B2A

VIL-INT-D2A

VIL-INT-B2D

VIL-INT-D2B

The table for delta time with 8 VILs (similar to Figure 7.6a) has the following
structure:

STEP_FROM
STEP_TO
FLOW_NORTH

FLOW_SOUTH
DT-A2C
DT-B2C

DT-D2C
DT-C2A
DT-D2A

DT-B2A
DT-B2D
DT-D2B

For both tables, the data type of all of the columns is FLOAT except for STEP_FROM
and STEP_TO which are INT.

7.3 Prediction workflow
The prediction workflow basically involves generating training and testing dataset(s),

finding the best model for training dataset and testing the model with testing
dataset(s). Figure 7.8 shows prediction workflow for training and predicting traffic
intensity from VIL data. The steps included in the prediction workflow are listed
below.

1. The labelled training dataset is read from the database.

2. A Gradient Boosted Machine (GBM) is trained with 90% of the training
dataset.

3. The trained GBM model is applied to the remaining 10% of training dataset
(also called validation dataset).

4. Training performance is evaluated (called validation performance).

5. Step 2, 3 and 4 are repeated 10 times in order to complete a 10-fold cross-
validation such that if the training dataset is divided into 10 equal subsets,
each set is used exactly once as the validation dataset.
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Figure 7.8: Prediction workflow

6. 10 validation performance results are averaged to create the inner perfor-
mance.

7. Step 2, 3, 4, 5 and 6 are repeated using a different combination of hyper-
parameters to perform hyper-parameter optimisation.

8. The hyper-parameter optimisation continues until the cost function (i.e. 1
- inner performance) is minimised. The GBM model trained with a set of
hyper-parameters achieving highest performance is called the best model.

9. The testing dataset is read from the database.

10. The best model is applied to the testing dataset to generate predictions.

11. Testing performance is evaluated (called outer performance).

All training run with a time-out limit of 15 minutes. All tests go through 10-fold
cross-validation and use GBM algorithm for training and testing. The motivation
of using cross-validation is to test the model’s ability to predict new data that
was not used in estimating it, to flag problems like overfitting or selection bias [9].
Cross-validation significantly helps to remove biases from learning. The direction
of traffic is always northbound. PR is the percentage of vehicles equipped with VIL
so that they report data to the system.
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7.3.1 Performance measures
Regression

The following performance measures are used to evaluate the accuracy of trained
models for all regression-based tasks.

• RMSE is the averaged root-mean-squared error such that:

RMSE =

⌜⃓⃓⎷ 1
N

N∑︂
i=1

(f̂ i − fi)2 (7.1)

where f̂ i is the ith predicted value, fi is the ith true value and N is the total
number of readings.

• Mean Absolute Error (MAE) is the averaged absolute deviation of the
prediction from the actual value such that:

MAE = 1
N

N∑︂
i=1

⃓⃓⃓
f̂ i − fi

⃓⃓⃓
(7.2)

where f̂ is the ith predicted value, f is the ith true value and N is the total
number of readings.

• MRE is the averaged absolute deviation of the prediction from the actual
value divided by actual value such that:

MRE = 1
N

N∑︂
i=1

⃓⃓⃓⃓
⃓⃓ f̂ i − fi

fi

⃓⃓⃓⃓
⃓⃓ (7.3)

where f̂ is the ith predicted value, f is the ith true value and N is the total
number of readings.

• Mean Lenient Relative Error (MLRE) is the averaged absolute deviation
of the prediction from the actual value divided by the maximum between the
actual value and the predicted value such that:

MLRE = 1
N

N∑︂
i=1

⃓⃓⃓⃓
⃓⃓ f̂ i − fi

max(f̂ i, fi)

⃓⃓⃓⃓
⃓⃓ (7.4)

where f̂ is the ith predicted value, f is the ith true value and N is the total
number of readings.
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• Mean Strict Relative Error (MSRE) is the averaged absolute deviation
of the prediction from the actual value divided by the minimum between the
actual value and the predicted value such that:

MSRE = 1
N

N∑︂
i=1

⃓⃓⃓⃓
⃓⃓ f̂ i − fi

min(f̂ i, fi)

⃓⃓⃓⃓
⃓⃓ (7.5)

where f̂ is the ith predicted value, f is the ith true value and N is the total
number of readings.

• COR is the averaged correlation coefficient between the label and prediction
attributes such that:

corr(f, f̂) =
∑︁N

i=1(fi − f)(fî − f̂)√︂∑︁N
i=1(fi − f)2 ∑︁N

i=1(fî − f̂)2
(7.6)

where f̂ is the ith predicted value, f is the ith true value, f̂ is the mean of all
predicted values, f is the mean of all true values and N is the total number
of readings.

Classification (Binary class)

The following performance measures are used to evaluate the accuracy of trained
models for all binary classification-based tasks.

• Accuracy (ACC) is the ratio between the total true positive classifications
and negative classifications and total population, such that:

ACC =
∑︁

True positive + ∑︁
True negative∑︁

Total population
(7.7)

• True Positive Rate (TPR) measures the proportion of positives that are
correctly identified, such that:

TPR =
∑︁

True positive∑︁
Condition positive

(7.8)

• False Positive Rate (FPR) measures the proportion of negatives that are
incorrectly identified as positives, such that:

FPR =
∑︁

False positive∑︁
Condition negative

(7.9)
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• False Negative Rate (FNR) measures the proportion of positives that are
incorrectly identified as negatives, such that:

FNR =
∑︁

False negative∑︁
Condition positive

(7.10)

• True Negative Rate (TNR) measures the proportion of negatives that are
correctly identified, such that:

TNR =
∑︁

True negative∑︁
Condition negative

(7.11)

7.3.2 Workbench configuration
Hardware

A CentOS based computer with 2 × Intel® Xeon® CPU E5-2640 v4 @ 2.40GHz
(10 Cores & 20 Threads each) with 128 GB DDR4 Random-Access Memory (RAM)
was used for all training and testing. The operating system was fully up-to-date
and throughout the tests, the computer was only utilised by the system or test
related processes.

Software

For the experimentation, H2O version 3.18.0.8 [38] was used. H2O is an open
source in-memory platform for distributed and scalable machine learning. Specifi-
cally, H2O - Flow was used which is an interactive notebook [37].

7.4 Results
In the following sections detailed results, analysis and discussion are presented

for several data types and test schemes. Overall, regression and classification style
prediction tests were conducted. Prediction schemes where training and testing
datasets have different simulation seeds but same (static) PR are referred to as
Cross Random Seed (CRS) tests. Schemes where training and testing datasets have
different simulation seeds and different (but static) PR are called Cross Penetration
Rate (CPR) tests. Lastly, to simulate realistic scenarios tests were run with Variable
Penetration Rate (VPR) with random simulation seeds.

7.4.1 Basic CRS tests
AS dataset

For the first few tests, traffic patterns were generated for an average weekday
by taking an average of all weekdays. This synthetic day was simulated using 3
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different random seeds. All models are trained using the dataset of the first two
seeds while the last seed (unseen by the model) is used for testing, hence the name
CRS. The type of data used here for training and testing is Average Speed (AS).
Following are the test configurations:

• PR [%] : 10, 25, 50

• Data : AS

• Step size [s] : 30, 60, 120

• Window size [#] : 5, 10, 20

• Window size [s] : 150, 300, 600,

1200, 2400

• VILs [#] : 15

• Attributes [#] : 75, 150, 300

• Training seed(s) : 100 & 200

• Testing seed(s) : 300

Figure A.1 shows results grouped by PR in box plot representation. As ex-
pected, all error measures improve as the PR increases. This trend is clear for all
performance parameters.

DT dataset

Tests were performed with Delta Time (DT) data to better understand what
type of data for training and testing is best suited. The deep learning machine was
trained and tested using the same hypothetical averaged weekdays as Section 7.4.1.
Again the machine was tested with a third unseen day. Following are the test
configurations:

• PR [%] : 10, 25, 50

• Data : DT

• Step size [s] : 30, 60, 120

• Window size [#] : 5, 10, 20

• Window size [s] : 150, 300, 600,

1200, 2400

• VILs [#] : 8

• Attributes [#] : 40, 80, 160

• Training seed(s) : 100 & 200

• Testing seed(s) : 300

Figure A.2 shows results grouped by PR in box plot representation. As ex-
pected, all error measures improve as the PR increases. This trend is clear for
all performance parameters. Comparatively speaking, overall better results are
achieved using AS as data rather than DT.

AS&DT dataset

To better understand to what extent the performance of the machine can be
improved, next tests were performed with both AS and DT data. As before, the
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deep learning machine was trained and tested using the same hypothetical averaged
weekdays as Section 7.4.1. Again, the machine was tested with a third unseen day.
Following are the test configurations:

• PR [%] : 10, 25, 50

• Data : AS&DT

• Step size [s] : 30, 60, 120

• Window size [#] : 5, 10, 20

• Window size [s] : 150, 300, 600,

1200, 2400

• VILs [#] : 17

• Attributes [#] : 85, 170, 340

• Training seed(s) : 100 & 200

• Testing seed(s) : 300

Figure A.3 shows results grouped by PR in box plot representation. As ex-
pected, all error measures improve as the PR increases. This trend is clear for all
performance parameters. The expectation from these results is that they should
be at least as good as results presented in Section 7.4.1, which proved to be true.
Using both data types as input does provide some improvement, but not significant.
On the other hand, it increases the number of attributes to as much as 340, which
incurs a complexity cost for the machine.

7.4.2 Variable importance estimation
In order to reduce system complexity, a variable importance assessment was

performed for GBM Algorithm. Figure 7.9 shows a bar chart for scaled attribute
importance for all attributes. The list of attributes includes 15 attributes from AS
data and 8 attributes from DT data (a total of 23 attributes). Following are the
test configurations:

• PR [%] : 10, 25, 50

• Data : AS&DT

• Step size [s] : 30, 60, 120

• Window size [#] : 1

• Window size [s] : 30, 60, 120

• VILs [#] : 17

• Attributes [#] : 23

• Training seed(s) : 100 & 200

• Testing seed(s) : 300

Results show that, in general, AS data are more important than DT data.
Moreover, each of the 5 most important attributes have an importance higher than
0.1 regardless of the step size. These attributes include AS-VIL-INT, DT-A2C,
AS-VIL-A, AS-VIL-INT-A2C and AS-VIL-C. This resulted in a new type of data,
referred to as Important Attributes (IA) composed only of the 5 most important
attributes. Figure 7.10 shows VIL implementation plan for collecting data for these
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Figure 7.9: Scaled attribute importance for GBM (0 to 1, 1 being highest impor-
tance).

important attributes. In total the plan includes 4 uni-directional and 1 omni-
directional VILs.

IA dataset

The same tests as Sections 7.4.1, 7.4.1 and 7.4.1 were performed to analyse
the possible performance degradation due to the use of IA instead of AS, DT or
AS&DT. Following are the test configurations:

• PR [%] : 10, 25, 50

• Data : IA

• Step size [s] : 30, 60, 120

• Window size [#] : 5, 10, 20

• Window size [s] : 150, 300, 600,

1200, 2400

• VILs [#] : 5

• Attributes [#] : 25, 50, 100

• Training seed(s) : 100 & 200

• Testing seed(s) : 300
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Figure 7.10: VIL plan implementation for 5 most important attributes.

Figure 7.11 shows results grouped by PR in box plot representation. The per-
formance of prediction achieved by IA data is very much comparable to the best
performance achieved amongst AS, DT and AS&DT data. Even after reducing the
number of attributes from as much as 340 to as low as 25, on average, the perfor-
mance in terms of MRE only reduces by 1.67%. This is a very reasonable trade-off
and in the majority of the work that follows only IA data will be used.

7.4.3 Basic CPR tests
AS&DT dataset

All of the tests conducted until now were done using the same PR for training
and testing. This assumes that the PR remains constant during training and testing
phases, which may not be necessarily correct. A cross-check was performed between
PRs by training machine with one PR and testing with another, hence the name
CPR. This was done for all combinations of PRs mentioned below. Following are
the test configurations:

• PR [%] : 5, 10, 15, 25, 50, 75, 100

• Data : AS&DT

• Step size [s] : 60

• Window size [#] : 10

• Window size [s] : 600

• VILs [#] : 17

• Attributes [#] : 170

• Training seed(s) : 100, 200

• Testing seed(s) : 300
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Figure 7.11: IA dataset CRS test results.

Figure 7.12 shows results grouped by training PR in box plot representation. Fig-
ure 7.13 shows results grouped by testing PR in box plot representation. Perfor-
mance parameters followed by * represent parameters which are calculated only for
the more important part of the day. After analysing the daily traffic flow, it was
concluded that the important part of the day is the part where a prediction of traffic
might be useful in order to act upon it (by some means of traffic congestion control
such as traffic light plan change). In my analysis, for this particular intersection,
that part is from 06:30 until 20:30.

Results show that the performance of the prediction machine increases as the
difference between the training and testing PR reduces. For each individual training
PR, the best performance is achieved when the testing PR is the same as the
training PR. For example, if a machine is trained with 5% PR and the testing PR
is 100%, it does not achieve better performance than if the testing PR is 5%.
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Figure 7.12: AS&DT dataset CPR test results box plot grouped by training PR.

7.4.4 CRS tests with hour of the day
Some tests were performed to understand how will adding ‘hour of the day’ to

the dataset affect the prediction performance. The ‘hour of the day’ provides some
context to the machine about which part of the day does this data belong to. This
does not, however, specify exactly what is the timestamp of data.

AS&DT&H dataset

First, ‘hour of the day’ (H) was added to AS&DT data to create AS&DT&H
dataset. Following are the test configurations:

• PR [%] : 10, 25, 50

• Data : AS&DT&H

• Step size [s] : 30, 60, 120

• Window size [#] : 5, 10, 20

• Window size [s] : 150, 300, 600,

1200, 2400

• VILs [#] : 17

• Attributes [#] : 90, 180, 360

• Training seed(s) : 100, 200

• Testing seed(s) : 300
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Figure 7.13: AS&DT dataset CPR test results box plot grouped by testing PR.

Figure A.4 shows results grouped by PR in box plot representation. Results
show a significant improvement in terms of all performance parameters. When
compared to results presented in Section 7.4.1, overall, on average an improvement
of 48% in RMSE was seen. The problem, however, is that the machine relies too
much on the hour attribute and mostly ignore VIL attributes. The result is that
the predicted output of the machine does not reflect the actual situation of traffic
collected by VIL.

IA&H dataset

To test the effect of ‘hour of the day’ (H) to IA dataset, H was added to IA
data to create IA&H dataset. Following are the test configurations:

• PR [%] : 10, 25, 50

• Data : IA&H

• Step size [s] : 30, 60, 120

• Window size [#] : 5, 10, 20

• Window size [s] : 150, 300, 600,
1200, 2400

• VILs [#] : 5
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• Attributes [#] : 30, 60, 120

• Training seed(s) : 100, 200

• Testing seed(s) : 300

Figure A.5 shows results grouped by PR in box plot representation. The analysis
of these results reconfirm what is concluded earlier in Section 7.4.4. When compared
to results presented in Section 7.4.2, overall, on average an improvement of 49%
in RMSE was noticed. Since the machine rely too much on ‘hour of the day’ and
less on the situation of traffic reflected by VIL data, it was concluded that it is not
advantageous to pursue this track.

7.4.5 Classification tests (CRS)
All prediction schemes until now are regression-based predictions in which the

intensity of traffic itself was predicted. Here, a classification-based analysis is con-
ducted instead to classify the current intensity of traffic into a number of classes.

IA_3C dataset

The first classification dataset created classifies traffic intensity into 3 different
classes i.e. low, medium, high. The maximum traffic intensity in the AS&DT
dataset was 1100 which was equally distributed among the 3 classes. Following are
the test configurations:

• PR [%] : 10, 25, 50

• Data : IA_3C

• Classes [#] : 3

– low def= [0, 367) veh/hour

– medium def= [367, 733) ve-
h/hour

– high def= [733, ∞) veh/hour

• Step size [s] : 30, 60, 120, 300

• Window size [#] : 5, 10, 20

• Window size [s] : 150, 300, 600,
1200, 1500, 2400, 3000, 6000

• VILs [#] : 5

• Attributes [#] : 25, 50, 100

• Training seed(s) : 100, 200

• Testing seed(s) : 300

Results show an average accuracy of 85.25% with 10% of PR, 88.6% with 25%
PR and 91.03% with 50% PR. In general, accuracy increases as PR increases, as
step size decreases and as window size increases.

IA_2CH dataset

Traffic intensity was split into 2 different classes i.e. 0 and 1 with hysteresis and
a binning window to create the dataset referred to as IA_2CH_BW. The double
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threshold-based hysteresis is applied to the average traffic flow calculated using the
binning window. The traffic flow is classified using the following equation:

cn =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, if cn−1 = 0 & fn < 300
0, if cn−1 = 1 & fn < 200
1, if cn−1 = 0 & fn ≥ 300
1, if cn−1 = 1 & fn ≥ 200

where cn is the current class, cn−1 is the previous class and fn is the average traffic
flow of the current binning window. Following are the test configurations:

• PR [%] : 10

• Data : IA_2CH_BW

• Classes [#] : 2

• Step size [s] : 30, 60, 120, 300

• Window size [#] : 5, 10, 20

• Window size [s] : 150, 300, 600,
1200, 1500, 2400, 3000, 6000

• Hysteresis binning window [s] :
600, 1200

• VILs [#] : 5

• Attributes [#] : 25, 50, 100

• Training seed(s) : 100, 200

• Testing seed(s) : 300

Figure 7.14 shows results grouped by the step size in box plot representation.
The accuracy is quite impressive and stays higher than 90% in all cases. Results
show the accuracy of classification increases as the step size increases. Addition-
ally, the machine is better able to recognise class 1 compared to class 0 (TPR >
TNR). Figure 7.15 shows results grouped by window size in box plot representa-
tion. Results show that accuracy improves as window size increases. Figure A.6
shows results grouped by binning window size in box plot representation. Results
show better accuracy at smaller binning window size. So the ideal configuration for
classification should be: step size of 120s, windows size of 20 and binning window
size of 1200s.

7.4.6 Real days dataset
Until now, all of the tests were conducted on a hypothetical weekday made

using average traffic flow during weekdays during a certain time period. In order
to check the performance of the prediction mechanism with traffic situation of
real days and make the simulation more realistic, a very large dataset was created
consisting of 56 real days. This dataset consists of all types of days identified
earlier. Between the months of October-2017 and April-2018, the first available (in
my archive) working weekday from each month was selected. Similarly, the first
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Figure 7.14: IA_2CH dataset CRS test results box plot grouped by step size.

available weekend days and seven national and local holidays that occurred during
this period were chosen. Table 7.4 shows all details relating to these selected 56
days. These days were chosen and simulated using unique random seeds i.e. all
of these simulated days have a different random seed. In the sections that follow,
these days will be referred to by their code names mentioned in the Table. The
entire simulation dataset (174 files; 13.5 GB in total) is available online with open
access [43].

Table 7.4: Details of selected days for real days dataset.

Date Day Month Category Code
Name

Random
Seed

2017-10-01 Sunday October Sunday Su1 20000
2017-10-02 Monday October Monday M1 100
2017-10-07 Saturday October Saturday Sa1 13000
2017-10-10 Tuesday October Tuesday Tu1 27000
2017-10-11 Wednesday October Wednesday W1 34000
2017-10-12 Thursday October Thursday Th1 41000
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Date Day Month Category Code
Name

Random
Seed

2017-10-13 Friday October Friday F1 800
2017-11-01 Wednesday November Holiday H1 6000
2017-11-02 Thursday November Thursday Th2 42000
2017-11-03 Friday November Friday F2 900
2017-11-04 Saturday November Saturday Sa2 14000
2017-11-05 Sunday November Sunday Su2 21000
2017-11-06 Monday November Monday M2 200
2017-11-07 Tuesday November Tuesday Tu2 28000
2017-11-08 Wednesday November Wednesday W2 35000
2017-12-01 Friday December Friday F3 1000
2017-12-02 Saturday December Saturday Sa3 15000
2017-12-03 Sunday December Sunday Su3 22000
2017-12-04 Monday December Monday M3 300
2017-12-05 Tuesday December Tuesday Tu3 29000
2017-12-06 Wednesday December Wednesday W3 36000
2017-12-07 Thursday December Thursday Th3 43000
2017-12-08 Friday December Holiday H2 7000
2017-12-25 Monday December Holiday H3 8000
2017-12-26 Tuesday December Holiday H4 9000
2018-01-04 Thursday January Thursday Th4 44000
2018-01-05 Friday January Friday F4 2000
2018-01-13 Saturday January Saturday Sa4 16000
2018-01-14 Sunday January Sunday Su4 23000
2018-01-15 Monday January Monday M4 400
2018-01-16 Tuesday January Tuesday Tu4 30000
2018-01-17 Wednesday January Wednesday W4 37000
2018-02-02 Friday February Friday F5 3000
2018-02-03 Saturday February Saturday Sa5 17000
2018-02-11 Sunday February Sunday Su5 24000
2018-02-12 Monday February Monday M5 500
2018-02-13 Tuesday February Tuesday Tu5 31000
2018-02-14 Wednesday February Wednesday W5 38000
2018-02-15 Thursday February Thursday Th5 45000
2018-03-01 Thursday March Thursday Th6 46000
2018-03-02 Friday March Friday F6 4000
2018-03-03 Saturday March Saturday Sa6 18000
2018-03-04 Sunday March Sunday Su6 25000
2018-03-05 Monday March Monday M6 600
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Date Day Month Category Code
Name

Random
Seed

2018-03-06 Tuesday March Tuesday Tu6 32000
2018-03-07 Wednesday March Wednesday W6 39000
2018-03-30 Friday March Holiday H5 10000
2018-04-01 Sunday April Holiday H6 11000
2018-04-02 Monday April Holiday H7 12000
2018-04-03 Tuesday April Tuesday Tu7 33000
2018-04-04 Wednesday April Wednesday W7 40000
2018-04-05 Thursday April Thursday Th7 47000
2018-04-06 Friday April Friday F7 5000
2018-04-07 Saturday April Saturday Sa7 19000
2018-04-08 Sunday April Sunday Su7 26000
2018-04-09 Monday April Monday M7 700

M_AS&DT dataset (CRS)

The first real days tests conducted were between all Mondays in the database.
2 consecutive Mondays from the selected days were selected to train the machine,
then this machine was used to predict traffic intensity on all remaining Mondays.
This meant doing 5 tests per configuration scheme. The test configurations are
below:

• PR [%] : 10

• Data : AS&DT

• Step size [s] : 60

• Window size [#] : 5, 10, 20

• Window size [s] : 300, 600, 1200

• VILs [#] : 17

• Attributes [#] : 85, 170, 340

• Training seed(s) : Multiple

• Testing seed(s) : Multiple

Figure A.7 shows results from 90 tests grouped by window size in box plot
representation. Results look very promising from all performance matrices per-
spective. If results obtained from training and testing multiple different Mondays
are comparable with results obtained with training and testing a hypothetical day,
it would imply that the machine is very well capable of predicting real traffic flow.
In other words, results presented here should be comparable with results presented
in Section 7.4.1. This stands true for all parameters including RMSE, MAE, MRE,
and COR. For some parameters, a very negligible performance degradation was
noticed.
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Figure 7.15: IA_2CH dataset CRS test results box plot grouped by window size.

IA 5-categories dataset (CRS)

To better explore how the training of machine can be improved a set of trails
were conducted by increasing the size of the training dataset. The idea is that if the
machine is able to train using more data and diverse data (different types of days),
the performance may improve. To test this theory, a dataset was created consisting
of all selected Mondays, Fridays, Saturdays, Sundays and Holidays. This came up to
35 real days of data in total. Experiments were done with multiple combinations to
better understand which combination of days improve prediction performance. The
machine was trained using 4 different combinations of training dataset including:

1. A Monday, Friday, Saturday, Sunday and a Holiday (MFSaSuH)

2. Two Mondays (MM)

3. Two Mondays and two Saturdays (MMSaSa)

4. Four Mondays (MMMM)
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For each training dataset combination three separate tests were performed with
different selected days and each test consisted of predicting all five types of days.
So, in summary, this totalled to 60 tests. The test configurations are below:

• PR [%] : 10

• Data : IA

• Step size [s] : 60

• Window size [#] : 10

• Window size [s] : 600

• VILs [#] : 5

• Attributes [#] : 50

• Training seed(s) : Multiple

• Testing seed(s) : Multiple

Figure A.8 shows results grouped by training dataset type in box plot repre-
sentation. Figure A.9 shows results grouped by testing dataset type in box plot
representation. A machine trained with different type of days is expected to out-
perform a machine trained only with a specific type of day. This is confirmed by
analysing results from MFSaSuH and MMSaSa against MM and MMMM. Con-
sidering all parameters, MFSaSuH dataset training performs best. However, it is
noteworthy and interesting to see that MMSaSa shows a very minimal performance
difference compared to the best.

IA 8-categories dataset (CRS)

One of the conclusions from Section 7.4.6 is that a machine trained with different
types of days is, in general, better able to predict traffic. For this next test, a
dataset consisting of all 8 categories of selected days including Mondays, Tuesdays,
Wednesdays, Thursdays, Fridays, Saturdays, Sundays and holidays was created.
This came up to 56 real days of data in total. Experiments were performed using
12 different combinationsto better understand which combination of days improve
prediction performance including:

1. Two Mondays (MM)

2. A Monday, Saturday and a holiday (MSaH)

3. Four Mondays (MMMM)

4. Two Mondays and two Saturdays (MMSaSa)

5. Two Mondays, two Saturdays, two Sundays and two holidays (MMSaSaSuSuHH)

6. A Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday and a
holiday belonging to the same month (MTuWThFSaSuH)
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7. A Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday and a
holiday belonging to the different months (MTuWThFSaSuH*)

8. A Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, and Sunday
belonging to the same month (MTuWThFSaSu)

9. A Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, and Sunday
belonging to the different months (MTuWThFSaSu*)

10. Two Mondays, two Tuesdays, two Wednesdays, two Thursdays and two Fri-
days (MMTuTuWWThThFF)

11. A Monday, Tuesday, Wednesday, Thursday, Friday and Saturday belonging
to the same month (MTuWThFSa)

12. A Monday, Tuesday, Wednesday, Thursday, Friday and Saturday belonging
to the different months (MTuWThFSa*)

For each training dataset combination three separate tests were conducted with
different selected days and each test consisted of predicting all eight types of days.
So, in summary, this totalled to 288 tests. The test configurations are below:

• PR [%] : 10

• Data : IA

• Step size [s] : 60

• Window size [#] : 10

• Window size [s] : 600

• VILs [#] : 5

• Attributes [#] : 50

• Training seed(s) : Multiple

• Testing seed(s) : Multiple

Figure 7.16 shows results grouped by training dataset type in box plot repre-
sentation. Figure 7.17 shows results grouped by testing dataset type in box plot
representation. Considering all performance parameters, the best overall perfor-
mance is achieved by the dataset containing an entire week of traffic with a holiday
(MTuWThFSaSuH*). In fact, in general, datasets containing a lower number of
days perform worse than datasets including a higher number of days. One factor
for this could be the fact that the number of training samples in a dataset increases
as the number of days in the dataset increases. Analysing the Figure with results
grouped by testing dataset type (the type of day), the machine is able to predict
traffic intensities on all weekdays with similar accuracy. However, on weekends and
holidays, the performance suffers a little bit. In a realistic scenario, this should
not cause a serious problem since the rate of occurrence of a weekend is only 28%.
Similarly, the number of holidays in a year is quite limited, compared to the number
of weekdays.
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Figure 7.16: IA 8-categories dataset CRS test results box plot grouped by training
PR.

IA 8-categories dataset (CRS)

Similar to Section 7.4.3, a CPR test was done with this dataset. This elaborates
on how the predictions will be affected by a change in the difference between the
training and testing PRs. For testing PRs somewhat realistic PRs were selected
including 5%, 10% and 15%. For training the machine the single PRs already
selected for testing were chosen along with their combinations such as [10%, 5%]
and [15%, 10%, 5%]. Sets of PR written between squared brackets signify one
combined dataset. As far as the combination of the type of days is concerned,
the MTuWThFSaSu combination was chosen for three different months. For each
combination of training and testing PR, two different training day types and eight
testing days each were singled out. So in total, each PR combination was tested
16 times resulting in a total of 192 predictions. Please note that the training and
testing days always belonged to different months. Other test parameters were as
follows:
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Figure 7.17: IA 8-categories dataset CRS test results box plot grouped by testing
PR.

• Data : IA

• Step size [s] : 60

• Window size [#] : 10

• VILs [#] : 5

• Attributes [#] : 50

• Training seed(s) : Multiple

• Testing seed(s) : Multiple

• Training days : MTuWThFSaSu
(2, 4 & 6)

Figure A.10 shows results grouped by training PR in box plot representa-
tion. Figure A.11 shows results grouped by training and testing PR combination
in box plot representation. The first takeaway result from the test is that training
sets composed of multiple training PRs outperform training sets composed of a
single PR. In my tests, training PRs [10%, 5%] and [15%, 10%, 5%] outperformed
all others and were similar to each other. Secondly, as previously experienced in
Section 7.4.3, the performance of prediction is indirectly proportional to the differ-
ence between the training and testing PRs. Best results (in case of single training
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PRs) are achieved when the training and testing PRs are the same. As the dif-
ference between the training and testing PRs starts increasing, the accuracy starts
decreasing.

7.4.7 DPR datasets
From a practical point of view, the proposed traffic prediction system would

consist of two stages i.e. training stage and testing stage. The training stage would
be temporary and may last just a few weeks (two to three). During the training
stage, I propose to use some temporary traffic sensing instrument such as pneumatic
tubes, video detection or radar detection. The temporary sensing instrument will
sense more or less 100% of the passing traffic. Additionally, data coming from VIL
system will be collected during this stage. After the training stage is over, the
temporary sensing system can be removed.

The dataset created during the training stage can be considered a 100% PR
dataset. But depending on the PR of the VIL system, the PR during the testing
stage will be much lower. In theory, it is possible to derive lower PR datasets
from higher PR datasets. This is true since statistically, all lower PR datasets will
be subsets of the 100% PR dataset. To verify this hypothesis, multiple lower PR
datasets were derived from the 100% PR dataset called Derived Penetration Rate
(DPR) dataset.

IA 8-categories DPR dataset (CRS)

A very detailed CPR test was conducted using all DPR. Eight PRs were deribed
from 100% PR dataset (i.e. 20%, 15%, 12%, 10%, 8%, 5%, 2.5%, 1%). To do this,
x% of vehicles were randomly selected from 100% of the vehicles using the same
seed as the one used for the simulation of that particular day. Tests were performed
by using all DPRs as testing PRs. For training PRs single DPRs were used as well
as combinations of multiple DPRs (i.e. [40%, 15%, 10%, 5%], [20%, 15%, 10%,
5%], [20%, 15%, 10%], [15%, 10%, 5%], [10%, 5%], 15%, 10%, 5%, 2.5%, and 1%).
Sets of PR written between squared brackets signify one combined dataset. Each
combination of training and testing PR was tested with two different sets of training
days. Each set of training day was used to predict all eight types of days. Please
note that, as before, the testing and the training days were never overlapping in
time (for example belong to the same month). This summed up to 1280 individual
predictions. Other test configurations are as follows:

• Data : IA

• Step size [s] : 60

• Window size [#] : 10

• VILs [#] : 5

• Attributes [#] : 50

• Training seed(s) : Multiple
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Figure 7.18: IA 8-categories DPR dataset CPR test results box plot grouped by
training PR.

• Testing seed(s) : Multiple • Training days : MTuWThFSaSu
(2, 4 & 6)

Figure 7.18 shows results grouped by training PR in box plot representation. Fig-
ure 7.19 shows results grouped by testing PR in box plot representation. Results
show that, in general, single PR training sets perform worst than combined PR
training sets. In fact, these results are very much comparable with results pre-
sented in Section 7.4.6. Previous findings can also be confirmed here, such as
prediction performance improves as the PR increases. As far as testing PR is con-
cerned, the same remains true until the PR increases to about 10%. After that, the
performance remains stable (doesn’t get worse) but contains more outliers. This
can be because of the combination of training and testing PRs. Figure A.12, 7.20,
and A.13 further investigates what would be the best training PR(s) dataset to
predict somewhat realistic testing PRs (1%, 2.5% and 5%).

Figure A.12, 7.20, and A.13 show results grouped by training PR in box plot
representation only for tests conducted with testing PR of 1%, 2.5%, and 5% re-
spectively. In all three cases, best results are achieved when the training PR is the
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Figure 7.19: IA 8-categories DPR dataset CPR test results box plot grouped by
testing PR.

same as the testing PR. Moreover, all combined PR training sets which contain
lower PRs (e.g. [40%, 15%, 10%, 5%], [20%, 15%, 10%, 5%], [15%, 10%, 5%], [10%,
5%]) perform better than others (e.g. [20%, 15%, 10%]). This again concludes that
the machine is better able to predict traffic when the difference between training
and testing PRs is low.

7.4.8 CPR tests with VPR (DPR) dataset
All tests conducted until now consider a constant PR throughout the day. This

is an assumption taken to simplify the exhaustive training and testing procedure.
However, in reality, the actual PR can vary throughout the day. To understand how
the machine will behave in such a situation, extensive CPR tests were conducted
with a new dataset created from DPR having VPR. Following are the testing VPR
datasets that were made to simulate a semi-realistic day:

1. 1-2.5-5-7.5-10

• Low PR: random between 1%, 2.5% and 5%
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Figure 7.20: IA 8-categories DPR dataset CPR test results box plot testing only
with 2.5% PR.

• Medium PR: random between 2.5%, 5% and 7.5%
• High PR: random between 5%, 7.5% and 10%

2. 1-5-10

• Low PR: 1%
• Medium PR: 5%
• High PR: 10%

3. 5-10-15

• Low PR: 5%
• Medium PR: 10%
• High PR: 15%

4. 5-8-10-12-15
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• Low PR: random between 5%, 8% and 10%
• Medium PR: random between 8%, 10% and 12%
• High PR: random between 10%, 12% and 15%

5. 8-10-12

• Low PR: 8%
• Medium PR: 10%
• High PR: 12%

In all datasets, PR changes every 60 mins. Low, medium and high hourly average
traffic intensities thresholds used here are the following:

• low def= [0, 300) veh/hour

• medium def= [300, 600) veh/hour

• high def= [600, ∞) veh/hour

Figure 7.21 shows an example of how the VPR scheme works. To predict the traffic
flow of these datasets, machines were trained with the following training PRs:

1. 1,2.5,5,7.5,10

• Combined PR [1%, 2.5%, 5%, 7.5% and 10%]

2. 1-2.5-5-7.5-10

• Low PR: random between 1%, 2.5% and 5%
• Medium PR: random between 2.5%, 5% and 7.5%
• High PR: random between 5%, 7.5% and 10%

3. 5,10,15

• Combined PR [5%, 10% and 15%]

4. 5,7.5,10

• Combined PR [5%, 7.5% and 10%]

5. 5,8,10,12,15

• Combined PR [5%, 8%, 10%, 12% and 15%]

6. 5-10-15
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Figure 7.21: IA 8-categories derived and variable PR dataset scheme.

• Low PR: 5%
• Medium PR: 10%
• High PR: 15%

7. 5-10-15,8-10-12

• Combined PR [Item 6 and Item 10]

8. 5-8-10-12-15

• Low PR: random between 5%, 8% and 10%
• Medium PR: random between 8%, 10% and 12%
• High PR: random between 10%, 12% and 15%

9. 8,10,12

• Combined PR [8%, 10% and 12%]

10. 8-10-12
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• Low PR: 8%
• Medium PR: 10%
• High PR: 12%

Each training dataset was used to predict all eight types of days. Please note that,
as before, the testing and the training days were never overlapping in time (for
example belong to the same month). This summed up to 800 individual predictions.
Other test configurations are as follows:

• Data : IA

• Step size [s] : 60

• Window size [#] : 10

• VILs [#] : 5

• Attributes [#] : 50

• Training seed(s) : Multiple

• Testing seed(s) : Multiple

• Training days : MTuWThFSaSu
(2, 4 & 6)

Figure 7.22 shows results grouped by training PR in box plot representation. Fig-
ure 7.23 shows results grouped by testing PR in box plot representation. Results
show that, in general, training sets with VPR perform better than their combined
PR training sets equivalents. Secondly, these results are very much comparable
with results presented in Section 7.4.6. As far as testing PR is concerned, the per-
formance improves (as expected) when average PR increases. Figure A.14 further
investigates what would be the best training PR(s) dataset to predict a somewhat
realistic day represented by 1-2.5-5-7.5-10 testing PRs (Item 1).

Figure A.14 shows results grouped by training PR in box plot representation
only for tests conducted with testing PR of 1-2.5-5-7.5-10 (Item 1). The best per-
formance is achieved when the testing PR is the same as training PR. In general,
training PR datasets with a higher average PR perform worst. This can be ex-
plained again as before due to the high difference between training and testing
PRs.

7.4.9 Training dataset size
The difference in training dataset sizes might lead to unfair comparison. For

example the training dataset size of combined PR dataset (Item 1) is roughly 5
times higher than its VPR equivalent (Item 2). This is simply true because this
combined PR dataset contains 5 versions with different PRs of one week (equal to
35 days). While in the case of VPR dataset, it only contains one VPR version of one
week (equal to 7 days). To eliminate this, 5 different versions of VPR datasets were
created and simulated with different random seeds. This ensures that the training
dataset sizes are the same between combined PR dataset and its VPR equivalent.
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Figure 7.22: IA 8-categories derived and variable PR dataset CPR test results box
plot grouped by training PR.

Figure 7.24 shows results grouped by training PR in box plot representation.
The size of combined PR dataset (1,2.5,5,7.5,10) is 50,556 samples, VPR single
version (1-2.5-5-7.5-10) is 10,102 samples and VPR multiple versions (1-2.5-5-7.5-
10*) is 50,534 samples. The multiple version VPR dataset outperforms all other
training datasets. This concludes that the ideal training dataset should consist of
multiple versions of VPR-based traffic data collected during one week.

7.5 Conclusions
In this Chapter, modelling, simulation and validation of traffic forecasting sys-

tem is presented based on VIL using SUMO for simulation and GBM for traffic
modelling and prediction. A real traffic intersection from the City of Turin wass-
elected to be modelled in detail in SUMO. This network was simulated with real
traffic flow archived from 5T open data. VIL data was collected from the simulation
by creating multiple scenarios using multiple parameters. The collected data was
used to train and test GBM models. Experiments were conducted with AS, DT
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Figure 7.23: IA 8-categories derived and variable PR dataset CPR test results box
plot grouped by testing PR.

and AS&DT data and concluded that using only 5 Important Attributes (IA) is
sufficient for performance. CRS and CPR style tests were performed for all data
types with multiple PRs. Classification style prediction schemes were also tested
apart from regression style schemes. Multiple tests with real days dataset validated
the concept of VIL in the simulation of a real traffic network. DPR datasets proved
that during the training phase of the real system, VIL data can be collected once
only at a fixed PR and later other lower PRs can be derived from it. This makes
the implementation of the system feasible. VPR datasets were created since the
real PR during an actual day might be variable. This enabled the simulation of
the most realistic replica of a real day. The system was able to forecast traffic in
all scenarios with reasonable accuracies considering realistic PRs.

Results from CRS tests show that a GBM machine trained with AS data can
achieve on average an RMSE of 98.74 and an MRE of 24% with 10% of PR. The
same averages for a GBM machine trained with DT data are RMSE of 97.74 and
an MRE of 27.17%. When AS and DT are combined the averages reach an RMSE
of 93.98 and an MRE of 22.97%. IA data drastically simplifies the model while
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Figure 7.24: Training dataset size comparison shown by box plot grouped by train-
ing PR.

achieving an average RMSE of 96.51 and an MRE of 23.77%. CPR tests concluded
that the performance of the prediction machine increases as the difference between
the training and testing PR reduces. As far as classification is concerned, a GBM
machine can on average achieve an accuracy of 94.96% with 2 classes. CRS tests
on real days dataset showed that best scheme to train machines is with data from
weeks from different months plus holidays. This machine on average gets an RMSE
of 99.47 and an MRE of 24.06%. CPR tests with the same dataset show that
machines trained with multiple training PRs outperform those which are trained
with a single PR. Simulation of semi-realistic real days using VPR dataset showed
that it is better to train a machine with VPR to get better results. A single GBM
machine can forecast traffic for a case which is closest to reality in terms of PR with
an MRE* of 20%. Lastly, as far as the size of the training dataset is concerned, it
was concluded that the ideal training dataset should consist of multiple versions of
VPR-based traffic data collected during one week.
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Chapter 8

Conclusions

To conclude, this thesis discussed two major points in the ITS domain.

1. The collection and processing of data from road traffic using smartphones and
other devices (such as On-Board Units (OBUs)).

(a) I proposed a procedure to convert any measure taken by a smartphone
sensor into the vehicle coordinate system in real-time in Chapter 2. It
uses information from low power IMU (accelerometer and magnetome-
ter) and GPS to perform data conversion, applying first a 3D rotation
(from smartphone to Earth coordinates) and then a 2D rotation (from
Earth to vehicle coordinates). With this procedure, the driver of a ve-
hicle is no more constrained to place their smartphone in a cradle all
along a trip but can leave it in a bag, pocket or even handle it for short
periods. To obtain this result, accuracy was traded with usability; re-
ducing the first one to increase the second one. The result is a very
low penalty in accuracy, negligible in most ITS applications, and a very
high increase in usability which is a factor of paramount importance
for any customer-oriented application. This is the first solution, to the
best of my knowledge, that can achieve real-time axis remapping with
reasonable accuracy without placing any restrictions on the state of the
device or driver. My approach enables the implementation of numerous
ITS applications without installing dedicated hardware and using only
already available mobile devices.

(b) Chapter 3 describes in detail the idea and the proposed structure of a
modular platform for the collection and processing of data for ITS re-
lated applications. The platform called VDAP consists of a smartphone
and a back-end server section. VDAP is highly customisable and can
be adapted to provide a number of ITS related services. More details
about the design and implementation of two applications using VDAP
are available in Chapter 4 and Chapter 5.
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(c) Chapter 4 demonstrates a sample use case of VDAP for the recogni-
tion and analysis of the driving style of a driver with a freely placed
smartphone. The algorithm utilises VDDA for full-calibration and data
rotation of IMU. Additionally, it discusses in detail the APIs used from
Android’s SDK. DSA is essentially a two-part approach consisting of:
1) recognition of driving events or manoeuvres; 2) assignment of driving
scores. DSA is able to recognise left/right turns, acceleration, decelera-
tion, lateral acceleration and stop events with quite a high accuracy. The
driving scores are constructed using the ranks (or intensities) of individ-
ual events and a comparison with other drivers’ trips on that particular
stretch of road. A scoring scheme is used to penalise higher or lower
compared values (such as average speed, event ranks etc.).

2. The use of machine learning techniques to predict the intensity of traffic using
crowd-sourced data from a small fraction of the traffic.

(a) Chapter 5 presents a completely software-based solution with already
available and ubiquitous hardware, i.e. smartphones. It was proven
that the feasibility of using smartphones to collect data and provide
highly accurate information about a passage of a user over pre-defined
goals. Simulation results based on real vehicular traces show negligible
timestamp calculation errors with nearly 100% success rate. Moreover,
due to the flexible and scalable nature of VIL, the goals can be defined
in real-time to focus on areas of special interest. A practical integration
scheme is proposed to allow UTC systems, such as UTOPIA, to benefit
from VIL.

(b) Chapter 6 formulates a system for forecasting urban traffic over a short
time period using Deep Learning. The prediction is accurate while being
simple in terms of complexity. It also proposes and analyses the effects
of multiple pre-processing schemes to improve the accuracy of forecast-
ing. From experiments on a real traffic flow dataset from the City of
Turin, it is evident that my Deep Learning machine performs better
than state-of-the-art DLAs. Results show that my solution outperforms
other DLAs with nearly 4% accuracy improvements while being much
simpler in terms of complexity (hidden layers and hidden neurons). The
most effective way to pre-process data is to use a simple moving average
without timestamp as an input. This means that the machine can gen-
erate a prediction with only the traffic flow of past few minutes without
any knowledge of the time. Moreover, to establish the robustness of my
approach, a cross-examination of my architecture with different datasets
was done. Results show that a single Deep Learning machine with only
two hidden layers of 50 units each trained with traffic flow data of a
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week can predict the flow on any day of the week as well as holidays
with remarkable accuracy.

(c) In Chapter 7, modelling, simulation and validation of traffic forecast-
ing system was presented based on VIL using SUMO for simulation and
GBM for traffic modelling and prediction. A real traffic intersection
from the City of Turin was selected to be modelled in detail in SUMO.
This network was simulated with real traffic flow archived from 5T open
data. VIL data was collected from the simulation by creating multi-
ple scenarios using multiple parameters. The collected data was used
to train and test GBM models. Experiments were conducted with AS,
DT and AS&DT data and concluded that using only 5 Important At-
tributes (IA) is sufficient for performance. CRS and CPR style tests
were performed for all data types with multiple PRs. Classification style
prediction schemes were also tested apart from regression style schemes.
Multiple tests with real days dataset validated the concept of VIL in the
simulation of a real traffic network. DPR datasets proved that during
the training phase of the real system, VIL data can be collected once
only at a fixed PR and later other lower PRs can be derived from it.
This makes the implementation of the system feasible. VPR datasets
were created since the real PR during an actual day might be variable.
This enabled the simulation of the most realistic replica of a real day.
The system was able to forecast traffic in all scenarios with reasonable
accuracies considering realistic PRs.
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Appendix A

Traffic forecasting with VIL
results

Figure A.1: AS dataset CRS test results.

133



Traffic forecasting with VIL results

Figure A.2: DT dataset CRS test results.

Figure A.3: AS&DT dataset CRS test results.
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Traffic forecasting with VIL results

Figure A.4: AS&DT&H dataset CRS test results.

Figure A.5: IA&H dataset CRS test results.
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Traffic forecasting with VIL results

Figure A.6: IA_2CH dataset CRS test results box plot grouped by binning window
size.

Figure A.7: M_AS&DT dataset CRS test results.
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Traffic forecasting with VIL results

Figure A.8: IA 5-categories dataset CRS test results box plot grouped by training
PR.

Figure A.9: IA 5-categories dataset CRS test results box plot grouped by testing
PR.
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Traffic forecasting with VIL results

Figure A.10: IA 8-categories dataset CPR test results box plot grouped by training
PR.

Figure A.11: IA 8-categories dataset CPR test results box plot grouped by testing
PR.
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Traffic forecasting with VIL results

Figure A.12: IA 8-categories DPR dataset CPR test results box plot testing only
with 1% PR.

Figure A.13: IA 8-categories DPR dataset CPR test results box plot testing only
with 5% PR.
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Traffic forecasting with VIL results

Figure A.14: IA 8-categories derived and variable PR dataset CPR test results box
plot testing only with 1-2.5-5-7.5-10 VPR.
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Acronyms

ACC Accuracy.

AI Artificial Intelligence.

ANN Artificial Neural Network.

API Application Programming Interface.

ARIMA Auto-Regressive Integrated Moving Average.

AS Average Speed.

ATCS Adaptive Traffic Control System.

ATMS Advanced Traffic Management System.

BLE Bluetooth Low Energy.

BPNN Back Propagation Neural Network.

CAN Controller Area Network.

CGA Corso Giovanni Agnelli.

COR Correlation.

CPR Cross Penetration Rate.

CPU Central Processing Unit.

CRS Cross Random Seed.

CS Corso Sebastopoli.

CSV Comma-Separated Values.

DBMS DataBase Management System.
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Acronyms

DLA Deep Learning Architecture.

DPR Derived Penetration Rate.

DSA Driving Style Analysis.

DT Delta Time.

EU European Union.

FCM Firebase Cloud Messaging.

FNR False Negative Rate.

FPR False Positive Rate.

GBM Gradient Boosted Machine.

GCM Google Cloud Messaging.

GDP Gross Domestic Product.

GPS Global Positioning System.

HTML HyperText Markup Language.

HTTP HyperText Transfer Protocol.

IA Important Attributes.

IL Induction Loop.

IMU Inertial Measurement Unit.

INS Inertial Navigation System.

ITS Intelligent Transportation System.

JSON JavaScript Object Notation.

LWL Locally Weighted Learning.

MA Mean Accuracy.

MAE Mean Absolute Error.

MEMS Micro-Electro-Mechanical System.
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Acronyms

MIROAD Mobile sensor platform for Intelligent Recognition of Aggressive Driv-
ing.

MLRE Mean Lenient Relative Error.

MRE Mean Relative Error.

MSRE Mean Strict Relative Error.

NN Neural Network.

OBD On-Board Diagnostics.

OBU On-Board Unit.

OS Operating System.

OSM OpenStreetMap.

PR Penetration Rate.

RAM Random-Access Memory.

RBFNN Radial Basis Function Neural Network.

REST REpresentational State Transfer.

RMSE Root Mean Square Error.

RSU Road Side Unit.

RW Random Walk.

SAE Stacked Auto-Encoder.

SDK Software Development Kit.

SMA Simple Moving Average.

SOAP Simple Object Access Protocol.

SQL Structured Query Language.

SUMO Simulation of Urban MObility.

SVM Support Vector Machine.

SVR Support Vector Regression.
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Acronyms

TLS Traffic Light Sequence.

TMC Traffic Message Channel.

TNR True Negative Rate.

TPR True Positive Rate.

UART Universal Asynchronous Receiver-Transmitter.

URL Uniform Resource Locator.

USB Universal Serial Bus.

UTC Urban Traffic Control.

UTOPIA Urban Traffic OPtimisation by Integrated Automation.

VDAP Vehicle Data Acquisition Platform.

VDDA Vehicle Dynamics Data Acquisition.

VF Via Filadelfia.

VIL Virtual Induction Loop.

VPR Variable Penetration Rate.

VSM Via San Marino.

WGS World Geodetic System.

Wi-Fi Wireless Fidelity.

XML eXtensible Markup Language.
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