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ABSTRACT This paper deals with the application of the support vector machine (SVM) and the least-
squares support vector machine (LS-SVM) regressions to the uncertainty quantification of complex systems
with a high-dimensional parameter space. The above regression techniques are used to build accurate and
compact surrogate models of the system responses from a limited set of training samples. The accuracy and
the feasibility of the proposed modeling techniques are then investigated by comparing their results with the
ones predicted by a sparse polynomial chaos (PC) expansion by considering two real-life problems with 8
and 30 random variables, respectively.

INDEX TERMS Machine learning, uncertainty quantification, parameterized modeling, surrogate models,
SVM regression, LS-SVM regression, sparse PC expansion, integrated voltage regulator (IVR), wireless
power transfer (WPT).

I. INTRODUCTION
Uncontrolled variation of system parameters due to manu-
facturing processes, tolerances and uncertain device char-
acteristics can heavily affect the response of electrical and
electronic circuits and systems. In order to guarantee the
correct assessment of the system performance and to avoid
expensive re-design, the impact of the above effects on the
circuit responses is usually investigated during the early
design phase via computationally expensive Monte Carlo
(MC) simulations [1].

In modern electronic circuits and systems, the level of
integration, the system complexity and the number of un-
certain parameters is so high that the standard MC analysis
is becoming challenging in terms of computer resources and
simulation time. To this aim, in the last decades, a number
of powerful techniques for the parametric and statistical
analysis in complex nonlinear problems have been developed
as alternatives to the brute force approach presented by MC

simulation. Well-known examples are provided by paramet-
ric macromodeling [2]–[5], uncertainty analysis [6]–[12] and
worst-case approaches [13]–[16]. Unfortunately, none of the
available techniques provide an ultimate solution for the
problem at hand, since they maximize different objectives
w.r.t. the specific engineering application, e.g., the number of
variables, their variability and their probability distributions.

Recently, the keyword machine learning has gained
widespread reputation in different research areas for both
classification and regression purposes [17]–[24]. Among the
machine learning techniques, the support vector machine
(SVM) regression [26]–[28] and its variant, namely, the least-
squares support vector machine (LS-SVM) regression [29]–
[31] can be considered as promising alternatives, which allow
building compact parametric surrogates of the nonlinear sys-
tem responses with several uncertain parameters [32]–[37].
However, the benefits of the application of such techniques
to realistic structures in a high-dimensional parameter space
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still has to be proven. A preliminary feasibility study has
been recently proposed in [37]. Such work focuses on the
application of the SVM regression with polynomial kernels
to the uncertainty quantification and the parametric modeling
of structures with a small number of uniformly distributed
random variables (i.e., 4–5 variables) characterized by a large
variability. Also, [37] provides a comparison in terms of
accuracy, convergence and robustness to noise between the
SVM regression with polynomial kernel and the polynomial
chaos (PC) expansion [38]–[44] with least squares regres-
sion [8].

The goal of this work is to investigate the application of
both the standard SVM and the LS-SVM regressions with
polynomial and Gaussian radial base function (RBF) kernels
for the statistical analysis of realistic structures in high-
dimensional input parameter space (i.e., up to 30 uncorrelated
stochastic variables). The above regression techniques have
been applied to generate several surrogate models trained
with a limited set of simulation results. For the sake of
completeness, the results of the above surrogate models are
compared with the ones predicted by an advanced technique
for uncertainty quantification, such as the sparse PC expan-
sion [39]–[40] for two different test-cases i.e., an integrated
voltage regulator with 8 uniformly distributed parameters
and a wireless power transfer application with 30 Gaussian
parameters.

The remainder of this paper is organized as follows. Sec-
tion II presents the mathematical background behind the
SVM and the LS-SVM regressions. Section III provides a
brief overview on the sparse PC expansion. Section IV inves-
tigates the accuracy of the LSV, the LS-SVM regression with
polynomial and RBF kernels and the sparse PC expansion
by considering two different realistic test-cases. Section V
concludes the paper.

II. SVM & LS-SVM REGRESSION
This Section provides a complete overview of the mathemati-
cal framework behind the SVM and the LS-SVM regressions.

A. SVM REGRESSION
Let us consider the problem of approximating a set of L
training data {(xi, yi)}Li=1 provided by a generic nonlinear
system y =M(x) with input parameters x = [x1, . . . , xd] ∈
Rd via the following nonlinear SVM regression [26], [25]:

MSVM (x) = 〈w,Φ(x)〉+ b, (1)

where Φ(x) = [φ1(x), . . . , φD(x)] is a nonlinear map Φ(·) :
Rd → RD which maps the parameter space of dimension
d into the corresponding feature space of dimension D;
w ∈ RD is a vector collecting the unknown coefficients of
the nonlinear regression; b ∈ R is the bias term; 〈w,Φ(x)〉
is defined as the inner product in RD.

It is important to remark that the dimensionality of the
feature space (i.e., D) is defined by the nonlinear map Φ(x),
and, therefore, it turns out to be independent from both
the number of training pairs L and the number of system
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FIGURE 1. Panel (a): graphical interpretation of the SVM regression
optimization problem in (4) (inspired by [27], [33]). Panel (b): illustration of the
corresponding least-square formulation in (10) for the LS-SVM regression
(inspired by [29]).

parameters d. Also, it should be noted that (1) is linear w.r.t
the nonlinear transformation Φ(x).

The goal of the SVM regression is to find the best com-
bination of the parameters (w, b) in (1) that minimizes the
following risk function:

Remp(w, b) =
1

L

L∑
i=1

|yi −MSVM (xi)|ε, (2)

where |·|ε is the so-called linear ε-intensive loss function [26]
defined as:

|yi −MSVM (xi)|ε =

=

{
0, if |yi −MSVM (xi)| ≤ ε
|yi −MSVM (xi)| − ε, otherwise.

(3)

Minimizing the risk function (2) is equivalent to finding
the best combination of the parameters (w, b) that minimizes
the deviation of the model predictions from the training
samples outside the ε-intensive zone. This can be done via the
following optimization problem in the primal space, which
can be written as [26]:

minimize
1

2
‖w‖2 + C

L∑
i=1

(ξi + ξ∗i )

subject to


yi − 〈w,Φ(xi)〉 − b ≤ ε+ ξi

〈w,Φ(xi)〉+ b− yi ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0, for i = 1, . . . , L

(4)

where ξi, ξ∗i are the slack variables and C is a parameter,
chosen by the user, which provides a trade-off between the
accuracy of the model and its flatness [27]. Figure 1(a)
provides a graphical interpretation of the above optimization
problem. The underlying idea is to minimize the positive
ξi and negative ξ∗i deviations of the training samples which
lay outside the ε-intensive zone (gray area), but at the same
time maximizing the model flatness to avoid the overfitting
problem.
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The nonlinear optimization problem in (4) can be solved
by minimizing the following Lagrangian function:

L(w, b, ξ, ξ;α,α∗,η,η∗) =
1

2
‖w‖2 + C

L∑
i=1

(ξi + ξ∗i )+

−
L∑

i=1

αi(ε+ ξi − yi + 〈w,Φ(xi)〉+ b)+

−
L∑

i=1

α∗i (ε+ ξ∗i + yi − 〈w,Φ(xi)〉 − b)+

−
L∑

i=1

(ηiξi + η∗i ξ
∗
i ), (5)

where the parameters α,α∗,η,η∗ ≥ 0 are the Lagrangian
multipliers (dual parameters) related to the constrained opti-
mization problem. The saddle point of the Lagrangian (5) is
obtained by computing the partial derivatives w.r.t. the primal
variables:

∂L
∂w

= 0→ w =

L∑
i=1

(αi − α∗i )Φ(xi) (6a)

∂L
∂b

= 0→
L∑

i=1

(αi − α∗i ) = 0 (6b)

∂L
∂ξi

= 0→ C − αi − ηi = 0 (6c)

∂L
∂ξ∗i

= 0→ C − α∗i − η∗i = 0. (6d)

Substituting (6a), (6b) and (6c) into (4) leads to the follow-
ing dual optimization problem:

maximize


−1

2

L∑
i,j=1

(αi − α∗i )(αj − α∗j )K(xi,xj)+

−ε
L∑

i=1

(αi + α∗i ) +

L∑
i=1

yi(αi + α∗i )

subject to


L∑

i=1

(αi − α∗i ) = 0

αi, α
∗
i ∈ [0, C],

(7)

where K(xi,xj) = 〈Φ(xi),Φ(xj)〉 is the kernel function
defined as the inner product in the feature space between the
function Φ(x) evaluated at the training samples xi and xj .

Therefore, the nonlinear regression in (1) can be rewritten
in the dual space as follows:

MSVM (x) =

L∑
i=1

(αi − α∗i )〈Φ(xi),Φ(x)〉+ b

=

L∑
i=1

(αi − α∗i )K(xi,x) + b. (8)

The solution of the optimization problem in (7) allows
estimating the parameters αi and α∗i in the above nonlinear

regression. The bias term b is computed by exploiting the
Karush-Kuhn-Tucker conditions [28].

It is important to remark that the direct computation of
the inner product 〈Φ(xi),Φ(x)〉 can be extremely inefficient
for a high-dimensional feature space (e.g., for the specific
case of the Gaussian RBF kernel, D grows to infinity).
However since both the dual optimization problem in (7)
and the nonlinear regression in (8) do not require an explicit
calculation of the inner product in the D-space, the latter can
be efficiently estimated by operating directly in the parameter
space with finite dimensionality (i.e., Rd) via the kernel
functions K(·, ·) : Rd × Rd → R. This means that the SVM
nonlinear regression is fully defined by the kernel function
K without requiring an explicit definition of the nonlinear
transformation Φ. This is the so-called kernel trick.

The most common kernels are listed below:

• linear: K(xi,x) = xT
i x;

• polynomial of order q: K(xi,x) = (1 + xT
i x)q;

• Gaussian radial basis function (RBF): K(xi,x) =
exp

(
−‖xi − x‖2/2σ2

)
.

The SVM regression algorithm is already available in
MATLAB. A generic SVM regression can be suitably trained
via the command fitrsvm and the resulting surrogate
model can be evaluated for an arbitrary value of the input
parameter x via the command predict [37].

B. LEAST-SQUARES SVM REGRESSION (LS-SVM)

The LS-SVM technique provides an alternative solution to
the standard SVM regression which allows recasting the con-
vex nonlinear optimization problem for the SVM regression
in (1), in terms of a more standard least-squares formulation,
without losing the advantages of the standard SVM regres-
sion [29]–[31].

First of all, the optimization problem in the primal space
in (4) developed for the standard SVM regression has to be
rewritten in the following form:

minimize
1

2
‖w‖2 + γ

1

2

L∑
i=1

e2i (9)

subject to yi = 〈w,Φ(xi)〉+ b+ ei, for i = 1, . . . , L,

where ei ∈ R are error variables and γ is an empirical
parameter which provides a trade-off between the accuracy
of the model and its flatness, playing the same role of the
parameter C in the SVM primal optimization of (4).

The underlying idea is to minimize the squares of the
regression errors ei, which are defined as the deviation of the
model prediction from the corresponding training samples
as shown in Fig. 1(b), but at the same time by keeping the
model as flat as possible, thus avoiding the oversampling
problem. Also in this case the above optimization problem
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can be solved by minimizing the following Lagrangian:

L(w, b, e;α) =
1

2
‖w‖2 + γ

1

2

L∑
i=1

e2i +

−
L∑

i=1

αi{〈w,Φ(xi)〉+ b+ ei − yi} (10)

where αk ≥ 0 are the Lagrange multipliers.
By computing the partial derivatives of the above La-

grangian leads to:

∂L
∂w

= 0→ w =

L∑
i=1

αiΦ(xi) (11a)

∂L
∂b

= 0→
L∑

i=1

αi = 0 (11b)

∂L
∂ei

= 0→ αi = γei (11c)

∂L
∂αk

= 0→ 〈w,Φ(xi)〉+ b+ ei − yi = 0. (11d)

By substituting (11a), (11b) and (11c) into (11d) we can
write following system of equations in the dual space:

L∑
i=1

αi = 0

L∑
i=1

αiK(xi,x1) + b+ γα1 − y1 = 0

...
L∑

i=1

αiK(xi,xL) + b+ γαL − yL = 0

(12)

where againK(xi,xj) = 〈Φ(xi),Φ(xj)〉 is the kernel func-
tion previously defined for the case of the SVM regression.

The linear system of equations in (12) can be recasted via
the following matrix formulation:[

0 1T

1 Ω + I/γ

] [
b
α

]
=

[
0
y

]
(13)

where α = [α1, . . . , αL]T , y = [y1, . . . , yL]T , 1T =
[1, . . . , 1] ∈ R1×L, I ∈ RL×L is the identity matrix
and Ω ∈ RL×L is the kernel matrix for which the ele-
ment Ωij = K(xi,xj) for any i, j = 1, . . . , L.

The solution of the square linear system of equations
in (13) forα and b leads to the following nonlinear regression
in the dual space:

MLS-SVM (x) =

L∑
i=1

αiK(xi,x) + b. (14)

The LS-SVM regression is already implemented within
LS-SVMLab Toolbox version 1.8 [45], which is fully com-
patible with the MATLAB environment.

III. POLYNOMIAL CHAOS EXPANSION
This section presents a quick overview on the mathematical
framework behind two state-of-the-art techniques, the stan-
dard PC expansion and the advanced sparse PC expansion,
respectively. The latter will be used hereafter in this paper as
a reference approach for uncertainty quantification in high-
dimensional problems.

A. STANDARD PC APPROACH
The discussion starts by considering the vector x ∈ Rd

collecting d independent random variables (x1, . . . , xd) with
a joint probability density function (PDF) fx(x), represent-
ing the uncertain input parameters of the physical problem.
Assume that the problem is described by a numerical model
M, i.e., y =M(x), where y is the model response supposed
to be a scalar quantity with a finite variance.

The PC expansion of the model response may be written
as [38]:

y =MPC(x) =
∑
λ∈Nd

aλΨλ(x) (15)

where aλ are the unknown deterministic coefficients and Ψλ

are the multivariate polynomials which are orthonormal w.r.t.
the joint PDF fx(x), i.e., E [Ψλ(x)Ψβ(x)] = δλβ and δλβ =
1, if λ = β and 0 otherwise.

Let X = {x1, . . . ,xL} be an experimental design (ED)
of x, and Y = {M(x1), . . . ,M(xL)} be the associated
set of model response quantities. The PC coefficients aλ
may be estimated by using a non-intrusive technique such
as the ordinary least square regression [39] from a set of
model evaluations Y . This technique relies on the choice
of a truncation set denoted A = {λ0, . . . ,λh−1} ⊂ Nd

defining the multi-indices of the selected basis polynomials
{Ψλ0

, . . . ,Ψλh−1
}. The PC expansion is usually truncated in

order to preserve the polynomials of the basis whose total de-
gree is less than or equal h, defined by the standard truncation
set Ad,h = {λ ∈ Nd : ‖λ‖1 =

∑d
i=1 λi ≤ h}. The number

of coefficients retained by this strategy is H = (d+h)!
d!h! . We

then notice that the number of terms aλ to estimate blows
up for large number of input random variables d and high
degree h. In order to overcome this limitation, an advanced
technique for reducing the number of polynomial bases is
now introduced.

B. REDUCTION OF THE PC BASIS THROUGH A
SPARSE APPROACH
As mentioned previously, the size of the PC expansion re-
tained in the truncation set Ad,h can be too large when deal-
ing with high-dimensional problems. In order to overcome
the above issue, a hyperbolic truncation strategy based on a
parameter k, with 0 < k ≤ 1, allowing to reduce the size of
the PC basis is then introduced as follows:

Ad,h
k = {λ ∈ Nd : ‖λ‖k =

(
d∑

i=1

λki

)1/k

≤ h}. (16)
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FIGURE 2. Number of terms of the polynomial basis of degree less or equal
to the degree h = 5 retained by the hyperbolic truncation strategy when (a) k
= 1 (squares) and (b) k = 0.5 (squares). (c) Numbered squares are the
polynomial basis terms selected by the LARS algorithm from the 1st to the
7th iteration [40].

This hyperbolic truncation strategy favors the most rele-
vant effects and low-order interactions, which are known to
have the largest impact on the variability of the response
according to the sparsity-of-effects principle [50]. It is impor-
tant to point out that lower values of k imply a larger number
of neglected high-rank interactions. In addition, when k = 1,
this scheme is equivalent to the standard PC expansion,
which is defined by the truncation setAd,h. When k < 1, the
retained terms of the polynomial basis can be substantially
reduced as compared to H [40]. This improved truncation
scheme is represented for two input random variables (d = 2)
in Fig. 2(a) and 2(b), with the squares illustrating all terms of
the polynomial basis of degree less than or equal to l = 5,
included in the set (16) for k = 1 and k = 0.5, respectively.
As a result, Fig. 2(b) shows that, for k = 0.5, this scheme
chooses a number of polynomials (squares) smaller than
those selected from a standard truncation set AM,l (squares)
as in Fig. 2(a).

Given a truncation set AM,h,k of cardinal K, the hyper-
bolic truncation strategy enables to reduce the number of
coefficients to be estimated in the PC expansion. However,
this may remain too expensive in terms of model evaluations
when the number of input random variables is large. For this
reason, the number of elements of the polynomial basis may
still be decreased by using a variable selection algorithm,
such as the LARS algorithm [42].

The concept of the LARS algorithm is summarized in the
following paragraph, while the reader may refer to [40] and
[42] for additional details. Based on an iterative approach,
LARS builds up a sparse approximation including from 1
to K terms of the polynomial basis (from one to all the
squares in Fig. 2(b)), according to their decreasing impact.
It starts by selecting the polynomial basis Ψλ1

which is
better correlated with the model response y. In practice, the
correlation is evaluated from a set of realizations (i.e., an
ED) of the response Y . After the identification of the first
polynomial Ψλ1

, the associated coefficient is estimated so
that the residual y − a

(1)
λ1

Ψλ1(x) becomes equi-correlated
with another polynomial basis, defined as being Ψλ2

. Af-
terwards, the selection of a third polynomial basis will be

performed by moving forward the direction (Ψλ1
+ Ψλ2

)
up to the new residual becomes equi-correlated with a third
polynomial basis Ψλ3

, and so on. An illustration of the
selected polynomials by LARS after seven iterations is given
by squares in Fig. 2(c).

The estimation of suitable terms of the polynomial ba-
sis by means of LARS is carried out for each degree
h = 1, 2, ..., hmax. In the end, LARS produces a set of sparse
expansions including an increasing number of polynomial
elements. The quality of each expansion of degree h is then
evaluated according to a leave-one-out cross validation error
εLOO as follows:

εLOO =

∑N
i=1

(
M(xi)−MPC

−i (xi)
)2∑N

i=1

(
M(xi)− 1

N

∑N
i=1M(xi)

)2 , (17)

whereMPC
−i (xi) are N surrogate models built up on the ED

X such that xi = {xq , q = 1, . . . , N, q 6= i}. The retained
degree h for the sparse PC expansion is the one minimizing
the leave-one-out error εLOO.
In the following, the quality of the surrogate model is com-
puted via the Q2 coefficient defined by Q2 = 1 − εLOO,
0 ≤ Q2 ≤ 1. It is important to note that the larger Q2 is, the
better is the prediction of the surrogate model.

In order to identify quantities of interest of the model
response, a post-processing of the coefficients of the basis can
be performed at a relatively low computational cost. Indeed,
the orthonormality property of the polynomial basis allows to
estimate the expectation and the variance [44] of the output y
as:

E [y] = a0, (18)

and
V [y] =

∑
λ∈A\{0}

a2λ. (19)

IV. APPLICATION TEST-CASES
In this section the accuracy and the feasibility of the tech-
niques presented in Sec. II and Sec. III have been investigated
by considering two realistic test-cases: an integrated voltage
regulator (IVR) and a wireless power transfer (WPT) appli-
cation, respectively. All the simulations are performed on a
Dell PC with an Intel(R) Core(TM) i7-7700M, CPU running
at 3.60 GHz and 16 GB of RAM.

A. EXAMPLE 1: EMBEDDED INDUCTOR AND
INTEGRATED VOLTAGE REGULATOR
As a first test-case, the SVM, the LS-SVM with RBF and
polynomial kernels and the sparse PC expansion have been
adopted to quantify the impact of 8 uncertain parameters
of an embedded inductor on the IVR efficiency while the
converter operates in pulse-width modulation (PWM) mode
at 100 MHz.

The considered architecture is shown in Fig. 3. It consists
of a system-in-package (SiP) solution including two chips
(buck converter and low-dropout (LDO)/load) with an inte-
grated inductor on an organic package [46]. The converter
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FIGURE 3. Illustration of the two-chip SiP IVR architecture considered in
Sec. IV-A.

FIGURE 4. Top view (panel (a)) and side view (panel (b)) of the geometrical
parameters of solenoidal inductor with magnetic core [23].

architecture shown in Fig. 3 is designed with stacked topol-
ogy, using 130 nm GLOBALFOUNDRIES (GF) process and
consists of four-phases (one master-three slaves). The struc-
ture of the inductor is a solenoid with Nickel-Zinc (NiZn)
ferrite magnetic core as shown in Fig. 4(a) and (b).

The converter efficiency has been accurately estimated via
an extensive model that accounts for switching and conduc-
tion losses of power switches, DC and AC losses of inductor,
power delivery network (PDN) and output capacitance. A
more detailed description of the buck converter topology
along with the model verification are provided in [46]. In
order to quantify the effect of possible geometrical tolerances
on the inductor electromagnetic behavior and thus on the IVR
efficiency, 8 geometrical parameters have been considered as
uniform random variables as shown in Table 1. The number
of windings and the magnetic core thickness ratio have been
fixed to Nw = 6 and tm = 0.9, respectively. To account
for proximity and skin effect as well as demagnetization
effect caused by the magnetic core, the embedded inductor is
characterized using the full-wave solver of Ansys HFSS [48].
Additional details on the inductor simulation framework
adopted in this paper can be found in [23].

TABLE 1. Uncertain Geometrical Parameters of the Solenoidal Inductor used
for the IVR in Sec. IV-A.

Uniform random variables Unit U [Min;Max]

Gap between windings g mil U [4; 6]

Size of via sv µm U [80; 120]

Copper Trace Width wv mil U [9; 11]

Copper Thickness Bottom tc,b µm U [64; 96]

Copper Thickness Top tc,t µm U [64; 96]

Dielectric Thickness td µm U [180; 220]

Dielectric Width wd mil U [59.4; 60.6]

Magnetic Core Width offset ∆wm mil U [9; 11]

The SVM and the LS-SVM regressions with polynomial
kernels of order from 1 to 3 and RBF kernel are adopted to
generate 8 different surrogate models. In addition, a sparse
PC expansion is constructed with an adaptive degree varying
from 1 to 10. The hyperbolic truncation scheme in (16)
is set to k = 0.75 to reduce the size of the polynomial
basis [40], [41].

All surrogate models have been trained from L =
200 samples based on latin hypercube sampling (LHS) [49]
resulting from the HFSS simulations with a computational
cost of 3 h 27 min (one simulation with the full-wave solver
of Ansys HFSS model takes about 1 min). From the sparse
PC, the Q2 coefficient is equal to 0.83, emphasizing a
surrogate model with a high level of accuracy. In order to
investigate the performance of the obtained surrogate models,
their predictions are then compared with the results of a
MC simulation with 10000 samples. Table 2 provides a
detailed comparison on the accuracy and the computational
cost of the proposed modeling techniques by collecting the
root mean square error (RMSE), the mean value µ̂ and the
standard deviation σ̂ estimated by the proposed surrogate
models, along with the corresponding computational times
tmodel and tcost required to build each surrogate models and
to evaluate them to compute 10000 predictions of the output,
respectively.

Table 2 shows that the LS-SVM regression with the RBF
kernel turns out to be the most accurate surrogate model
with a RMSE of 0.1552, which is slightly better than the
accuracy obtained by the linear regression with the LS-SVM
(i.e., RMSE = 0.1580) and SVM (i.e., RMSE = 0.1585)
regressions. However, a good accuracy is also achieved by
the sparse PC expansion, i.e., RMSE = 0.1696. The results
of the SVM and the LS-SVM regressions with polynomial
kernel highlight that for the specific example at hand, a
linear expansion is enough to accurately reproduce the actual
behavior of the IVR efficiency as a function of the considered
input variables. In fact, the RMSE of the surrogate models
is not improved by increasing the order of the polynomial
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TABLE 2. Comparison on the accuracy and the computational cost of the
SVM, LS-SVM and PC surrogates computed for the IVR in Sec. IV-A.

Method Kernel RMSE µ̂ σ̂ tmodel tcostRegression

MC − − 67.01 0.31 − 7 days

SVM

Linear 0.159 67.02 0.28 <1s 2.4s
Poly Order 2 0.179 67.04 0.30 <1s 2.9s
Poly Order 3 0.428 67.00 0.52 1.2s 4.5s

RBF 0.166 67.04 0.28 <1s 1.8s

LS-SVM

Linear 0.158 67.03 0.28 <1s <1s
Poly Order 2 0.166 67.04 0.29 <1s <1s
Poly Order 3 0.443 67.00 0.54 <1s <1s

RBF 0.155 67.02 0.28 1.4s <1s

Sparse PC Poly Order 9 0.170 67.02 0.28 <1s <1s
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FIGURE 5. Scatter plots of the IVR efficiency providing a comparison
between the predictions of the LS-SVM regression with RBF kernel (red
marker) and the sparse PC expansion (blue marker) and the results of a MC
simulation with 10000 samples.

kernel.
As an illustration, Fig. 5 provides the scatter plots for the

LS-SVM with RBF kernel and sparse PC surrogate models.
The plots emphasize the good accuracy between the two
surrogate models and the MC simulation as the samples are
very close to the dashed lines, which represent a perfect
agreement between the surrogate models and the reference

FIGURE 6. PDFs of the IVR efficiency obtained from the LS-SVM regression
with RBF kernel (solid red curve) and sparse PC expansion (solid blue curve)
compared with the histogram of 10000 MC samples (gray bins).

samples. The impact of the variability on the IVR efficiency
is illustrated in Fig. 6, where the PDFs estimated via the
LS-SVM based surrogate model with RBF kernel and the
sparse PC expansion are compared with the histogram of
10000 MC samples. We see that the main variability of the
IVR efficiency is well captured by both surrogate models for
which the mean values and the standard deviations are quite
close to those calculated by MC simulation. This confirms a
good estimation of the PDF of the IVR efficiency with both
surrogate models, highlighting a similar level of accuracy. In
terms of computational cost, 10000 MC simulations required
about 7 days, while the LS-SVM with RBF kernel and the
sparse PC needed less than 1 s, as shown in Table 2. It is
worth noting that this computational cost does not include
the training time required to generate the L = 200 samples
from LHS needed for constructing the surrogate models.

B. EXAMPLE 2: WIRELESS POWER TRANSFER
In a second and more complex example, the modeling ap-
proaches presented in Sec. III and Sec. II have been applied
to predict the impact of 30 uncertain parameters on the
maximum efficiency of a wireless power transfer (WPT)
application in the bandwidth 500 MHz to 1.5 GHz.

The WPT schematic is shown in Fig. 7. It consists of an
integrated board architecture with embedded rectangular RF
coils, shown in Fig 8, connected to a TX and RX matching
networks and a full bridge diode rectifier loaded by the
parallel between a capacitor CPDN = 1 nF and a resistor
R = 868 Ω. The transmission distance between the TX and
RX coil is fixed to 1 mm. The matching networks on both TX
and RX modules consist of a LC network and a resonating
capacitor connected with the RF coils. In order to maximize
the magnetic flux generated by the TX coil and the power
delivered to the load, the resonant capacitors are connected
in series and in shunt with the TX and RX coils as suggested
in [47]. Additional details on the parameters selection are
available in [21].

The effect of the fabrication tolerances and uncertainties
on the efficiency of the WPT is examined through 30 Gaus-
sian random variables, given in Table 3. Each parameter has a
nominal value and a standard deviation of 5%. Similar to the
previous example, different surrogate models have been gen-
erated by SVM and LS-SVM regressions with polynomial
kernels of degree from 1 to 4 and RBF kernel. A sparse PC
surrogate model has also been generated based on an adaptive
degree varying from 1 to 10 and a hyperbolic truncation
scheme fixed by k = 0.75.

The mentioned surrogates have been trained with an in-
creasing number of training samples L generated from LHS
scheme. Table 4 provides, for 10000 samples, a comparison
of the performances of the resulting 11 surrogate models by
considering the RMSE, the mean values µ̂ and the standard
deviations σ̂ for L = 200, 400 and 600 computed w.r.t. the
results of a MC simulation. Moreover, Table 4 provides, w.r.t
the several sizes of training data (i.e. L = 200, 400, 600
samples), the computational times tmodel and tcost required to
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FIGURE 7. Schematic of the WPT based power delivery architecture considered in Sec. IV-B.

TABLE 3. Uncertain Parameters considered for the WPT in Sec. IV-B

Gaussian Random Variables Unit µ σ

Feeding Gap for TX coil gf,TX mm 2.46 0.1230

Feeding Gap for RX coil gf,RX mm 2.3 0.1150

Width & Height of TX coil g{x,y},TX mm 2.1 0.1050

Width & Height of RX coil g{x,y},RX mm 3 0.1500

GND Cut-Out Ratio TX slot{x,y},TX − 1.19 0.0595

GND Cut-Out Ratio RX slot{x,y},RX − 1.16 0.0580

Match Capacitor TX C1 pF 4.09 0.2045

Resonance Capacitor TX C2 pF 4.59 0.2295

Resonance Capacitor RX C3 pF 2.16 0.1080

Match Capacitor RX C4 pF 0.3 0.015

Match inductor TX L1 nH 1.25 0.0625

Match inductor RX L2 nH 7.82 0.3910

Line Width TX Coil lw,TX mm 1.89 0.0945

Line Width RX Coil lw,RX mm 0.71 0.0355

Width TL1 wTL1 mm 0.381 0.0191

Width TL2 wTL2 mm 0.407 0.0204

Width TL3 wTL3 mm 0.386 0.0193

Width TL4 wTL4 mm 0.528 0.0264

Width TL5 wTL5 mm 0.521 0.0191

Width TL6 wTL6 mm 0.397 0.0198

Width TL7 wTL7 mm 0.607 0.0303

Width TL8 wTL8 mm 0.520 0.0260

Length TL1 lTL1 mm 1.656 0.0828

Length TL2 lTL2 mm 1.424 0.0712

Length TL3 lTL3 mm 0.723 0.0362

Length TL4 lTL4 mm 2.153 0.0828

Length TL5 lTL5 mm 0.612 0.1076

Length TL6 lTL6 mm 1.666 0.0833

Length TL7 lTL7 mm 0.502 0.0251

Length TL8 lTL8 mm 0.555 0.0278

FIGURE 8. TX and RX coils for the WPT based power delivery architecture in
the schematic of Fig. 7, with their main geometrical parameters [21]. Panel (a):
WPT structure; Panel (b): top view; Panel (c): bottom view

construct each surrogate model and to evaluate them for the
predictions of 10000 realizations of the output, respectively.
It is important to note that the generation of the training data
with L = 200, 400, 600 samples took about 5 h, 10 h and
15 h, respectively (one single simulation with the full-wave
solver of Ansys HFSS model takes about 1 min 30 s).

From the results collected in Table 4, the LS-SVM regres-
sion with RBF kernel is confirmed to be the most accurate
model with aRMSE = 0.4307 for L = 600 samples, which
is slightly better than the error obtained by the sparse PC
expansion (i.e., RMSE = 0.4385). A remarkable accuracy
is also achieved by the LS-SVM regression with polynomial
kernel of order 4, for which RMSE = 0.4798. The results
of Table 4 also highlight the improved performance of the
SVM-based approach in terms of RMSE, for L = 200 and
400 samples. This is in line with the observations reported
in [37].

As a further validation, Fig. 9 shows the scatter plots
computed, for 10000 samples, by comparing the predic-
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TABLE 4. Comparison on the accuracy and the computational cost of the SVM, LS-SVM and PC surrogates computed for an increasing number of training
samples L for the WPT in Sec. IV-B.

Method Kernel L = 200 (cost=5h) L = 400 (cost=10h) L = 600 (cost=15h)
Regression RMSE µ̂ σ̂ tmodel tcost RMSE µ̂ σ̂ tmodel tcost RMSE µ̂ σ̂ tmodel tcost

MC − − 74.19 0.68 − 11 days − 74.19 0.68 − 11 days − 74.19 0.68 − 11 days

SVM

Linear 0.543 74.29 0.55 <1s 3.0s 0.523 74.27 0.45 <1s 2.8s 0.526 74.27 0.50 1.2s 3.2s
Poly Order 2 0.608 74.25 0.49 <1s 3.3s 0.876 74.26 0.92 <1s 3.4s 0.990 74.25 1.09 18.9s 3.6s
Poly Order 3 0.573 74.21 0.28 6.1s 4.1s 0.561 74.27 0.35 13.2s 4.8s 0.541 74.24 0.43 20.0s 5.4s
Poly Order 4 >1 73.32 >1 7.1s 4.0s 0.633 74.26 0.15 12.4s 8.0s 0.605 74.22 0.20 19.8s 8.7s

RBF 0.524 74.28 0.40 <1s 2.3s 0.506 74.25 0.39 <1s 2.7s 0.495 74.25 0.42 <1s 3.4s

LS-SVM

Linear 0.537 74.29 0.52 <1s <1s 0.520 74.27 0.45 <1s <1s 0.512 74.27 0.48 <1s <1s
Poly Order 2 0.536 74.25 0.59 <1s <1s 0.861 74.26 0.94 <1s <1s 0.840 74.25 0.98 <1s <1s
Poly Order 3 0.509 74.21 0.51 <1s <1s 0.513 74.27 0.56 <1s <1s 0.501 74.27 0.61 <1s <1s
Poly Order 4 0.509 73.32 0.45 <1s <1s 0.497 74.26 0.49 <1s <1s 0.480 74.22 0.54 <1s <1s

RBF 0.488 74.23 0.54 1.4s <1s 0.456 74.24 0.51 4.1s <1s 0.431 74.21 0.57 9.8s <1s
Sparse PC Poly Order 3 0.565 74.25 0.52 <1s <1s 0.527 74.27 0.45 <1s <1s 0.439 74.22 0.55 1.1s <1s

tions of the LS-SVM regression with RBF kernel and the
sparse PC expansion surrogates, generated for an increasing
number of training samples (i.e., L = 200, 400, 600), with
the results of a MC simulation. The scatter plots confirm
the results collected in Table 4. Indeed, due to the strong
nonlinearity and high-dimensionality of the problem at hand,
the accuracy of the predictions obtained from the models
generated via L = 200 samples is rather poor and turns
out to be inadequate for our modeling purposes. For the
specific case of the surrogate model based on the LS-SVM
regression, the resulting accuracy is slightly improved for
L = 400 samples. Finally, an acceptable accuracy has been
achieved by increasing the number of training samples up
to L = 600. The improvement in terms of accuracy can be
observed in the corresponding scatter plots in Fig. 9, where
the samples (squares and circles) are closer to the dashed line
representing a perfect surrogate model. The model accuracy
is also confirmed by the coefficient Q2 = 0.63 computed for
the sparse PC expansion.

As regard to the response variability, Fig. 10 presents an
illustrative comparison between the PDFs predicted by the
surrogate models built with the LS-SVM regression with
RBF kernel and the sparse PC expansion, trained with L =
600 samples, with the results of a MC simulation with 10000
samples. The curves highlight once again the capability of the
two surrogate models to capture the actual shape of the PDF
provided by the MC simulation. As far as the computational
cost is concerned, 10000 MC simulations required about
11 days whereas the LS-SVM with RBF kernel and the sparse
PC needed less than 1 s. This comparison does not include
the computational cost required to generate the training data
(L = 600 samples), that has taken about 15 h as shown in
Table 4.

V. CONCLUSIONS
This paper investigates the strength and the accuracy of
three different approaches for the uncertainty quantification
in high-dimensional space. Specifically, the SVM and the LS-
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FIGURE 9. Scatter plots of the WPT efficiency obtained by comparing the
predictions of the LS-SVM with RBF (red squares) kernel and the PC (blue
circles) surrogates with the results of a MC simulation with 10000 samples for
an increasing number of training samples i.e., L = 200, 400 and 600.

FIGURE 10. PDFs of the WPT efficiency obtained from the LS-SVM
regression with RBF kernel (solid red curve) and sparse PC expansion (solid
blue curve) compared with the histogram of 10000 MC samples (gray bins).
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SVM regressions with either polynomial or RBF Gaussian
kernels and the sparse PC expansion, have been applied to
generate a set of surrogate models built from a limited set
of training samples for the responses of two realistic test-
cases i.e., the IVR with 8 uniformly distributed uncertain
parameters and the WPT with 30 uncertain parameters with
Gaussian distribution, respectively. The accuracy provided
by each of the proposed surrogate models has been investi-
gated by comparing the models prediction with the results
obtained by means of MC simulations. According to the
results obtained for the proposed test-cases, the SVM and
the LS-SVM regressions can be considered as an effective
solution for uncertainty quantification in high-dimensional
nonlinear problems, with an accuracy which turns out to
be comparable or even better than an advanced and more
consolidated technique such as the sparse PC expansion.

REFERENCES
[1] R. Spence and R. S. Soin, Tolerance Design of Electronic Circuits.

London: Imperial College Press, 1997.
[2] P. Triverio, S. Grivet-Talocia, and M. S. Nakhla, “A parameterized macro-

modeling strategy with uniform stability test,” IEEE Trans. Adv. Packag.,
vol. 32, no. 1, pp. 205–215, Feb. 2009.

[3] D. Deschrijver and T. Dhaene, “Fully parameterized macromodeling of
S-parameter data by interpolation of numerator & denominator,” IEEE
Microw. Wireless Compon. Lett., vol. 22, no. 6, pp. 309–311, Jun. 2012.

[4] E. R. Samuel, L. Knockaert, F. Ferranti, and D. Dhaene, “Guaranteed
passive parameterized macromodeling by using sylvester state-space re-
alizations,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1444–
1454, Apr. 2013.

[5] S. Grivet-Talocia and R. Trinchero, “Behavioral, Parameterized, and
Broadband Modeling of Wired Interconnects With Internal Discontinu-
ities,” IEEE Trans. Electromagn. Compat., vol. 60, no. 1, pp. 77–85,
Feb. 2018.

[6] Z. Zhang, T. A. El-Moselhy, I. M. Elfadel, and L. Daniel, “Stochastic
testing method for transistor-level uncertainty quantification based on
generalized polynomial chaos,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., vol. 32, no. 10, pp. 1533–1545, Oct. 2013.

[7] M. R. Rufuie, E. Gad, M. Nakhla, and R. Achar, “Generalized Hermite
polynomial chaos for variability analysis of macromodels embedded in
nonlinear circuits,” IEEE Trans. Compon. Packag. Manuf. Techol., vol. 4,
no. 4, pp. 673–684, Apr. 2014.

[8] D. Spina, D. De Jonghe, D. Deschrijver, G. Gielen, L. Knockaert, and
T. Dhaene, “Stochastic macromodeling of nonlinear systems via poly-
nomial chaos expansion and transfer function trajectories,” IEEE Trans.
Microw. Theory Techn., vol. 62, no. 7, pp. 1454–1460, Jul. 2014.

[9] P. Manfredi, D. Vande Ginste, D. De Zutter, and F. G. Canavero, “Stochas-
tic modeling of nonlinear circuits via SPICE-compatible spectral equiva-
lents,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 7, pp. 2057–
2065, Jul. 2014.

[10] M. Ahadi and S. Roy, “Sparse linear regression (SPLINER) approach
for efficient multidimensional uncertainty quantification of high-speed
circuits,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 35,
no. 10, pp. 1640–1652, Oct. 2016.

[11] M. Larbi, I. S. Stievano, F. G. Canavero and P. Besnier, “Variability Impact
of Many Design Parameters: The Case of a Realistic Electronic Link,”
IEEE Trans. Electromagn. Compat., vol. 60, no. 1, pp. 34-41, Feb. 2018.

[12] S. De Ridder et al., “A generative modeling framework for statistical link
analysis based on sparse data,” IEEE Trans. Compon. Packag. Manuf.
Techol., vol. 8, no. 1, pp. 21–31, Jan. 2018.

[13] N. Femia and G. Spagnuolo, “True worst-case circuit tolerance analysis
using genetic algorithms and affine arithmetic,” IEEE Trans. Circuits
Syst. I, Fundam. Theory Appl., vol. 47, no. 9, pp. 1285–1296, Sep. 2000.

[14] M. Wu, D. G. Beetner, T. H. Hubing, H. Ke, and S. Sun, “Statistical
prediction of “reasonable worst-case” crosstalk in cable bundles,” IEEE
Trans. Electromagn. Compat., vol. 51, no. 3, pp. 842–851, Aug. 2009.

[15] R. Trinchero, P. Manfredi, T. Ding, and I. S. Stievano, “Combined para-
metric and worst-case circuit analysis via Taylor models,” IEEE Trans.

Circuits Syst. I, Fundam. Theory Appl., vol. 63, no. 7, pp. 1067–1078,
Jul. 2016.

[16] R. Trinchero, P. Manfredi, and I. S. Stievano, “TMsim: an algorithmic tool
for the parametric and worst-case simulation of systems with uncertain-
ties,” Math. Problems Eng., vol. 2017, Article ID 6739857, 12 pages, 2017.

[17] Y. B. Yuan, W. Q. Qiu, Y. J. Wang, J. Gao and P. He, “Classification of
heart failure with Polynomial Smooth Support Vector Machine,” in Proc.
Int. Conf. on Machine Learning and Cybernetics, Ningbo, China, 2017,
pp. 48-54.

[18] M. Sabzekar, H. Sadoghi Yazdi and M. Naghibzadeh, “Relaxed constraints
support vector machines for noisy data,” Neural Comput. & Applic.,
vol. 20, no. 5, pp. 671–685, 2011.

[19] J. M. Moguerza and A. Muï£¡oz, “Support Vector Machines with Appli-
cations,” Statist. Sci., vol 21, no. 3, pp. 322–336, 2006.

[20] D. Plets et al., Surrogate modeling based cognitive decision engine for
optimization of WLAN performance, Wireless Networks, vol. 23, no. 8,
pp. 2347–2359, May. 2017.

[21] H. M. Torun, C. Pardue, M. L. F. Belleradj, A. K. Davis and M. Swami-
nathan, “Machine Learning Driven Advanced Packaging and Minia-
turization of IoT for Wireless Power Transfer Solutions,” in Proc.
IEEE 68th Electronic Components and Technology Conference (ECTC),
San Diego, CA, 2018, pp. 2374-2381.

[22] T. Baoping, S. Tao, L. Feng and D. Lei, “Fault diagnosis for a wind turbine
transmission system based on manifold learning and Shannon wavelet
support vector machine,” Renewable Energy, vol. 62, pp. 1–9, 2014.

[23] H. M. Torun, M. Swaminathan, A. Kavungal Davis and M. L. F. Bellaredj,
“A Global Bayesian Optimization Algorithm and Its Application to Inte-
grated System Design,” in IEEE Trans. on Very Large Scale Integration
(VLSI) Systems, vol. 26, no. 4, pp. 792–802, April 2018.

[24] H. Yu, M. Swaminathan, C. Ji and D. White, “A method for creating
behavioral models of oscillators using augmented neural networks,” in
Proc. IEEE 26th Conference on Electrical Performance of Electronic
Packaging and Systems (EPEPS), San Jose, CA, 2017.

[25] V. Vapnik, Statistical Learning Theory, John Wiley and Sons, NY, 1998.
[26] V. Vapnik, The Nature of Statistical Learning Theory, 2nd edition,

Springer, 1999.
[27] V. Cherkassky and Y Ma, “Practical selection of SVM parameters and

noise estimation for SVM regression”, Neural Networks, vol. 17, no. 1,
pp. 113–126, 2004.

[28] A. J. Smola and B. Scholkopf, “A tutorial on support vector regression”,
Statistics and Computing, vol. 14, no. 3, pp. 199–222, 2004.

[29] Haifeng Wang and Dejin Hu, “Comparison of SVM and LS-SVM for Re-
gression,” in Proc. of 2005 International Conference on Neural Networks
and Brain Beijing, 2005.

[30] M. Espinoza, J. A. K. Suykens, R. Belmans and B. De Moor, “Electric
Load Forecasting,” in IEEE Control Systems Magazine, vol. 27, no. 5,
pp. 43–57, Oct. 2007.

[31] J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor. and
J. Vandewalle, “Least Squares Support Vector Machines”, World Scientific
Pub Co Inc, 2002.

[32] M. Arefi and B. Chowdhury, “Ensemble adaptive neuro fuzzy support
vector machine for prediction of transient stability,” in Proc. of North
American Power Symposium, Morgantown, WV, USA, 2017, pp. 1–6.

[33] V. R. Kohestani and M. Hassanlourad, “Modeling the mechanical behavior
of carbonate sands using artificial neural networks and support vector
machine,” Int. J. of Geomech., vol. 16, no. 1, pp. 1–9, 2016.

[34] Y. B. Yuan, W. Q. Qiu, Y. J. Wang, J. Gao and P. He, “Classification of
heart failure with Polynomial Smooth Support Vector Machine,” in Proc.
Int. Conf. on Machine Learning and Cybernetics, Ningbo, China, 2017,
pp. 48-54.

[35] R. Trinchero and F. G. Canavero, “Modeling of eye diagram height in high-
speed links via support vector machine,” in Proc. IEEE 22nd Workshop on
Signal and Power Integrity (SPI), Brest, 2018.

[36] R. Trinchero and F. G. Canavero, “Design of Passive Equalizer for Space
Wire Links via Support Vector Machine,” in Proc. 2018 International
Symposium on Electromagnetic Compatibility (EMC EUROPE), Amster-
dam, 2018, pp. 53–56.

[37] R. Trinchero, P. Manfredi, I. S. Stievano and F. G. Canavero, “Machine
Learning for the Performance Assessment of High-Speed Links,” IEEE
Trans. Electromagn. Compat., vol. 60, no. 6, pp. 1627–1634, Dec. 2018.

[38] C. Soize and R. Ghanem, “Physical systems with random uncertainties:
chaos representations with arbitrary probability measure,” SIAM Journal
on Scientific Computing, vol. 26, no. 2, pp. 395–410, 2004.

10 VOLUME x, xxxx



[39] M. Berveiller, B. Sudret and M. Lemaire, “Stochastic finite element: a
non intrusive approach by regression,” European Journal of Computational
Mechanics, vol. 15, no. 3, pp. 81–92, 2006.

[40] G. Blatman and B. Sudret, “Adaptive sparse polynomial chaos expan-
sion based on least angle regression,” Journal of Computational Physics,
vol. 230, no 6, pp. 2345–2367, 2011.

[41] M. Larbi, H. M. Torun, M. Swaminathan, I. S. Stievano, F. G. Canavero
and P. Besnier, “Uncertainty quantification of SiP based integrated voltage
regulator,” in Proc. IEEE 22nd Workshop on Signal and Power Integrity
(SPI), Brest, 2018, pp. 1-4.

[42] B. Efron, T. Hastie, I. Johnstone and R. Tibshirani, “Least angle regres-
sion,” The Annals of Statistics, vol. 32, no. 2, pp. 407–499, 2004.

[43] I. M. Sobol, “Sensitivity estimates for nonlinear mathematical models,”
Mathematical Modelling and Computational Experiments, vol. 1, no. 4,
pp. 407–414, 1993.

[44] B. Sudret, “Global sensitivity analysis using polynomial chaos expan-
sions,” Reliability Engineering & System Safety, vol. 93, no. 7, pp. 964–
979, 2008.

[45] LS-SVMlab, version 1.8; Department of Electrical Engineering (ESAT),
Katholieke Universiteit Leuven: Leuven, Belgium, 2011. Available online:
http://www.esat.kuleuven.be/sista/lssvmlab/.

[46] S. Mueller, et al., “Design of high efficiency integrated voltage regulators
with embedded magnetic core inductors,” in Proc. IEEE 66th Electronic
Components and Technology Conference, May 2016, pp. 566–573.

[47] R. Jay and S. Palermo, “Resonant coupling analysis for a two-coil wire-
less power transfer system,” in Proc. IEEE Dallas Circuits and Systems
Conference (DCAS), Oct 2014, pp. 1–4.

[48] Ansys HFSS ver. 2015.2, http://www.ansys.com
[49] M. McKay, R. Beckman and W. Conover, “A comparison of three methods

for selecting values of input variables in the analysis of output from a
computer code”, Technometrics, vol. 42, no. 1, pp. 55–61, 2000.

[50] D. C. Montgomery, Design and analysis of experiments, John Wiley &
Sons, New York, 2004.

VOLUME x, xxxx 11



RICCARDO TRINCHERO (M’16) received the
M.Sc. and the Ph.D. degrees in Electronics and
Communication Engineering from Politecnico di
Torino, Torino, Italy, in 2011 and 2015, respec-
tively. He is currently a Researcher within the
EMC Group with the Department of Electron-
ics and Telecommunications at the Politecnico di
Torino. His research interests include the analy-
sis of linear time-varying systems, modeling and
simulation of switching converters and statistical

simulation of circuits and systems.

MOURAD LARBI received the M.S. degree in ap-
plied statistics from the University of Nice Sophia-
Antipolis, Nice, France, in 2011, and the Ph.D. de-
gree in electronics and telecommunications from
the Institute of Electronics and Telecommunica-
tions of Rennes (IETR), Rennes, France, in 2016.
He then worked, from 2016 to 2017, as a Post-
Doctoral Researcher with the Electromagnetic
Compatibility Group, Department of Electronics
and Telecommunications, Politecnico di Torino,

Turin, Italy. He is currently working as a Post-Doctoral Researcher at the
Center for Co-design, Chip, Package, System (C3PS), School of Electrical
and Computer Engineering, Georgia Institute of Technology, Atlanta, USA.
His current research interests concern behavioral modeling and the risk
analysis of signal propagation on interconnects in high-dimensional uncer-
tainty quantification problems. Dr. Larbi received the Richard B. Schulz Best
EMC Transactions Paper Award - Honorable Mention in 2016 and won the
Best Paper Award at the IEEE International Symposium and Exhibition on
Electromagnetic Compatibility (EMC Europe) in 2017.

HAKKI M. TORUN (S’15) received his BSc de-
gree in Electrical & Electronics Engineering in
2016 from Bilkent University, Turkey. He joined
Georgia Institute of Technology at Fall 2016,
where he currently is a PhD student at School
of Electrical and Computer Engineering, under
the supervision of Dr. Madhavan Swaminathan.
His research interests include developing machine
learning algorithms for system level optimization
and modelling with the applications in signal &

power integrity in high-speed channels, microwave electronics and VLSI
systems.

Mr. Torun was the recipient of Best Student Paper award of the IEEE 27th

Conference on Electrical Performance of Electronic Packaging and Systems
(EPEPS) in 2018.

FLAVIO G. CANAVERO (SM’99-F’07) received
his electronic engineering degree from Politecnico
(Technical University) of Torino, Italy, and the
PhD degree from the Georgia Institute of Tech-
nology, Atlanta, USA, in 1986. Currently he is a
Professor of Circuit Theory with the Department
of Electronics and Telecommunications, Politec-
nico di Torino, where he serves also as the Director
of the Doctoral School. He is an IEEE Fellow. He
has been the Editor-in-Chief of IEEE Transactions

on Electromagnetic Compatibility, V.P. for Communication Services of the
EMC Society and Chair of URSI Commission E. He received several
Industry and IEEE Awards, including the prestigious Richard R. Stoddard
Award for Outstanding Performance, which is the EMC Society?s highest
technical award, and the Honored Member Award of EMC Society. His re-
search interests include signal integrity and EMC design issues, interconnect
modeling, black-box characterization of digital integrated circuits, EMI and
statistics in EMC.

MADHAVAN SWAMINATHAN (M’95-SM’98-
F’06) received the M.S. and Ph.D. degrees in
electrical engineering from Syracuse University in
1989 and 1991, respectively. He was with IBM,
where he was involved in packaging for super-
computers. He was the Joseph M. Pettit Profes-
sor in electronics with the School of ECE and
the Deputy Director of the NSF Microsystems
Packaging Research Center, Georgia Tech. He is
currently the John Pippin Chair Professor in mi-

crosystems packaging and electromagnetics with the School of Electrical
and Computer Engineering (ECE) and the Director of the Center for Co-
Design of Chip, Packages, System, Georgia Institute of Technology (Georgia
Tech), Atlanta, GA, USA. He is also the Founder and the Co-Founder of two
start-up companies, E-System Design and Jacket Micro Devices. He is the
author of over 450 refereed technical publications, holds 29 patents, and
the primary author and a co-editor of three books. He is the Founder of the
IEEE Conference Electrical Design of Advanced Packaging and Systems, a
premier conference sponsored by the CPMT Society on Signal Integrity in
the Asian region. He has served as the Distinguished Lecturer for the IEEE
EMC Society.

12 VOLUME x, xxxx


