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Abstract—Electric vehicles are accelerating the world’s tran-
sition to sustainable energy. Nevertheless, the lack of a proper
charging station infrastructure in many real implementations still
represents an obstacle for the spread of such a technology. In this
paper, we present a real case application of optimization tech-
niques in order to solve the location problem of electric charging
stations in the district of Biella, Italy. The plan is composed
by several progressive installations and decision makers pursue
several objectives that might be in contrast. For this reason, we
present an innovative framework based on the comparison of
several ad-hoc Key Performance Indicators for evaluating many
different aspects of a location solution.

I. INTRODUCTION

Environmental pollution is one of the biggest problems

affecting human society, and one of the main source of

pollution is represented by motorized vehicles. It has been

estimated that they are responsible for 40% of carbon dioxide

emissions and 70% of other GHG emissions in urban areas

[1]. In order to reduce this kind of pollution, an alternative and

promising mobility solution is represented by the adoption of

electric vehicles (EVs). Nevertheless, the expansion of this

technology is strictly linked with the growth of a proper

infrastructure for recharging the vehicles.

In this context, the company Ener.bit S.r.l.1 and the Depart-

ment of Control and Computer Engineering of Politecnico di

Torino have recently developed a project for the sustainability

of electric mobility in the district of Biella, Piedmont (Italy).

The project goal was to plan the type, number, and location of

the charging stations over an horizon of about 10 years (2019-

2030). It is worthwhile noticing that the number of stations to

locate and the number of power plugs for each station depend

on an economical analysis related to the forecast number of

EVs. Instead, the type of charging stations mainly depends on

the features of a selected location. For example, a charging

station near working centers can have a low charging system

(because workers are assumed to park their vehicle during the

entire day), while a charging station near shopping centers is

supposed to be faster (cars must be recharged during shopping

time). Therefore, the actual decision problem faced in the

This work has been supported by Ener.bit S.r.l. (Biella, Italy) under the
grants "Studio di fattibilità per la realizzazione di una rete per la mobilità
elettrica nella provincia di Biella" and "Analisi per la realizzazione di una
rete per la mobilità elettrica nella provincia di Biella".

1Official website: http://www.enerbit.it/, last accessed: 2019-04-30.

project was to select the municipalities in the Biella district

where to locate at least one charging station.

In general, location problems consider several different

(and possibly conflicting) objectives, e.g., achieving a level

of service proportional to the importance of the location,

reducing the worst-case service level, maximizing the average

service level, etc. Considering all those objectives in the

same mathematical problem may end up with a huge amount

of solutions that can confuse the decision maker instead of

providing help. For this reason, our study provides an inno-

vative analysis based on the comparison of several different

aspects of a location solution through the use of a battery of

Key Performance Indicators (KPIs). Moreover, since charging

infrastructures are commonly supposed to be located through

several progressive interventions over a defined time-horizon,

we also analyze the trend of the provided KPIs over the

interventions to generate long-term managerial insights.

A. Literature review

Optimal location is a standard topic in operations research.

There is a huge amount of different models, and the choice of

the most correct model to abstract the problem depends on the

objectives set and the constraints imposed by the application

itself. In our case, it is fundamental to provide a constraint on

the exact number of municipalities where to locate a charging

station. Furthermore, the model should aim at optimizing some

quality-of-service metrics for the user community.

In the literature, several works are present in this context.

In [1], the authors present a study on the location of charging

stations for EVs for the city of Lisbon (Portugal), characterized

by a strong concentration of population and movements. The

methodology is based on a model that maximizes demand

coverage while maintaining an acceptable level of service.

In [2], instead, the authors uses a bilevel model in order to

optimize vehicle sharing systems.

After a careful study of the existing approaches, and

considering the specific features of the application at hand

and the requests by the involved company, we decided to

analyze the p-centdian model, which represents a combination

of the classical p-center and p-median problems [3].

The rest of this paper is organized as follows. Section II is

devoted to present the location model used in the project. In

Section III, we propose and discuss several different KPIs of
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interest for our application. In Section IV, we describe more

in details the project and we present the numerical results.

Finally, conclusions are drawn in Section V.

II. THE P-CENTDIAN MODEL

Throughout the paper we use the following notation:

• G = (N,E): complete undirected graph with a set of

nodes N representing possible locations for the charging

stations and a set of edges E = {(i, j)|i, j ∈ N, i ≤ j};

• dij : distance between node i and node j ∈ N (note

that distance dii may be non-null since it represents the

internal distance to travel within municipality i ∈ N );

• Qi: service demand in node i ∈ N ;

• hi = Qi/
∑

j∈N Qj : demand rate of node i ∈ N ;

• p: predefined number of stations to locate, with p ≤ |N |;
• d̄: coverage radius, i.e. the threshold distance to discrim-

inate the covering. It represents, e.g., the maximum dis-

tance that an EV can travel (due to the battery capacity) or

that a user is willing to drive to reach a charging station;

• Ci = {j ∈ N, dij ≤ d̄}: covering set of i ∈ N , i.e. the

set of all stations nearer than d̄ from node i.

The p-centdian problem is to find p nodes where to locate

charging stations so as to minimize a linear combination

among the maximum and the average (weighted) distance

between the located stations and the demand nodes. Its for-

mulation is:

minλM + (1− λ)
∑

i∈N

hi

∑

j∈N |(i,j)∈E

dijxij (1)

subject to

M ≥
∑

j∈N |(i,j)∈E

hidijxij ∀i ∈ N (2)

∑

j∈N |(i,j)∈E

xij = 1 ∀i ∈ N (3)

∑

j∈N

yj = p (4)

∑

i∈N |(i,j)∈E

xij ≤ |N |yj ∀j ∈ N (5)

where yj is a binary variable taking value 1 iff a station is

located in node j ∈ N , and 0 otherwise, while xij is a binary

variable taking value 1 iff the demand of node i ∈ N is served

by a charging station located in j ∈ N , and 0 otherwise.

The objective function (1) consists of a linear combination

of two terms. The first is the auxiliary variable M that,

according to constraints (2), takes the maximum value of the

expression
∑

j∈N hidijxij over all nodes i ∈ N . In other

words, it is the maximum distance between a demand node and

its closest station. The second is the average distance traveled

by the total demand flow towards charging stations. Clearly,

through the parameter 0 ≤ λ ≤ 1 it is possible to define the

relative importance of one objective with respect to the other

one. In this work, we set the λ parameter dynamically by using

the ratio between the optima of the relative p-center and p-

median subproblems. In this way we ensure that the two terms

of (1) are comparable. Constraints (3) ensure that each demand

node is served by exactly one station. Constraint (4) ensures to

locate exactly p stations. Finally, logical constraints (5) ensure

to locate a station in j (i.e., yj = 1) only if it is assigned to

serve at least one demand node (i.e.,
∑

i∈N xij > 0).

III. KEY PERFORMANCE INDICATORS

In this section, we define the set of KPIs that were used in

the project in order to measure the performance of the solution

provided by the model. For simplicity, we define Li = {j ∈
Ci | yj = 1} as the set of nodes where a charging station

has been located that covers demand node i, and C = {i ∈
N | ∃j ∈ Ci such that yj = 1} as the set of demand nodes

covered by at least one charging station.

The following proposed KPIs consider topological, cover-

age, and accessibility measures:

• WORST-CASE DISTANCE:

Dmax := max
i∈N

min
j∈L

dij (6)

represents the maximum distance between a demand node

and its closest charging station.

• BEST-CASE DISTANCE:

Dmin := min
i∈N

min
j∈L

dij (7)

represents the minimum distance between a demand node

and its closest charging station.

• AVERAGE DISTANCE:

Davg :=
1

|N |

∑

i∈N

min
j∈L

dij (8)

represents the average distance between a demand node

and its closest charging station.

• DISPERSION:

Disp :=
∑

i∈L

∑

j∈L

dij (9)

represents the sum of the distances between all the located

stations. It is a measure of homogeneity of the service

from a purely topological point of view.

• ACCESSIBILITY:

Acc :=
∑

i∈N

hiAi (10)

is the total accessibility of the charging service, where

Ai :=
∑

j∈L

e−βdij (11)

is the accessibility of a facility in the sense of [4]. The

parameter β > 0 must be calibrated and represents the

dispersion of the alternatives in the choice process (the

calibration has been performed according to [5] and [6]).

• COVERAGE:

C := 100 ∗ |C|/|N | (12)
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represents, in percentage, the number of covered locations

with respect to the total.

• WORST-CASE COVERAGE:

Cmin := min
i∈N

|Li| (13)

represents the minimum number of charging stations

covering a demand node.

• BEST-CASE COVERAGE:

Cmax := max
i∈N

|Li| (14)

represents the maximum number of charging stations

covering a demand node.

• AVERAGE COVERAGE:

Cavg :=
1

N

∑

i∈N

|Li| (15)

represents the average number of charging stations cov-

ering a demand node.

IV. THE BIELLA CASE-STUDY

In the aforementioned project, the possible locations are

the 78 municipalities of the district of Biella, Italy. From a

preceding economical analysis, the company is supposed to

install charging stations in one municipality by the end of

2019, in 10 municipalities by the end of 2022, in 37 by the

end of 2025, and in all remaining municipalities by the end

of 2030. Moreover, the company assumed a coverage radius

d̄ = 25, i.e., a municipality is covered if its distance from the

nearest charging station is less than 25 kilometers. We remark

that each station may have different size, number of plugs, and

capacity in terms of charging. However, as already stated in

the Introduction, we just focus on selecting the municipalities

of Biella district where to locate at least one charging station,

while the real characteristics of the stations will be derived in

a successive phase. For example, the number of plugs for each

municipality can be calculated as a proportion to the demand

rate of that particular municipality (and its surroundings).

The p-centdian model, accurately instantiated with the data

deriving from the Biella district case study, can be easily

solved by exact algorithms as the branch-and-cut implemented

in the available commercial and academic solvers. In our

particular case, we used the GUROBI solver v.8.1.0. The

resolution was performed on a common PC (Intel Core i7-

5500U CPU@2.40 GHz with 8 GB RAM) and took on average

12 seconds. Notice how the resolution efficiency obtained

allows to possibly perform a large number of experiments with

different input data, thus refining the analysis.

The solutions for the different time thresholds studied,

obtained using the p-centdian model, are the following (clearly,

at each intervention, the locations chosen in the previous steps

are forced to remain in the solution):

• one municipality (p = 1) by the end of 2019: the only

municipality chosen is Biella, the chief town (see Figure

1). This was expected since Biella is the most important

city in terms of demand.

• 10 municipalities (p = 10) by the end of 2022: some

small municipalities close to and other big ones far from

Biella are chosen (see Figure 2).

• 37 municipalities (p = 37) by the end of 2025: the solu-

tion tends to select municipalities close to the previously

selected ones, creating clusters (see Figure 3)

• all municipalities (p = 78) by the end of 2030 (this

corresponds to the trivial solution with yi = 1, ∀i ∈ N ).

Fig. 1. Optimal location for p = 1 (2019). Chosen locations in red.

Fig. 2. Optimal location for p = 10 (2022). Chosen locations in red.

Fig. 3. Optimal location for p = 37 (2025). Chosen locations in red.

The value of all the KPIs, in the various steps of interven-

tion, is calculated and shown in Table I. Note that the last

column, corresponding to the case in which all the locations

are chosen, contains the best possible value for each KPI.

Several observations can be done:
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• Dmax decreases with the increase in the number of

municipalities in which at least one charging station has

been located and, as it can be seen, it reaches reasonable

values from p = 10 onward.

• Dmin decreases as the number of municipalities in which

at least one charging station has been located increases,

and it stabilizes at the best value already with p = 10.

• Davg decreases as the number of municipalities in which

at least one charging station has been located increases.

It is interesting to note that the percentage improvement

in the indicator decreases as the number of selected

municipalities increases.

• Disp increases as the number of municipalities in which

at least one charging station has been located increases.

Its growth is very marked due to the factorial growth of

the number of pairs of selected municipalities. The start-

ing value is set to zero since with a single municipality

the summation in the definition cannot be calculated.

• Acc increases as the number of municipalities in which

at least one charging station has been located increases.

Also in this case the improvements are less marked as

the number of selected municipalities increases.

• C increases as the number of municipalities in which at

least one charging station has been located increases. It

can be seen that with only 10 selected municipalities, the

coverage reaches very high levels (96% of the munici-

palities are covered).

• Cmin increases with the number of municipalities where

at least one charging station has been located. Since this

is the most pessimistic case, this indicator remains at zero

when 1, 10, and 37 selected municipalities are considered.

The data then verifies the non-total coverage shown by

the KPI previously discussed.

• Cmax increases as the number of municipalities in which

at least one charging station has been located increases.

It can be seen that the increase in value grows with

the number of selected municipalities. However, it can

be noted that already with 10 municipalities the most

covered municipality has the choice between 7 charging

stations within a 25 kilometers radius.

• Cavg increases with the increase in the number of munic-

ipalities in which at least one charging station has been

located and, as it can be seen, has a much lower value

than the Cmax. This implies a heterogeneous situation in

terms of coverage of the various locations. In fact, we

have a large number of municipalities covered by a few

charging stations and a small number of municipalities

covered by many charging stations. Since the towns that

are not covered are those with a lower demand (i.e.,

with less electric vehicles) this feature is in line with

the technical specifications of the problem.

A common trend of almost all the KPIs is that the second

intervention is the one providing the highest proportional

change with respect to the previous one (e.g., C almost doubles

its value for p = 10 while it gains only few units for p = 37

TABLE I
KPIS VALUE IN THE FOUR INTERVENTIONS.

KPI p = 1 (2019) p = 10 (2022) p = 37 (2025) p = 78 (2030)

Dmax 53 24 20 11

Dmin 5.7 2 2 2

Davg 20.3 8.9 5.8 4.4

Disp 0 2158.2 34663.9 167201.3

Acc 0.024769 0.115986 0.329689 0.456748

C 55% 96% 98% 100%

Cmin 0 0 0 1

Cmax 1 7 22 43

Cavg 0.089744 2.653846 8.833333 19.28205

and p = 78). Interesting enough, Dmin reaches its optimal

value even for p = 10. This represents a very important

insight for the company for two main reasons. First, it means

that the users will perceive the biggest improvement in terms

of service in relatively small amount of time (the first 3-5

years) and in response to a small effort in terms of installed

stations. Second, it means that the last interventions, which

are the ones affected by the most uncertainty (e.g., in terms of

economical sustainability), are not very critical for the process

overall quality.

V. CONCLUSIONS

The implementation of the plan resulting from this study in

the district of Biella still needs a detailed urban planning and

electrical plant analysis to determine the physical points within

the municipalities in which to locate the charging stations

identified. However, the described methodologies represent the

application of state-of-the-art technology in optimal location

to real problems. It is worthwhile noting that the developed

analysis can be applied to different location models and to a

broader set of KPIs. This way the decision maker can eval-

uate different solutions and generate insights for the location

problem at hand.
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