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Statistical mechanics harmonizes mechanical and thermodynamical quantities, via the

notion of local thermodynamic equilibrium (LTE). In absence of external drivings, LTE

becomes equilibrium tout court, and states are characterized by several thermodynamic

quantities, each of which is associated with negligibly fluctuating microscopic properties.

Under small driving and LTE, locally conserved quantities are transported as prescribed

by linear hydrodynamic laws, in which the local material properties of the system are

represented by the transport coefficients. In 1-dimensional systems, on the other hand,

various anomalies are reported, such as the dependence of the heat conductivity on the

global state, rather than on the local state. Such deductions, that rely on the existence

of thermodynamic quantities like temperature and heat, are here interpreted within the

framework of boundary driven 1-dimensional Lennard-Jones chains of N oscillators. It

is found that these chains experience non-negligible O(N) lattice distortions, resulting

in strongly inhomogeneous systems, and O(N) position fluctuations, that are in contrast

with the requirements of LTE.

Keywords: chains of oscillators, local thermodynamic equilibrium, lattice distortion, macroscopic fluctuations,

Lennard-Jones potential

1. INTRODUCTION

In a seminal paper, Rieder, Lebowitz, and Lieb investigated the properties of chains of N harmonic
oscillators, interacting at their ends with stochastic heat baths [1]. These authors proved that while
energy flows from hot to cold baths, the kinetic temperature profile decreases exponentially in
the direction of the hotter bath, rather than increasing, and in the bulk its slope vanishes as N
grows. Thus, in case the kinetic temperature equals the thermodynamic temperature, heat flows
against the direction of energy, in the bulk of such 1D systems. Were this a real fact, no steady state
would be reached, because at the boundaries heat would flow in opposite directions and indefinitely
accumulate. On the contrary, Rieder et al. [1] proves the existence of and explicitly expresses the
steady state. Taken in Rieder et al. [1] as a paradox without explanation, this fact is now understood
as related to the absence of phononic interactions in harmonic chains [2], and it reveals that, in
harmonic chains, the kinetic temperature does not correspond to the thermodynamic temperature,
or the energy flux does not represent a heat flux, or both.

Thermodynamically peculiar behaviors are realized in anharmonic chains as well. In particular,
1D chains of N oscillators without on-site potentials, and conserving momentum, generically

enjoy anomalous transport, i.e., the divergence with N of the thermal conductivity, κN = 〈J〉N
TR−TL

,
where TR and TL are the temperatures at the two ends of a chain and 〈J〉 is the average heat

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2019.00180
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2019.00180&domain=pdf&date_stamp=2019-11-12
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:claudio.giberti@unimore.it
https://orcid.org/0000-0002-4223-6279
https://doi.org/10.3389/fphy.2019.00180
https://www.frontiersin.org/articles/10.3389/fphy.2019.00180/full
http://loop.frontiersin.org/people/650739/overview
http://loop.frontiersin.org/people/101102/overview
http://loop.frontiersin.org/people/571302/overview


Giberti et al. O(N) Fluctuations and Lattice Distortions

flux [2–5]. On the other hand, evidence of normal transport
in chains with asymmetric interactions, such as Lennard-
Jones potentials, is reported in Zhong et al. [6] and Chen
et al. [7]. Unexpected phenomena that seem to contradict the
hydrodynanmic laws of transport, e.g., currents going against the
density gradient, a phenomenon called “uphill diffusion,” can be
observed in several experimental settings. In e.g., Colangeli et al.
[8], the readers my find further references and a non-equilibrium
model with phase transition exhibiting uphill diffusion, whose
thermodynamic relevance is still under investigation.

The fact is that temperature and heat pertain to macroscopic
objects with microscopic states corresponding to Local
Thermodynamic Equilibrium (LTE); they cannot be directly
identified with mechanical quantities such as kinetic energy and
energy flux, Landau and Lifshitz [9], section 9 and Chibbaro et al.
[10] chapters 3, 4, and 5. LTE is the essence of Thermodynamics:
it can be viewed at once as the precondition for the existence of
the thermodynamic fields, such as temperature and heat, and as
the natural state of objects obeying the thermodynamic laws. The
microscopic conditions under which LTE is expected to hold are
extensively discussed in the literature, e.g., [11] section 15.1, [12]
section 2.3, [13] section 3.3, [14] chapter 1. In short, LTE requires
the existence of three well-separated time and space scales, so
that: (1) a macroscopic object can be subdivided in mesoscopic
cells that look like a point to macroscopic observers, while
containing a large number of molecules; (2) boundary effects
are negligible compared to bulk effects, so that the contributions
of neighboring cells to the mass and energy of a given cell are
inappreciable within a cell; (3) particle interactions allow the
cells to thermalize (positions and velocities become respectively
uniformly and Maxwell-Boltzmann distributed) within times
that are mere instants on the macroscopic scale.

That macroscopic observables are not affected by microscopic
fluctuations, despite the exceedingly disordered and energetic
microscopic motions, is essential for mesoscopic quantities to be
sufficiently stable that thermodynamic laws apply, e.g., Landau
and Lifshitz [9], section 1 and 2. This is the case for a quantity
that is spatially weakly inhomogeneous, when the number N
of particles in a cell is large, and the molecular interactions
randomize positions and momenta so that, for instance, the
fluctuations of a quantity φ of size O(N) are order O(

√
N). The

bulk of the cell then dominates in- and out-fluxes, and variations
of φ are sufficiently slow on the mesoscopic scale.

Quantitatively, the space and time scales for which this
description holds depend on the properties of the microscopic
components of the systems of interest, [11–16]. However, the
general rule is that fluctuations be negligible compared to the
signal of interest; were e.g., position fluctuations large, two solids
could kick each other, when placed at a short distance from each
other. This, of course, is impossible in the thermodynamic realm
(see also Exercise 4.5 in [17]).

Under the LTE condition, matter can be considered a
continuum, obeying hydrodynamic laws, i.e., balance equations
for locally conserved quantities, such as mass, momentum and
energy [12, 18–20]. For small to moderate driving, they take a
linear form, in which the local material properties are expressed
by the linear transport coefficients. Locality implies that such

coefficients do not depend on the conditions of the system far
away from the considered region. The thermal conductivity of an
iron bar at a given temperature at a given point in space does not
depend on the conditions of the bar far from that region; cutting
the bar in two, or joining it to another bar, without changing the
local state, leaves unchanged its local properties.

Fluctuations remain of course present in systems made of
particles; they are larger for larger systems, they may be observed
[21, 22], and they play a major role in many circumstances
(see e.g., [23, 24]). This motivates a considerable fraction
of research in statistical physics, e.g., [25, 26], concerning
scales much smaller than the macroscopic ones, or occurring
in low dimensional (1D and 2D) systems [4, 27–30]. In these
phenomena, the linear transport coefficients do not always seem
to exist [4], the robustness of the thermodynamic laws appear
to be violated, and the behaviors appear to be strongly affected
by boundary conditions and by all parameters that characterize
a given object [7, 31–37]. It is also well-known that chains of
oscillators behave more like some kind of (non-standard) fluids
than like solids, because of the loss of crystalline structure, caused
by cumulative position fluctuations [38]. Consequently, a fluid-
like (possibly fluctuating) description has been adopted in a
number of papers, cf. [39, 40].

In driven systems, the situation is problematic also because
equipartition may be violated [41–43], the state of the system
is model dependent, and the ergodic properties are partially
understood [44, 45]. Hence, there is no universal agreement
on the microscopic notion of temperature in non-equilibrium
conditions [43, 46–51]. Further, a microscopic definition of
heat flux requires a clear distinction between convection, i.e.,
energy transport due to macroscopic motions, and conduction,
that is transport without macroscopic motions, cf. Chapter 4 of
Zemansky and Dittman [52], and section III.2 and Chapter XI
of De Groot et al. [18]. In 1D systems, this may not always be
possible [53].

One interpretation of these facts is that LTE is violated in
some situations, hence that thermodynamic concepts, such
as heat and temperature, may be inappropriate [33, 34].
Another interpretation is that thermodynamic notions should
be modified to treat small and strongly non-equilibrium systems
(see e.g., [46–49]). It is therefore interesting to investigate
the validity and universality of the mechanical counterparts
of thermodynamic quantities, in situations in which LTE
is not expected to hold, and “anomalous” phenomena have
been reported.

We address such questions considering chains of N Lennard-
Jones oscillators interacting with deterministic baths at their
ends, and without on-site potentials. We mainly focus on two
quantities: the distortion of the equilibrium lattice and the
fluctuations of the particles, whose position will be denoted by
xi’s. The former is the displacement of the average of xi with
respect to its mechanical equilibrium value, while the latter is the
standard deviation of xi. Our central findings are that:

• thermostats at different temperatures induce O(N)
distortions of the equilibrium lattice, resulting in highly
in-homogeneous chains;
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• thermostats induce collective order O(N) fluctuations,
i.e., “macroscopic” motions. Negligible incoherent O(

√
N)

vibrations typical of 3D equilibrium systems are thus replaced
by kind of convective motions, even in chains bounded by
still walls.

Note that these are two well distinct effects; the latter is
crucial in our investigation, since it hinders thermodynamic
properties, cf. section 3. Combined with the results of Rieder
et al. [1] and further literature, e.g., [41, 46–50], this suggests
that microscopic definitions appropriate for 3-dimensional
equilibrium thermodynamic quantities, need extra scrutiny in
1D. As an example of the effects on observables of both O(N)
lattice distortions and position fluctuations, we consider the
notion of heat flux, J say, given by Equation (23) of Lepri
et al. [2]. This confirms from a different standpoint conclusions
reached in previous studies on the inapplicability of standard
hydrodynamics [54, 55]. Note that Equation (23) of Lepri et al.
[2] has been criticized as an incorrect expression for the “heat
flow.” In fact, it would only reduce to the correct expression,
e.g., Equation (3.8) of Spohn [12], (a) apart from a dimensional
constant, (b) if the position in space could be identified with the
position of one particle, and (c) if position fluctuations about
the equilibrium lattice positions would be totally negligible. Such
negligible fluctuations would at once satisfy one of the conditions
for the validity of LTE, allow the particle position to play the
role of a position in space, and make valid the periodic lattice
assumption of Lepri et al. [2]. Therefore, this quantity suits us, in
order to illustrate the effect of non-negligible fluctuations and of
lattice distortions. We find that:

• J is not spatially uniform in steady states. Variations of J
decrease if the baths temperature difference is reduced at
constant N, but they do not if the mean temperature gradient
is reduced increasing N at constant baths temperatures.

• Dividing J by the local mass density partially balances the
lattice inhomogeneity and yields an approximately uniform
quantity. This suggests that, although relevant, the lattice
deformation is not the only reason for J to fail.

These observations should be combined with those of Giberti
et al. [53] and Lepri et al. [55], according to which collective and
molecular motions are correlated, making hard to disentangle
convection from conduction. Whatever their motion, single
particles push their neighbors, producing kinds of convective
cascades. That difficulties do not ease when N grows, because
of O(N) fluctuations and lattice distortions, explains why LTE,
hence thermodynamic quantities, cannot be established in our
1D systems.

2. CHAINS OF LENNARD-JONES
OSCILLATORS

Consider a 1D chain ofN identical moving particles of equal mass
m, and positions xi, i = 1, ...,N. Add two particles with fixed
positions, x0 = 0 and xN+1 = (N + 1)a, where a is the lattice
spacing. Let nearest neighbors interact via the Lennard-Jones

potential (LJ):

V1(r) = ǫ

[

(a

r

)12
− 2

(a

r

)6
]

, (1)

where r is the distance between nearest neighbors: r = |xi −
xi−1| and ǫ > 0 is the depth of the potential well. Thus,
xi = ai, with i = 0, . . . ,N + 1, is a configuration of
stable mechanical equilibrium for the system. We also consider
interactions involving first and second nearest neighbors, with
second potential given by [56, 57]:

V2(s) = ǫ

[

(

2a

s

)12

− 2

(

2a

s

)6
]

, (2)

where s = |xi − xi−2|. Further, we add two particles with fixed
positions x−1 = −a and xN+2 = (N + 2)a. With potential
V = V1 + V2, the system has the usual stable mechanical
equilibrium configuration xi = ai, i = −1, . . . ,N + 2. The first
and last moving particles are in contact with two Nosé-Hoover
thermostats, at kinetic temperatures TL (on the left) and TR

(on the right) and with relaxation times θL and θR. Introducing
the forces

F1(r) =
∂V1

∂r
(r), F2(s) =

∂V2

∂s
(s) , (3)

the equations of motion are given by:

mẍ1 = F1(x1)− F1(x2 − x1)− ξ1ẋ1, (4)

mẍi = F1(xi − xi−1)− F1(xi+1 − xi), i = 2, ...,N − 1, (5)

mẍN = F1(xN − xN−1)− F1(xN+1 − xN)− ξN ẋN , (6)

with

ξ̇1 =
1

θ2L

(

mẋ21
TL

− 1

)

, ξ̇N =
1

θ2R

(

mẋ2N
TR

− 1

)

, (7)

in the case of nearest neighbors interaction. For first and second
neighbors interactions, we have:

mẍ1 = F1(x1)− F1(x2 − x1)+ F2(x1 + a)− F2(x3 − x1)

−ξ1ẋ1,

mẍ2 = F1(x2 − x1)− F1(x3 − x2)+ F2(x2)− F2(x4 − x2)

−ξ2ẋ2,

mẍi = F1(xi − xi−1)− F1(xi+1 − xi)+ F2(xi − xi−2)

−F2(xi+2 − xi), i = 3, . . . ,N − 2, (8)

mẍN−1 = F1(xN−1 − xN−2)− F1(xN − xN−1)

+F2(xN−1 − xN−3)− F2(xN+1 − xN−1)− ξN−1ẋN−1,

mẍN = F1(xN − xN−1)− F1(xN+1 − xN)+ F2(xN − xN−2)

−F2(xN+2 − xN)− ξN ẋN ,
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FIGURE 1 | (Left) Plot of the displacement of the mean position of particle i from its mechanical equilibrium position, (〈xi〉 − ia), for different values of N, for first and

second neighbors interaction, when TL = 1 and TR = 10. The lattice is strongly distorted in presence of temperature differences. (Right) Linear fit of maxi (〈xi〉 − ia) as

a function of N ranging from 64 to 6000, for N > 400. The label of the particle corresponding to the maximum lattice distortion is fitted by imld = 0.6063N− 6.804 with

R2 = 0.9997.

with

ξ̇l =
1

θ2L

(

mẋ2
l

TL
− 1

)

, l = 1, 2,

ξ̇l =
1

θ2R

(

mẋ2
l

TR
− 1

)

, l = N − 1,N.

(9)

The hard-core nature of the LJ potentials preserves the order of
particles: 0 < x1 < x2 < · · · < xN < (N + 1)a holds at all times,
if it does at the initial time1.

For such systems, a form of single particle virial relation is
often found to hold2. That fact is usually mentioned to identify
the average kinetic energy of a given particle with the temperature
Ti in position xi [2]:

Ti =
〈

pi
2

m

〉

, i = 1, ...,N. (10)

Here, pi is the momentum of particle i, the angular brackets
〈·〉 denote time average, and Ti is called single particle
kinetic temperature.

However, the validity of Equation (10) does not imply a
Maxwell-Boltzmann distribution of velocities, corresponding
to a thermodynamic temperature [53]. Indeed, for TL 6=
TR, the single particle kinetic temperature profile may take
rather peculiar forms, compared to the linear thermodynamic
temperature profiles in homogeneous solids when Fourier law
holds. This is illustrated in great detail in the specialized

1In some cases, we extended the Lennard-Jones interaction to the third nearest

neighbors, preserving the equilibrium configuration xi = ia. The corresponding

equations of motion and thermostats are the natural modification of the previous

ones, hence are not reported here.
2In Falasco et al. [58] a nonequilibrium mesoscopic version of the virial relation

in given.

literature, cf. [2–4, 34, 59–63] just to cite a few. Also, numerically
simulated profiles of various kinds of 1D systems, appear to
be sensitive to parameters such as the relaxation constants of
the thermostats, the interaction parameters, the form of the
boundaries etc. cf. e.g., [34]. This is not surprising, since
many correlations persist in space and time in low dimensional
systems, hindering the realization of LTE and leading to
anomalous behaviors [33, 54, 55, 64–70]. As a further testimony
of the complex behavior of 1D chains, we mention that heat
conductivity may depend on details of the interaction potential
such as its asymmetry; see [6, 7] in which evidence is given for
normal conductivity in chains with LJ potential.

In the following sections, we report our results about systems
with various numbers of particlesN. The parameters defining the
Lennard-Jones potentials are ǫ = 1 and a = 1, while the mass of
the particles is m = 1. The relaxation times of the thermostats
θL and θR are set to 1. The numerical integrator used is the
fourth-order Runge-Kutta method with step size 10−3. The time
averages are typically taken over O(108) − O(109) time steps in
the stationary state.

3. LARGE LATTICE DEFORMATIONS AND
FLUCTUATIONS

The distinction between the different states of aggregation of
matter is not strictly possible in 1D systems with short range
interactions; one nevertheless realizes that our oscillators chains
are more similar to (a kind of) compressible fluids than to
solids [34, 54]. In particular, Lepri et al. [55] shows persistent
correlations, O(N) dependence of relaxation times, and the
failure of standard hydrodynamics, in non-driven LJ systems.
Along similar lines of inquiry, we investigated two different
effects in non-equilibrium conditions: the distortion of the
equilibrium lattice and the size of the fluctuations of the particles.
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For the first, we find that temperature differences at the
boundaries of the chains induce “macroscopic” deformations
of the periodic structure of the lattice; cf. Zhong et al. [6]
for the influence of the asymmetry of the potential on such
phenomenon. For all i, we obtain (〈xi〉− ia) ∼ O(N), as shown in
Figure 1, whose right panel plots the quantity maxi(|〈xi〉− ia|) as
a function of N. Consequently, for sufficiently large N the system
cannot be treated as a spatially homogeneous object.

Our second observation, which concerns fluctuations, is that
the presence of thermostats at different temperatures enhances

the size of the vibrations, given by
√

〈x2i 〉 − 〈xi〉2, of each particle

i about its average position 〈xi〉. Such vibrations are order O(i1/2)
in chains without thermostats with origin in i = 0 [38],
which means that, for sufficiently large i, position fluctuations
are incompatible with a crystal structure. In our framework,

the length of chains is bounded, therefore the size of particle
vibrations cannot indefinitely grow with particle index i: the
vibrations are larger for particles in the bulk than for particles
near the boundaries of the chains, see the left panel of Figure 2
More precisely, we find that for every particle i, the size of

vibrations can be called “macroscopic”:
√

〈x2i 〉 − 〈xi〉2 ∼ O(N).

In the right panel of Figure 2 and in Figure 3, square root fits
and linear fits are compared for N ranging from 64 to 6000. The
square root fits are appropriate for small N, while at large N the
linear fit takes over. The size of these vibrations appears even
more striking observing that displacing by a large amount one
of them, a whole collection of particles must be correspondingly
displaced. Indeed, the repulsive part of the LJ potential does
not allow particles’ order to be modified, as noted also in Lepri
et al. [55]. As observed e.g., in Giberti and Rondoni [34],

FIGURE 2 | (Left) Standard deviations of the particles vibrations about their average position, in lattice vectors units, for the case of Figure 1. (Right) Dependence

on N (ranging from 64 to 6000) of the maximum standard deviation together with a linear fit for N > 400 (continuous blue line) and one square root fit for lattices with

N < 2100 (dashed red line). Growing linearly with N, collective vibrations look like convective motions. The label of the particle corresponding to the maximum

fluctuation amplitude is fitted by imfa = 0.7398N − 6.75 with R2 = 0.9993.

FIGURE 3 | (Left) Dependence on N of the standard deviations of the vibrations of particles at 1/3 of the chain. (Right) Dependence on N of the standard deviations

of the vibrations at 2/3 of the chain. In both cases, a square root and a linear fit are drawn. The square root fit holds at small N. At large N the linear fit takes over. In

both panels N ranges from 64 to 6000. Particles motions look more like some kind of convection rather than like microscopic lattice vibrations.
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this kind of constraint leads to long-range correlations, that
necessarily develop while the O(N) fluctuations observed here
take place. Concerning thermodynamics, they are in fact like
the two sides of a coin: both long range correlations and large
spatial fluctuations break locality, connecting mesoscopic cells
over long distances. This violates the conditions for the validity
of LTE, which require mesoscopic cells to be small independent
equilibrium systems [14]. Absence of LTE in our systems was
already noted e.g., Giberti et al. [53], in which non-Maxwellian
velocities distributions were portrayed.

As a result, the motion of particles about their average
positions is not an irregular motion about fixed positions. In
accord with the observations on persistent correlations, this
motion looks like a kind of convection, although LTE and
standard hydrodynamics do not hold [34, 39, 40, 54, 55]. It
follows that, in these cases, energy transport cannot be directly
related to “heat” flows.

FIGURE 4 | Equilibrium simulations. Plot of the displacement of the mean

position of particle i from its mechanical equilibrium position, 〈xi〉 − ia, for

various values of N, for first and second neighbors interactions when

TL = TR = 5. The deviations from the mechanical equilibrium are negligible.

The situation is different for TL = TR. Figure 4 shows
that the lattice deformations are much smaller than the lattice
spacing a, and can be neglected. The computed values of (〈xi〉 −
ia) practically vanish and do not depend on N. The standard
deviation of the vibrations about themean position is represented
in the left panel of Figure 5 and it appears to be closer to O(

√
N)

than to O(N) as can be seen in the right panel of Figure 5. In this
case, in which there is no net energy transport, the system also
behaves more like a fluid than like a solid in sense closer to that
of Peierls [38], although our results refers to a different situation.

4. ENERGY BALANCE

In order to understand the effect of O(N) fluctuations and lattice
distortions on LTE, we now consider, as an example, the “heat
flux” Ji given by Equation (23) of Lepri et al. [2]. Note, exact
expressions for the energy balance about single particles exist,
e.g., Equation (17) of Lepri et al. [2]. Nevertheless, Ji, which had
been presented as more accurate than Equation (17) of Lepri
et al. [2], is here interesting because, in presence of LTE, it does
correspond to a heat flux, apart from a dimensional constant,
which is irrelevant for our investigation. Then, as the energy
current flowing between neighboring particles labeled by i and
i+ 1 should not depend on i, the same should happen to the time
average 〈Ji〉. In this section, we investigate whether this holds or
not. A critical analysis of Equation (23) of Lepri et al. [2] as a heat
flux is provided in Mejía-Monasterio et al. [71].

For the case of first and second nearest neighbors interactions,
the expression given by Equation (23) of Lepri et al. [2] must be
modified as follows:

Ji =
1

2
(xi+1 − xi)F1(xi+1 − xi)(ẋi+1 + ẋi)

+ (xi+2 − xi)F2(xi+2 − xi)(ẋi+2 + ẋi)+ ẋihi ,

(11)

where F1 and F2 are defined by Equation (3) and hi is the energy
of the i-th particle.

FIGURE 5 | Equilibrium simulations (TL = TR = 5) for N ranging from 512 to 5000. (Left) Standard deviations of the particles vibrations about their average position

(xi − 〈xi〉), in lattice vectors units. (Right) Dependence on N of the maximum standard deviation, together with linear and square root fits. This dependence on N

should not be confused with the O(
√
i) dependence on i of Peierls [38].
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FIGURE 6 | Chains with nearest neighbors Lennard-Jones interactions. (Left) Flux 〈Ji〉 computed according to Equation (11), for N = 64, TL = 1, TR = 4. (Right) 〈Ji〉
for N = 64, TL = 1, TR = 64.

The quantity Ji is only apparently “local” because it quantifies
a flow through the position of particle i, and not through a
fixed position in space. Moreover, it implicitly requires small
position fluctuations and small lattice deformations, because
Equation (11) is obtained through Fourier analysis for spatially
homogeneous systems, in the limit of small wave vectors, [2, 28].
For instance, denoting by k the wave-vector, Equation (23) of
Lepri et al. [2] follows from Equation (21) only if k(xn+1 − xn)
is small. On the contrary, in our cases, this quantity strongly
varies in space and time, and average lattice distortions are of
orderO(N), cf. section 3. Therefore, one expects Ji to fail, and it is
interesting to investigate how that is realized, varying the relevant
model parameters.

For chains with nearest neighbors Lennard-Jones interactions
[F2 ≡ 0 in Equation (11)], we find that while the steady state
heat flow should not depend on position, the time average of
Ji substantially changes with i, cf. Figure 6. To quantify this
phenomenon, we introduce the relative variation of 〈Ji〉,

δ =
∣

∣

∣

∣

maxi〈Ji〉 −mini〈Ji〉
J̄

∣

∣

∣

∣

, where J̄ =
1

N

∑

i

〈Ji〉 ,

In Tables 1, 2, for average temperature gradients similar to those
commonly found in the literature [62, 63, 72], we observe that
δ tends to grow with the temperature gradient, at fixed N. In
general, however, reducing the average gradient by increasing the
system size, does not lead to smaller δ 3.

We conclude that under our conditions the quantity Ji
represents neither a heat nor an energy flow, and that this is
not a consequence of the size of temperature gradients, but of
the size of fluctuations. These increase with growing N, thus
preventing LTE and standard hydrodynamics in the largeN limit
[34, 54, 55]. One may nevertheless ask whether the observed
features of Ji are merely due to the deformation of the lattice,
which invalidates the Fourier expansion of Lepri et al. [2]. One
may thus take into account the lattice deformations and restore

3Actually, for mere energy flows, there is no reason to be bounded by small

temperature gradients.

TABLE 1 | Relative variation δ of the flux Ji for N = 64 particles with first and

second nearest neighbors interactions.

TR δ1 δ2

1.1 0.0240 0.0199

1.5 0.0091 0.0077

2 0.0142 0.0145

4 0.0480 0.0481

8 0.0831 0.0829

16 0.1060 0.1062

32 0.1199 0.1201

64 0.1229 0.1232

TL = 1 while TR takes eight different values. δ1 is computed averaging over 2 · 109 time
steps, δ2 over 4 · 109 time steps.

TABLE 2 | Relative variation δ of the average fluxes 〈Ji〉 defined by Equation (11).

TR N = 64 N = 128 N = 256

1.1 0.0240 0.0117 0.0110656

1.5 0.0091 0.0297 0.0317283

2 0.0142 0.0534 0.0555437

4 0.0480 0.0817 0.104345

8 0.0831 0.0659 0.0907829

16 0.1060 0.0683 0.0485491

32 0.1199 0.1560 0.0643797

64 0.1229 0.2306 0.195046

Chains with N = 64, N = 128, and with N = 256 particles, with nearest neighbors

interactions are considered. Averages are computed over 2 · 109 time steps. TL = 1,

while TR takes eight different values.

the correct units, normalizing Ji by the average distance between
particles, as follows:

Jni =
Ji

〈xi+1 − xi〉
, i = 2, ..., N − 2. (12)
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FIGURE 7 | Normalized energy flux Jn (o) and the flux J (+) defined by

Equation (11) for chains of different lengths (N = 128, 512, 1,000, 2,000) and

with TL = 1 and TR = 10. Although Jn is not exactly constant, at large N it

enjoys small fluctuations about a given average value.

This quantity, that should not be taken as a correct alternative to
the definition of heat flux, is indeed approximately constant as a
function of i. This is shown in Figure 7, where Jni results more
stable than Ji as a function of i, thus indicating that the lattice
inhomogeneity is one cause of error in Ji. However, the spurious
fluctuations visible in Figure 7, reveal that lattice deformations
are only one of the difficulties affecting Ji as a definition of
heat flux.

5. CONCLUDING REMARKS

In this work we have presented numerical results on one 1D
chains of Lennard-Jones oscillators, in contact with two Nosé-
Hoover thermostats. Scrutinizing the behavior of mechanical
quantities that are commonly considered in the specialized
literature, we have investigated the fluctuations and lattice
distortions, which are expected to prevent the onset of
“thermodynamic” regimes [33, 34, 50, 55].

The thermodynamic behavior emerges from the collective
behavior of very large assemblies of interacting particles,
provided that two conditions are met: rapid (compared to
observation time scales) decay of correlation and negligible

boundary effects. These conditions often take place for

3D mesoscopic cells containing large numbers of properly
interacting particles, but it is not obvious in 1D systems. Indeed,
quoting Spohn: “The propagation of local equilibrium in time, if
true, is a deep and highly non-obvious property of a system of
many particles governed by Newton’s equations of motion”, see
[12] section 3.1.

In particular, we have observed that temperature differences
at the boundaries produce O(N) deformations of the lattice, that
result in strongly inhomogeneous systems, and O(N) position
fluctuations that hinder LTE. In turn, we have observed that
such O(N) effects imply that increasing N, and correspondingly
decreasing “temperature gradient,” does not lead our systems
any closer to thermodynamic systems. Consequently, as observed
also elsewhere, standard hydrodynamics does not apply [34, 54,
55]. This must be taken into account when defining e.g., the heat
conductivity, because its anomalies are necessarily related to the
absence of LTE.
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