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RIGIDITY AND GAP RESULTS FOR LOW INDEX PROPERLY

IMMERSED SELF–SHRINKERS IN Rm+1

DEBORA IMPERA

Abstract. In this paper we show that the only properly immersed self–shrinkers
Σ in Rm+1 with Morse index 1 are the hyperplanes through the origin. Moreover,
we prove that if Σ is not a hyperplane through the origin then the index jumps
and it is at least m+2, with equality if and only if Σ is a cylinder Rm−k×Sk(

√
k)

for some 1 ≤ k ≤ m− 1.

Contents

1. Introduction 1
2. Some spectral theory and potential theory on weighted manifolds 3
2.1. Some spectral theory for weighted Schrödinger operators 3
2.2. f–parabolicity of weighted manifolds 5
3. Characterization of low index properly immersed self–shrinkers 7
References 12

1. Introduction

Let Σm be a complete connected orientable m–dimensional Riemannian manifold
without boundary isometrically immersed by x0 : Σm → Rm+1 in the Euclidean
space Rm+1. We say that Σ is moved along its mean curvature vector if there is a
whole family xt = x(· , t) of smooth immersions, with corresponding hypersurfaces
Σt = xt(Σ), such that it satisfies the mean curvature flow initial value problem

(1)

{
∂
∂tx(p, t) = H(p, t)ν(p, t) p ∈ Σm

x(·, t0) = x0.

Here H(p, t) and ν(p, t) are respectively the mean curvature and the unit normal
vector of the hypersurface Σt at x(p, t). When possible, we will choose the unit
normal ν to be inward pointing.

The short time existence and uniqueness of a solution of (1) was investigated in
classical works on quasilinear parabolic equations. Another interesting and more
challenging question is what happens to these flows in the long term. Classical
examples show that singularities can happen. A major problem in literature has
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2 DEBORA IMPERA

been to study the nature of these singularities and it is a general principle, discov-
ered by Huisken, that the singularities are modeled by self–shrinkers. A connected,
isometrically immersed hypersurface x : Σm → Rm+1 is said to be a self –shrinker
(based at 0 ∈ Rm+1) if the family of surfaces Σt =

√
−2tΣ flows by mean curvature.

Equivalently, a self–shrinker can also be characterized as an isometrically immersed
hypersurface whose mean curvature vector field H satisfies the equation

x⊥ = −H,

where (·)⊥ denotes the projection on the normal bundle of Σ. Note that we are
using the convention H = TrΣA, where A denotes the second fundamental form of
the immersion defined as

AX = −∇Xν,

with ∇ Levi–Civita connection of Rm+1. With this convention, the self–shrinker
equation takes the scalar form

〈x, ν〉 = −H.
Standard examples of self–shrinkers are the hyperplanes through the origin of Rm+1,
the sphere Sm(

√
m) and the cylinders Σ = Rm−k × Sk(

√
k) for some 1 ≤ k ≤ m− 1.

Other examples of self–shrinkers are due to Angenent, [2], who constructed a family
of embedded self–shrinkers that are topologically S1 × Sm−1.

It is well–known that self–shrinkers in Rm+1 can be viewed as f–minimal hyper-
surfaces, that is, critical points of the weighted area functional

volf (Σ) =

∫
Σ
e−fdvolΣ,

where f = |x|2/2 (we refer the reader to the papers [3], [9], [14] for more details
on f–minimal hypersurfaces). Moreover, we say that a self–shrinker is f–stable if it
is a local minimum of the weighted area functional for every compactly supported
normal variation. In the instability case, it makes sense to investigate the Morse
index, that is, roughly speaking, the maximum dimension of the linear space of
compactly supported deformations that decrease the weighted area up to second
order.

It was proved by Colding and Minicozzi, [5], that every complete properly im-
mersed self–shrinker is necessarily f–unstable. Equivalently, every properly im-
mersed self–shrinker has Morse index greater than or equal to 1. In the equality
case, rigidity results have been proved by Hussey, [13], under the additional as-
sumption of embeddedness. More precisely, he showed that if a complete properly
embedded self–shrinker in Rm+1 has Morse index 1, then it has to be a hyperplane
through the origin. Furthermore, he also proved that if the self-shrinker is not a
hyperplane through the origin, then the Morse index jumps and it has to be at least
m+ 2, with equality if and only if the self–shrinker is a cylinder Rm−k × Sk(

√
k) for

some 1 ≤ k ≤ m. The embeddedness assumption is used repeatedly in the proof
of this result to ensure that, besides self–shrinker cylinders, there aren’t any others
self–shrinkers which are mean convex or, when m = 2, that split off a line (this a
consequences of Theorems 0.17 and Corollary 10.46 in [5]). In this regard, it is worth
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to point out that there are many examples of non-embedded self–shrinkers. Indeed,
Abresch and Langer, [1], constructed self–intersecting curves in the plane that are
self–shrinkers under the mean curvature flow. Moreover, it is possible to obtain
examples of non-embedded self-shrinkers by taking products of these curves with
Euclidean factors. Finally Drugan and Kleene, [7], recently constructed in generic
dimension infinitely many immersed rotationally symmetric self-shrinkers having the
topological type of the sphere (Sn), the plane (Rn), the cylinder (R × Sn−1), and
the torus (S1 × Sn−1).

The aim of this paper is to investigate if hyperplanes through the origin and
cylinders remains the only hypersurfaces, among the wider family of properly im-
mersed self–shrinkers in Rm+1, having Morse index 1 and m + 2 respectively, and
if, except for them, every properly immersed self–shrinker has Morse index strictly
bigger than m+ 2. Exploiting the link between stability properties of self–shrinkers
and spectral properties of a suitable weighted Schrödinger operator, as well as some
basic identities which naturally involve the weighted Laplacian of the self–shrinker,
we provide a positive answer to the above mentioned problem. More precisely, we
prove the following

Theorem 1.1. Let Σm be a complete properly immersed self–shrinker in Rm+1.
Then

(1) Indf (Σ) ≥ 1 and equality holds if and only if Σ is a hyperplane through the
origin;

(2) If Σ is non–totally geodesic, then Indf (Σ) ≥ m + 2. Moreover, Indf (Σ) =

m+ 2 if and only if Σ = Rm−k × Sk(
√
k) for some 1 ≤ k ≤ m− 1.

2. Some spectral theory and potential theory on weighted manifolds

2.1. Some spectral theory for weighted Schrödinger operators. A weighted
manifold is a triple Σm

f = (Σm, 〈 , 〉 , e−fdvolΣ), where (Σm, 〈 , 〉) is a complete m–

dimensional Riemannian manifold, f ∈ C∞(Σ) and dvolΣ denotes the canonical
Riemannian volume form on Σ. In the following we collect some well-know facts
about spectral theory on weighted manifolds (see e.g. [17, Chapter 3] for an exhaus-
tive survey on spectral theory on Riemannian manifolds).

Associated to a weighted manifold Σf there is a natural divergence form second
order diffusion operator, the f–Laplacian, defined on u by

∆fu = ef div
(
e−f∇u

)
= ∆u− 〈∇u,∇f〉 .

This is clearly symmetric on L2(Σf ) endowed with the inner product

(u, v)L2(Σf ) =

∫
Σ
uve−fdvolΣ.

Given q ∈ L∞loc(Σ), consider the weighted Schrödinger operator

Lu = −∆fu− qu, ∀u ∈ C∞c (Σ).
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This is again a symmetric linear operator on L2(Σf ) and we set Q to be the sym-
metric bilinear form on L2(Σf ) defined as Q(u, v) := (Lu, v)L2(Σf ). Recall that L is
said to be bounded from below if

Q(u, u) ≥ c‖u‖2L2(Σf ), c ∈ R.

In particular, when c ≥ 0, L is said to be non–negative.
Given any open, relatively compact domain Ω ⊂ Σ we define L|Ω to be the

operator L acting on C∞c (Ω) and we denote by LΩ its Friedrichs extension. By
standard spectral theory, LΩ has purely discrete spectrum consisting of a divergent
sequence of eigenvalues {λk(LΩ)}. The first eigenvalue of LΩ is defined by Rayleigh
characterization as

λ1(LΩ) = inf
06=u∈C∞c (Ω)

Q(u, u)

‖u‖2
L2(Σf )

.

Moreover, we define the index of LΩ, Ind(LΩ), to be the number, counted according
to multiplicity, of negative eigenvalues of LΩ.
The bottom of the spectrum of L on Σ is then defined as

λL1 (Σ) = inf{λ1(LΩ) : Ω ⊂⊂ Σ}.

Similarly, the Morse index of L on Σ is defined as

IndL(Σ) := sup{Ind(LΩ) : Ω ⊂⊂ Σ}.

Adapting to the weighted setting arguments in [10] it is not difficult to prove the
following

Proposition 2.1. Let Σf be a weighted manifold and let L = −∆f −q, q ∈ L∞loc(Σ).
The following are equivalent:

(1) IndL(Σ) < +∞;
(2) There exists a finite dimensional subspace W of the weighted space L2(Σf )

having an orthonormal basis ψ1, · · · , ψk consisting of eigenfunctions of L
with eigenvalues λ1, · · · , λk respectively. Moreover, each λi is negative and
any function φ ∈ C∞c (Σ) ∩W⊥ satisfy Q(φ, φ) ≥ 0.

Finally, in case L is essentially self–adjoint, we can relate the Morse index to
the so–called spectral index of L. Towards this aim we first recall that, given a
self–adjoint operator T : D(T )→ L2(Σf ), its spectral index is defined as

Ĩnd
T

(Σ) = sup
{

dimV : V ⊂ D(T ), (Tu, u)L2(Σf ) < 0 ∀ 0 6= u ∈ V
}
.

If L is essentially self–adjoint, then there is a unique self–adjoint extension LΣ of L
and we can define the spectral index of L as the spectral index of its self–adjoint
extension, that is

Ĩnd
L

(Σ) := Ĩnd
LΣ

(Σ).

Furthermore, since Σ is complete, if L is also bounded from below by a constant
c, then it is essentially self–adjoint. In this case LΣ corresponds to the Friedrichs
extension of L, that is, the self–adjoint extension of L associated to the closure of
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the quadratic form Q with respect to the norm ‖ · ‖Q induced by the inner product
Q( , ) + (1− c)( , )L2(Σf ). Moreover, it turns out that

C∞c (Σ)
‖·‖Q

= {u ∈W 1,2(Σf ) : |q|1/2u ∈ L2(Σf )} =: Vq,

and hence the domain of the operator LΣ is the space

D(LΣ) = {u ∈ Vq : LΣu ∈ L2(Σf )},

where LΣu is understood in distributional sense.
The relationship between the two concepts of index presented above is clarified

by the following

Theorem 2.2. Let Σf be a weighted manifold and let L = −∆f − q, q ∈ L∞loc(Σ).

(i) If L is essentially self–adjoint on C∞c (Σ), then Ĩnd
L

(Σ) = IndL(Σ);
(ii) if IndL(Σ) < +∞, then L is bounded from below, essentially self–adjoint on

C∞c (Σ) and IndL(Σ) = Ĩnd
L

(Σ) < +∞.

The proof of the previous theorem is a consequence of Theorem 3.17 in [17] taking
into account that L = −∆f−q (x) is unitarily equivalent to the Schrödinger operator

S = −∆− [(1/4 〈∇f,∇f〉 − 1/2∆f)− q (x)] = −∆− (p (x) + q (x))

under the multiplication map T (u) = e−f/2u of L2(Σ) onto L2(Σf ) (see for instance
[22]).

2.2. f–parabolicity of weighted manifolds. Following classical terminology in
linear potential theory we say that a weighted manifold Σf is f–parabolic if{

∆fu ≥ 0

u∗ = supM u < +∞
⇒ u ≡ u∗.

As a matter of fact, f–parabolicity is related to a wide class of equivalent prop-
erties involving the recurrence of the Brownian motion, f–capacities of condensers,
the heat kernel associated to the drifted laplacian, weighted volume growth, function
theoretic tests, global divergence theorems and many other geometric and potential-
analytic properties. Here we limit ourselves to point out the following characteriza-
tion.

Theorem 2.3. A weighted manifold Σf is f–parabolic if and only if for every vector
field X satisfying

(i) |X| ∈ L2(Σf ),
(ii) (divfX)− ∈ L1

loc(Σf )

it holds ∫
Σ

divf (X)e−fdvolΣ = 0,

where

divf (X) = efdiv(e−fX).
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We refer the reader to [17, Theorem 7.27] for a detailed proof of the previous
result in the unweighted setting. Although the proof of this theorem can be deduced
adapting to the weighted laplacian ∆f the proof in [17], we provide here a shorter
and more direct proof.

Proof of Theorem 2.3. We consider the warped product Σ = Σ×hT, where h := e−f

and T = R/Z, so that vol(T) = 1. We first note that, as proven in [21, Lemma 2.6],
the weighted manifold Σf is f–parabolic if and only if Σ is parabolic. Moreover, as
a consequence of the Kelvin–Nevanlinna–Royden criterion (see [17, Theorem 7.27]),
the parabolicity of Σ is equivalent to the fact that, for every vector field Y ∈ TΣ
satisfying

(a) |Y | ∈ L2(Σ);
(b) (div)−(Y ) ∈ L1

loc(Σ)

it holds ∫
Σ

div(Y )dvolΣ = 0.

Here we have denoted by div the divergence with respect to the metric gΣ = π∗Σ(gΣ)+

h2π∗T (dt2), where πΣ and πT denote the projections of Σ onto Σ and T respectively.

Given a vector field Y ∈ TΣ, we let X = (πΣ)∗(Y ). Taking into account that
dvolΣ = e−fdvolΣdt and using the formulas for covariant derivatives on warped
products (see [16]), it is not difficult to prove that

divf (X) = div(Y ),∫
Σ
|X|2e−fdvolΣ ≤

∫
Σ
|Y |2dvolΣ∫

Σ
(divf )−(X)e−fdvolΣ =

∫
Σ

(div)−(Y )dvolΣ.

Now assume that Σ is f–parabolic and let X ∈ TΣ be a vector field satisfying
the integrability conditions (i) and (ii). Define Y ∈ TΣ by Y(x,t) = Xx. Then

(πΣ)∗Y = X, |X|2 = |Y |2 and Y satisfies the integrability conditions (a) and (b).
Moreover, since Σ is parabolic, it holds

0 =

∫
Σ

div(Y )dvolΣ =

∫
Σ

divf (X)e−fdvolΣ,

proving that f–parabolicity is a sufficient condition for the validity of the global
(weighted) version of the Stokes theorem.

As for the converse, assume that for every vector field X ∈ TΣ satisfying the
integrability conditions (i) and (ii) it holds∫

Σ
divf (X)e−fdvolΣ = 0.

Suppose by contradiction that Σ is not f–parabolic. Thus Σ is not parabolic and
there exists Y ∈ TΣ satisfying the integrability conditions in (a) and (b) and such
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that ∫
Σ

div(Y )dvolΣ 6= 0.

Set X = (πΣ)∗(Y ). Then X satisfies the integrability conditions (i) and (ii). How-
ever ∫

Σ
divf (X)e−fdvolΣ =

∫
Σ

div(Y )dvolΣ 6= 0,

leading to a contradiction. �

From the geometric point of view, it is well known that f–parabolicity is related to
the growth rate of the weighted volume of intrinsic metric objects. Indeed, adapting
to the diffusion operator ∆f standard proofs for the Laplace–Beltrami operator (see
for instance [11], [19]), one can prove the following

Proposition 2.4. Let Σf be a weighted manifold. If

(2) volf (∂Br(o))
−1 /∈ L1 (+∞) ,

then Σf is f–parabolic.

Here ∂Br(o) denotes the geodesic ball of radius r centered at a reference point
o ∈ Σ and

volf (∂Br) =

∫
∂Br

e−fdvolm−1,

where dvolm−1 denotes the (m− 1)–dimensional Hausdorff measure.
Observe also that if volf (Σ) < +∞, then condition (2) is automatically satisfied.

Hence we conclude that any weighted manifold Σf satisfying volf (Σ) < +∞ is
f–parabolic.

Remark 2.5. It was proved in [4] and [6] that for any complete immersed self-
shrinker x : Σm → Rm+1 the following statements are equivalent:

(a) the immersion x is proper;
(b) Σ has extrinsic polynomial volume growth;
(c) Σ has extrinsic Euclidean volume growth;
(d) Σ has finite f–volume, where f = |x|2/2.

In particular, the equivalence (a)–(d) shows that any complete self–shrinker properly
immersed in Rm+1 is f–parabolic, with f = |x|2/2.

3. Characterization of low index properly immersed self–shrinkers

Let x : Σm → Rm+1 be a complete self-shrinker and set f = |x|2
2 . The function

f induces a weighted structure on the self–shrinker that can hence be viewed as
a weighted manifold itself. Basic geometric quantities on the self-shrinker satisfy
identities which naturally involve the f -Laplacian on Σf , as shown in the next

Proposition 3.1. Let Σm be a self–shrinker in Rm+1 and let a ∈ Rm+1 be a constant
vector. Then
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(1) the mean curvature H satisfies

∆fH = (1− ‖A‖2)H.

(2) The function ga = 〈ν, a〉 satisfies

∆fga = −‖A‖2ga.

(3) The function la = 〈x, a〉 satisfies

∆f la = −la.

(4) the squared norm of the second fundamental form satisfies the Simons type
formula

∆f‖A‖2 = 2|∇A|2 + 2‖A‖2(1− ‖A‖2).

We refer the reader to [12, Theorem 4.1] and [5, Theorem 5.2] for a proof of the
identities listed above.

It turns out that stability properties of self–shrinkers, viewed as critical points of
the weighted area functional, are taken into account by spectral properties of the
weighted Jacobi operator Lf , defined as

Lfu = −∆fu− (‖A‖2 + 1)u.

To be more precise, we say that a self–shrinker Σ is f–stable if and only if the
operator Lf is non–negative, that is if and only if

λ
Lf

1 (Σ) ≥ 0.

Furthermore, we define the f–Index of Σ to be the Morse index of the Jacobi operator
Lf , that is

Indf (Σ) := sup{Ind((Lf )Ω) : Ω ⊂⊂ Σ}.

Remark 3.2. Keeping in mind Theorem 2.2 we see that if Indf (Σ) < +∞, then
the weighted Jacobi operator Lf is bounded from below, it is essentially self–adjoint

and Indf (Σ) = Ĩnd
Lf

(Σ). Moreover, the domain of the quadratic form Q(·, ·) =
(Lf ·, ·)L2(Σf ) is the space

V = {u ∈W 1,2(Σf ) : ‖A‖u ∈ L2(Σf )}.

Furthermore, we point out that, if u is an eigenfunction of the Jacobi operator
Lf and u ∈ W 1,2(Σf ), then Lemma 9.15 in [5] implies that u ∈ V. Finally, if

Indf (Σ) < +∞, then λ
Lf

1 (Σ) > −∞ and one can prove the existence of a positive C2

function v satisfying Lfv = λ
Lf

1 (Σ)v (see Lemma 9.25 in [5]). Then, applying again
Lemma 9.15 in [5], it is straightforward to prove that any function φ ∈ W 1,2(Σf )
belongs to V.

In the following we collect some lemmas that will be essential for the proof of the
main result of the paper.
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Lemma 3.3. Let Σm be a properly immersed non–totally geodesic self–shrinker in
Rm+1 satisfying Indf (Σ) < +∞. Set

W := {gb : Σ→ R, gb(p) = 〈ν(p), b〉 ∀p ∈ Σ, b ∈ Rm+1}.

Then dimW ≤ m + 1 and, if dimW = k < m + 1, we can find m + 1 linearly in-
dependent constant non–null vectors {b1, . . . , bm+1} ∈ Rm+1 satisfying the following
properties:

(1) W = span{gb1 , . . . , gbk};
(2) Set U := span{gb1 , . . . , gbk , lbk+1

H, . . . , lbm+1H}. Then
(a) the functions lbjH, j = k + 1, . . . ,m + 1, are eigenfunctions of Lf

corresponding to the eigenvalue −1;
(b) dimU = m+ 1;
(c) U ⊂ V.

Moreover, having set

V := {ϕ : Σ→ R, ϕ(p) = a+ φ(p) ∀p ∈ Σ, a ∈ R, φ ∈ U} ⊂ V,

one has dimV = m+ 2.

Proof. We note first that it is not difficult to prove that if dimW = k < m+1, then we
can find m+1 linearly independent constant non–null vectors {b1, . . . , bm+1} ∈ Rm+1

such that W = span{gb1 , . . . , gbk} and gbj ≡ 0 for any j = k + 1, · · · ,m + 1. This
proves part (1). As for part (2a), it suffices to show that the functions lbjH, j =
k+ 1, · · · ,m+ 1, satisfy Lf lbjH = −lbjH. Note that gbj ≡ 0, a simple computation
shows that the functions lbj satisfy

∇lbj = bTj = bj , Abj ≡ 0.

Thus

∆fHlbj = H∆f lbj + 2〈∇H,∇lbj 〉+ lbj∆fH

= −Hlbj − 2〈AXT , b〉+Hlbj (1− ‖A‖
2)

= −‖A‖2Hlbj ,

showing that the functions lbjH, j = k + 1, · · · ,m + 1, are eigenfunctions of Lf

corresponding to the eigenvalue −1.
As for part (2b), let us prove first that the functions gb1 , . . . , gbk , lbk+1

H, . . . , lbm+1H
are linearly independent. It suffices to show that, for any non-null vectors b =
α1b1 + · · ·+αkbk, c = αk+1bk+1 + . . .+αm+1bm+1, the functions gb and lcH can not
be linearly dependent. Indeed, assume by contradiction that there exists a non–zero
constant λ such that gb = λlcH. Then, in particular

−AbT = ∇gb = λlc∇H + λH∇lc = −λlcAxT + λHc.

In particular,

0 = −〈AbT , c〉 = −〈λlcAxT , c〉+ λH|c|2 = λH|c|2.

Hence H ≡ 0 and Σ must be a hyperplane through the origin, which is absurd.
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In order to prove that U ⊂ V it suffices to show, taking into account Remark 3.2,
that gbi , lbjH ∈W 1,2(Σf ), for any i = 1, · · · , k, j = k+ 1, · · · ,m+ 1. Clearly, since
Σ has finite f -volume, the Cauchy-Schwartz inequality implies that the functions gbi
belong to L2(Σf ). Moreover, since Σ has finite f–index, Theorem 2 in [14] implies
that ‖A‖ ∈ L2(Σf ) and hence, in particular, |∇gbi | ≤ |bi|‖A‖ ∈ L2(Σf ). As for
the functions lbjH, note that Lemma 25 in [18] implies that any properly immersed

self-shrinker satisfies P(|x|) ∈ L1(Σf ), with P(t) any polynomial in t. In particular,
the function |x|2q belongs to the space W 1,2(Σf ) for any q ∈ N and hence, taking
into account Remark 3.2, |x|2q‖A‖ ∈ L2(Σf ). Thus, using the self-shrinker equation,
it is straightforward to see that

|lbj ||H| ≤ |bj ||x||H| ≤ |bj ||x|
2 ∈ L2(Σf )

|∇(lbjH)| ≤ |bj ||x|2‖A‖+ |bj ||x| ∈ L2(Σf ).

Finally, it only remains to prove that dimV = m + 2. Assume by contradiction
that there exists a non-zero constant a and a function φ ∈ U such that φ = a. Then

0 = ∆fφ = −‖A‖2φ = −‖A‖2a,

contradicting again the assumption of Σ being non–totally geodesic. �

Lemma 3.4. Let Σm be a properly immersed self–shrinker in Rm+1 satisfying
Indf (Σ) < +∞. Let φ ∈ U , where U is defined as in the previous Lemma. Then∫

Σ
φ‖A‖2e−fdvolΣ = 0.

Proof. Note that the assumption of Σ being properly immersed implies that it is
f–parabolic. Let φ ∈ U . Then |∇φ| ∈ L2(Σf ) and the conclusion follows as an
application of Theorem 2.3 to the vector field X = ∇φ, keeping in mind Proposition
3.1 and Lemma 3.3. �

We are now ready to prove the main theorem of this paper.

Proof of Theorem 1.1. Note first that if Indf (Σ) = +∞, then the inequality Indf (Σ) ≥
m + 2 is trivially satisfied. Hence assume that Indf (Σ) < +∞. We claim that any
function ϕ = a+ φ, for some a ∈ R, φ ∈ U , satisfies∫

Σ
ϕLfϕe

−fdvolΣ = −
∫

Σ
ϕ∆fϕ+ (‖A‖2 + 1)ϕ2e−fdvolΣ < 0.

In this case, Lemma 3.3 would imply that either Σ is totally geodesic (and hence a
hyperplane through the origin) or Indf (Σ) ≥ dimV = m+ 2.

A straightforward computation shows that

ϕ∆fϕ+ (‖A‖2 + 1)ϕ2 = ϕ2 + ‖A‖2a2 + aφ‖A‖.

Applying Lemma 3.4 we get ∫
Σ
φ‖A‖2e−fdvolΣ = 0.
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Hence

−
∫

Σ
ϕ∆fϕ+ (‖A‖2 + 1)ϕ2e−fdvolΣ = −

∫
Σ
ϕ2 + ‖A‖2a2 + aφ‖A‖e−fdvolΣ

= −
∫

Σ
ϕ2 + ‖A‖2a2e−fdvolΣ

< 0.

Finally, assume that Indf (Σ) = m+ 2. Note that, since H belongs to V (see the
proof of Theorem 9.36 in [5]) and LfH = −2H, we get that H does not change sign.
To see this, assume by contradiction that H changes sign. Then, by Theorem 9.36

in [5] it follows that the least negative eigenvalue λ1 := λ
Lf

1 (Σ) of Lf is strictly less
than −2. Let g be an L2(Σf ) eigenfunction relative to −λ1. Since Indf (Σ) = m+ 2
it follows by Proposition 3.1 that g = aH + φ for some 0 6= a ∈ R and for some
φ ∈ U . Then g ∈ V and, as a consequence of Lemma 9.25 in [5], g does not change
sign. Moreover,

−(λ1 + 1 + ‖A‖2)g = ∆fg = a∆fH + ∆fφ = −‖A‖2g + aH.

In particular, aH = −(λ1 + 1)g, contradicting the fact that H changes sign.
Since H does not change sign and ‖A‖ ∈ L2(Σf ), we can apply Theorem 8 in [20]

with the choices u = ‖A‖, v = H, a = ‖A‖2 − 1 to conclude that ‖A‖ = CH for
some 0 6= C ∈ R and that |∇A| = |∇‖A‖|. These are the key geometric identities
to prove our assertion. Indeed, reasoning as in the proof of Theorem 10.1 in [5], we
can proceed as follows.

Let p ∈ Σ, {ei}mi=1 an orthonormal frame in TpΣ that diagonalizes Ap, then

〈Aei, ej〉 = λiδij .

We hence have that

(i) For every k, there exists αk such that ∇ek〈Aei, ei〉 = αkλi, i = 1 . . . ,m.
(ii) If i 6= j then ∇ek〈Aei, ej〉 = 0.

Since ∇A is fully symmetric, by Codazzi equations, (ii) implies

(ĩi) ∇ek〈Aei, ej〉 = 0 unless i = j = k.

If λi 6= 0 and j 6= i, then 0 = ∇ej 〈Aei, ei〉 = αjλi, so that αj = 0.
In particular, if rk(Ap) ≥ 2, then αj = 0 for every j, and thus, by (i), (∇A)p = 0.
We now consider two cases, depending on the rank of A.
Case 1. There exists p ∈ Σ such that rk(Ap) ≥ 2. Reasoning as in [5] we

deduce that rk(A) is at least two everywhere and hence ∇A ≡ 0 on Σ. According
to a theorem of Lawson, [15], we then obtain that Σ is isometric to a cylinder

Sk(
√
k)× Rm−k, for some 1 ≤ k ≤ m.

Case 2. rk(Ap) = 1. Since |H| > 0, the remaining case to consider is when
the rank of A is exactly one at every point. Assume without loss of generality
that H > 0. In this case, reasoning as in Case 2 of the proof of Theorem 10.1
in [5], we are able to conclude that Σ is invariant under the isometric translations
in the (m − 1)–dimensional subspace spanned by a global orthonormal frame for
Ker(A). Therefore Σ is a product of a curve Γ ⊂ R2 and this (m− 1)–dimensional
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subspace. The curve Γ has to be a smooth complete self-shrinking curve in R2

with H > 0 and finite f -length. In particular, as a consequence of Lemma 10.39 in
[5], Γ is bounded and hence, since it is complete, it is a closed self-shrinking curve
with H > 0. Theorem A in [1] implies then that either Γ is a unit circle or it
is a member of the Abresch-Langer family {Γp,n} described as follows. If p, n are

positive integers satisfying 1/2 < p/n <
√

2/2, there is, up to congruence, a unique
curve Γp,n having rotation index p and with 2n vertices (i.e. critical points of the
curvature H). Proposition 2.1 in [8] implies then that either Γ is a unit circle or
n ≥ 3 and the f -stability operator on Γ has at least 4 negative eigenvalues (counted
with multiplicity). However this latter possibility cannot occur since, otherwise, we
would have that Indf (Σ) = m−1 + Indf (Γ) > m+ 2, contradicting our assumption.
Hence Γ must be a unit circle and this concludes the proof.
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