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We investigate the nonequilibrium behavior of a fully connected (or all-to-all coupled) Bose-Hubbard model
after a Mott to superfluid quench, in the limit of large boson densities and for an arbitrary number V of lattice
sites, with potential relevance in experiments ranging from cold atoms to superconducting qubits. By means of
the truncated Wigner approximation, we predict that crossing a critical quench strength the system undergoes a
dynamical phase transition between two regimes that are characterized at long times either by an inhomogeneous
population of the lattice (i.e., macroscopical self-trapping) or by the tendency of the mean-field bosonic variables
to split into two groups with phase difference π , that we refer to as π -synchronization. We show the latter process
to be intimately connected to the presence, only for V ! 4, of a manifold of infinitely many fixed points of the
dynamical equations. Finally, we show that no fine-tuning of the model parameters is needed for the emergence
of such π -synchronization, that is in fact found to vanish smoothly in presence of an increasing site-dependent
disorder, in what we call a synchronization crossover.
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I. INTRODUCTION

The theory of interacting many-body quantum systems
at equilibrium has advanced remarkably over the past few
decades, to account for various quantum phase transitions, i.e.,
sharp changes of the ground state of an Hamiltonian when its
parameters are varied across some critical values. However,
the behavior of such systems is far less understood when it
comes to the out-of-equilibrium regime, whose relevance has
rapidly grown triggered by significant experimental progress
in gases of ultracold neutral atoms in optical lattices [1–6],
trapped atoms [7–10], and superconducting qubits [11,12].
One of the most established protocols to take these systems to
the nonequilibrium regime is the quantum quench, consisting
of a sudden change of the Hamiltonian of the system from
Hi to Hf at time t = 0 [13–20]. Importantly, over the typical
experimental timescales these systems are essentially isolated
from the environment. In these conditions, one can observe
the emergence of two particularly interesting phenomena. The
first one is a quantum Dynamical Phase Transition (DPT),
identified by a sharp change of the dynamical behavior at a
critical quench strength [18–22], whereas the second, some-
times referred to as thermalization of an isolated system
[22–30], consists in the relaxation of some macroscopic vari-
ables to some finite values at long times.

A well-established approach to the study of the dynamics
of a large population of interacting bosons on a lattice consists
of reducing the Heisenberg equation of motion to the discrete
nonlinear Gross-Pitaevskii equation (GPE) via a mean-field
substitution of the bosonic creation and annihilation operators
a†

j and a j ( j = 1, 2, . . . ,V labeling the lattice site) with the C
numbers ψ j and ψ∗

j [31–37]. Quantum fluctuations can then
be taken into accout within the truncated Wigner approxima-
tion (TWA), that at each time t > 0 considers averages over an
ensemble of classical fields {ψ j (t )} obtained as the evolution

under the GPE of stochastic initial fields {ψ j (0)} [38–40].
Looking at the time evolution of the phases {θ j} of {ψ j}, the
system can be regarded as a system of V classical nonlinearly
coupled oscillators, making thus natural to wonder about the
occurrence of synchronization phenomena. Indeed, Witthaut
et al. recently demonstrated that a particular class of bosonic
models can in this way be recasted to the Kuramoto model for
classically coupled nonlinear oscillators, that is a well-known
model revealing a synchronization transition driven by the
competition between coupling and disorder [36,41–43]. Im-
portantly, since the considered systems are (almost) isolated,
the emergence of synchronization is not due to any dissipation
or external driving, as usually considered [44–52].

In this context, the Bose-Hubbard model is paradigmatic,
describing a system of bosons on a lattice with site-to-site
tunneling and on-site interaction, and exhibiting at equilib-
rium a quantum phase transition between a superfluid (SF)
and a Mott insulator (MI) [53–57]. Such a model finds
various applications in physics [58] from ultracold atoms in
optical lattices [1,59,60] to systems of Josephson junctions
[11,61–63]. For these systems, disorder is known to lead to
glassy phases and Anderson localization [53,64–67], while
recently the phenomenon of many-body localization has also
been analyzed [6]. In the nonequilibrium regime, using an
exact approach Sciolla and Biroli highlighted the existence
of a DPT for a fully connected lattice in the limit of infinite
site number (V → ∞) for small boson densities (that is few
bosons per site) [18–20]. In the opposite limit of large boson
densities, the TWA was adopted to study one, two and three-
dimensional systems [38,68], whereas other works focused
on the bosonic dimer and trimer (that is V = 2, 3) revealing
peculiar dynamical features such as the macroscopic quantum
self-trapping (MQST), that is a symmetry breaking leading to
nonzero average population imbalance [8,31–34,37,69–75].
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Here, by means of the TWA, we study the dynamics after a
MI to SF quench on a fully connected lattice of generic num-
ber of sites V and for a large number of bosons per lattice site.
The choice of a fully connected model is motivated by the ana-
lytical tractability allowed by its symmetries, by the fact that it
represents an approximate description of a finite-dimensional
system [18,19] and by potential experimental realizations with
superconducting qubits [76]. Under these assumptions, our
work aim to capture the leading effects, neglecting possible
corrections due to the finiteness of the lattice coordination
number and of the density ρ0, typically characterizing realistic
systems. Remarkably, we reveal at short times the existence
of a DPT and at long times the relaxation of the system (for
large V ) to two qualitatively very different regimes on the two
sides of the DPT: for strong interactions the lattice sites are
populated in an inhomogeneous way, a phenomenon that we
refer to as MQST, whereas for weak interactions the variables
{ψ j} tend to split in two groups with phase difference π ,
an effect that we refer to as π -synchronization. Interestingly,
we show that these features are intimately connected to the
fixed points (FPs) of the GPE, finding that if and only if
V ! 4 there exists a peculiar manifold of infinitely many
FPs that enables the aforementioned synchronization. Our
results are consistent with the idea that in high-dimensional
lattices the system builds up long-range correlations at low
effective temperatures (that is weak quenches). Furthermore,
we show that no fine-tuning of the model parameters is
needed for the occurrence of such π -synchronization. Indeed,
we find that the long-time asymptotic value of a suitable
π -synchronization parameter S decreases smoothly with the
strength of a site-dependent disorder in what we refer to as a
synchronization crossover.

The paper is organized as follows. In Sec. II, we write
the system Hamiltonian, derive the corresponding GPE and
introduce the TWA, describing the system evolution after
a quench. In Sec. III, we present a powerful argument on
the effects of conserved quantities (namely energy and to-
tal number of particles) on the nonequilibrium dynamics of
the system, and find the mathematical condition underlining
MQST. In Sec. IV, we find the FPs of the GPE, discovering the
existence of the manifold of infinitely many FPs for V ! 4.
In Sec. V, we study the short-timedynamics by means of the
linear stability analysis of the FPs, showing the DPT and, on
one of its sides, the appearance of the MQST. In Sec. VI, we
numerically implement the TWA and investigate the long-time
dynamics, discovering the emergence under particular cir-
cumstances either of MQST or of π -synchronization. From an
analogy with liquid crystals [77], we introduce the parameter
S to quantify the π -synchronization and, in Sec. VII, we
study its robustness against the introduction of site-dependent
disorder, finding the synchronization crossover. In Sec. VIII,
we summarize our results and outline possible directions of
further research. Finally, the appendices are mainly devoted
to technical aspects and derivations.

II. MODEL

To describe the model, we start by deriving the dynamical
equations of a system of interacting bosons on a fully con-
nected lattice, that is a lattice where particles can hop from

any site to any other site with same tunneling strength. By
means of a mean-field approximation, we are able to recast the
Heisenberg equation of motion into a nonlinear and discrete
GPE of motion for classical coupled oscillators of variable
length and phase. The TWA is finally obtained considering an
ensemble of initial stochastic classical fields.

A. Hamiltonian

The Bose-Hubbard model on a fully connected lattice is
characterized by the following Hamiltonian:

HBH = − J
V

V∑

i, j=1
i ̸= j

a†
i a j + u

2

V∑

j=1

n j (n j − 1) − µ

V∑

j=1

n j , (1)

where V is the number of lattice sites, a†
j and a j are the

bosonic creation and annihilation operators at site j, respec-
tively, satisfying the bosonic commutation relation [ai, a†

j ] =
δi, j , n j = a†

j a j is the number operator associated to the jth
site, J is the hopping strength for tunneling between any two
sites (rescaled of a factor V to guarantee extensivity), u is
the energy scale of the on-site two-body repulsive interaction
(u > 0) and µ the chemical potential setting the average
number of particles in the system. In the following, the indices
i, j, k are assumed to run over all the sites 1, 2, . . . ,V , unless
differently specified. We denote by N the total number of
particles and by ρ0 = N/V the average number of particles
per lattice site.

Relevant for the determination of both the equilibrium and
the nonequilibrium properties of the system is the following
dimensionless parameter

η = J
uρ0

. (2)

It is well-known that varying η across a critical value
η

eq
c (ρ0, µ), the system undergoes an equilibrium phase tran-

sition between a SF and a MI, the former being characterized
by long-range coherence and the latter by integer boson den-
sities, existence of a gap for particle-hole excitation and zero
compressibility [53,54]. Within mean field, at integer fillings
and for ρ0 ≫ 1, the transition occurs at [38,53]

ηeq
c ≈ 1

4ρ2
0

, (3)

so that only a small interval 0 < η < 1
4ρ2

0
≪ 1 will correspond

to a MI ground state. As a consequence, switching η from ηi ≈
0 to η f ∼ 1 at t = 0 corresponds in this limit to a MI to SF
quench. It should be emphasized that, in order to consistently
work within the TWA and capture the leading effects, we shall
henceforth assume a large but finite ρ0 ≫ 1. Corrections to
our model arise on the one hand from the deviation of realistic
systems from the Bose-Hubbard model for large ρ0 and on the
other from the finite ρ0 quantum effects beyond TWA [39].

B. Gross-Pitaevskii dynamical equations

The dynamical equation for the bosonic annihilation op-
erator at site k is readily obtained within the Heisenberg
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formalism as (h̄ = 1)

dak

dt
= i[HBH, ak]. (4)

that reads (details in Appendix A 1)

dak

d (it )
= + J

V

V∑

j=1

a j − unkak . (5)

At the mean-field level, for a large number of bosons per
lattice site (ρ0 ≫ 1) and in the SF regime (η > η

eq
c with η

eq
c ≪

1 as explained above), a well-established approximation to
approach Eq. (5) reads [31,38]

⟨nkak⟩ ≈ |⟨ak⟩|2⟨ak⟩,

⟨nk⟩ ≈ ⟨a†
k⟩⟨ak⟩ = |⟨a†

k⟩|
2, (6)

where ⟨· · · ⟩ denotes the expectation value. Because of the
coupling with the environment prior to the quench, in general
the system is not in an eigenstate of the total number of
particles operator

∑V
j=1 n j , and the expectation value ⟨a†

k⟩ is
nonvanishing. We denote

⟨ak⟩ = ψk = √
ρkeiθk , (7)

where ρk and θk are the squared modulus and the phase of ψk ,
respectively. From Eq. (5) and under the approximation (6),
we obtain

dψk

d (it )
= + J

V

V∑

j=1

ψ j − u|ψk|2ψk, (8)

that is a discrete and nonlinear GPE. As detailed in Appendix
A 2, from Eq. (8) we can derive the dynamical equations for
ρk and θk , reading

d
√

ρk

dt
= J

V

V∑

j=1

√
ρ j sin(θk − θ j )

dθk

dt
= J

V

V∑

j=1

√
ρ j

ρk
cos(θk − θ j ) − uρk . (9)

We define the following complex dynamical order param-
eter:

' = reiφ = 1
V

V∑

j=1

√
ρ jeiθ j , (10)

whose modulus and phase are denoted r and φ, respectively.
Similarly to what is tipically done for the Kuramoto model for
classical coupled oscillators [43], considering the real and the
imaginary part of rei(φ−θk ) = 1

V

∑V
j=1

√
ρ jei(θ j−θk ), we readily

find

r cos(φ − θk ) = 1
V

V∑

j=1

√
ρ j cos(θ j − θk ),

r sin(φ − θk ) = 1
V

V∑

j=1

√
ρ j sin(θ j − θk ), (11)

so that Eq. (9) can be compactly rewritten as

d
√

ρk

dt
= Jr sin (θk − φ)

dθk

dt
= Jr

√
ρk

cos (θk − φ) − uρk, (12)

where we stress that r and φ are in general time-dependent,
evolving consistently with all the variables {ρ j, θ j}, accord-
ingly to Eq. (10). Being the system isolated, the average
number of particles per lattice sites ρ0 = 1

V

∑V
j=1 ρ j is a

conserved quantity of Eq. (12).
Expressing the time t in units of h̄

uρ0
and ρk in units of ρ0,

Eq. (12) is rewritten as

d
√

ρk

dt
= ηr sin (θk − φ)

dθk

dt
= η

r
√

ρk
cos (θk − φ) − ρk, (13)

where η is the dimensionless hopping strength defined in
Eq. (2). Importantly, expressing ρk in units of ρ0, the aver-
age of ρk over the sites is renormalized to 1, that is ρ0 =
1
V

∑V
j=1 ρ j = 1. Similarly, r will assume values in (0,1). The

GPE (13) consists of a system of ordinary differential equa-
tions for the 2V real variables {√ρk, θk}. We call configuration
the 2V -dimensional set of variables {√ρk, θk} associated to
the state of the system and phase space the 2V -dimensional
space in which the configurations live. Finally, we observe that
the approximation (6) corresponds to considering a classical
Hamiltonian

HCL = V

⎛

⎝−ηr2 + 1
2

1
V

V∑

j=1

ρ2
j

⎞

⎠. (14)

C. Quench, TWA, and system initialization

To study the system dynamics in the nonequilibrium
regime, we adopt the prototypical quench procedure, consist-
ing of a sudden change of the Hamiltonian at time t = 0 from
Hi to Hf [13,15–20]. Thanks to the high degree of isolation
of the system achievable on the experimental timescales [78],
this procedure enables to investigate an almost-isolated sys-
tem initialized in the ground state of the Hamiltonian Hi and
evolving under the Hamiltonian Hf for t > 0. We shell mostly
focus on (but not limit ourselves to) the MI to SF quench,
corresponding to a change of η from ηi ≈ 0 to η f ∼ 1 at t = 0
(we recall that η

eq
c ≪ 1). In this case the TWA considers initial

fields characterized by uniform density and stochastic phases
[38]

ρ j (t = 0) = ρ0

θ j (t = 0) = Uj, (15)

{Uj} being independent uniform random numbers between 0
and 2π . Importantly, for a large number of sites V the MI

of (15) is characterized by r ∼ 1/
√

V
V →∞−−−→ 0. A graphical

representation of the system mean-field state is shown in
Fig. 1, where V blue markers in the complex plane represent
the variables {ψ j = √

ρ jeiθ j } (one marker per each site), the
red marker represents ' = reiφ and a black circle of radius
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FIG. 1. Graphical representation of the system configuration for
V = 100 lattice sites. In the complex plane, the blue markers repre-
sent the mean-field bosonic variables {ψ j = √

ρ jeiθ j } (one marker
per each site), a red dot represents the complex dynamical order
parameter ' = reiφ and a black circle of radius

√
ρ0 = 1 is drawn

as a reference. (a) Generic configuration, for which the ρ j are spread
around ρ0 and r ̸= 0. (b) Example of initial configuration (t = 0) for
a MI to SF quench [Eq. (15)]. A polar histogram with 10◦ wide bins
illustrates the distribution of the phases {θ j}. The proximity of the
red dot to the origin of the plane reflects the fact that r ≪ 1 for a MI
and V ≫ 1.

√
ρ0 is shown as a reference. Additionally, a polar histogram

of the phases {θ j} with bin width 10◦ is possibly displayed (b).
To better interpret such a representation, it is worth to stress
that r represents the distance of the red marker from the origin
of the complex plane. The fact that for large V the MI (15) is
characterized by r ≈ 0 reflects in its representation (b) into
the red marker being close to the origin.

Having mapped the deterministic quantum evolution onto
a stochastic classical evolution, it is possible to approximate
the quantum expectation value of a normally ordered physical
observable f ({a j, a†

j}) at any t > 0 as [38]

⟨ f ({a j, a†
j})⟩ ≈ ⟨ f ({ψ j,ψ

∗
j })⟩random {θ j (t=0)}, (16)

where the RHS denotes average over the evolutions at time
t > 0 corresponding to different realizations of the initial
random phases of (15). This procedure goes under the name
of TWA and is exact up to an error of order 1/ρ0 [39].
For simplicity and without ambiguity, in the following we
shall however adopt only the notation ⟨. . . ⟩, that has to be
interpreted in the sense of Eq. (16). To evaluate the RHS of
Eq. (16), we aim to study analytically the dynamics generated
by the GPE for a generic initial configuration of the phases
{θ j}. Such study is carried on within the framework of a
dynamical system theory in Secs. III–V. From a computa-
tional point of view instead we perform an average over the
numerical solutions of the GPE obtained for a large number
of simulations, each one for different random initial phases,
as done in Secs. VI and VII.

III. EFFECTS OF CONSERVED QUANTITIES ON THE
NONEQUILIBRIUM DYNAMICS

On the experimentally relevant timescales our system can
be considered isolated [7,23,25], meaning that the nonequi-
librium dynamics of the system will be constrained by the
presence of conserved quantities. Conservation of energy is

for instance preventing the motion of the system from the
ground state of the Hamiltonian Hi (preceding the quench)
to the ground state of the Hamiltonian Hf (following the
quench). In this preliminary section, we show that relevant
information on the nonequilibrium dynamics of the system
can be easily obtained from the conservation of the total
number of particles and of the energy (14) that reads

−ηr2 + 1
2V

V∑

j=1

ρ2
j = E , (17)

where E is a constant depending on the initial condition.
Writing ρ j as ρ j = ρ0 + δ j , the conservation of the total
number of particles reads

∑V
j=1 δ j = 0. Furthermore, in the

particularly interesting case of initial homogeneous density
(δ j = 0), denoting r0 = r(t = 0), we get at initial time t = 0
that E = 1

2 − τ r2
0 , so that Eq. (17) reduces to

1
V

V∑

j=1

(ρ j − ρ0)2 = 2η(r2 − r2
0 ) , (18)

conveying important information on the system nonequilib-
rium dynamics. First, since the left-hand side of Eq. (18) is
positive definite, for all times t > 0, we have

r(t ) ! r0 . (19)

An immediate consequence is that, being r = 1 the largest
possible r, a system initialized close to the superfluid phase
(that is with r ≈ 1) will remain close to the superfluid phase
(namely with r ≈ 1). The second implication of Eq. (18) is
that an increase of r must be accompanied by a spread of the
{ρ j} around their mean value ρ0 = 1 [as happens in Fig. 1(a)].
The goal of the next section is to unveil the conditions under
which such growth of r occurs. From Eq. (18), we finally
notice that, in the recurrent case of r0 ≈ 0, r is a direct
measure of the inhomogeneity of population among the sites,
generalizing to an arbitrary V what in the V = 2 case is called
population imbalance. Therefore a finite ⟨r⟩ corresponds to
MQST.

IV. FIXED POINTS

Aiming to study the dynamics of the system when initial-
ized with homogeneous density and generic phases {θ j}, we
start looking for the FPs of the GPE, that are the configu-
rations that are preserved in time. In fact, in the proximity
of a FP the short-timedynamics can be studied by means of
a linearization of the GPE. Furthermore, the behavior of the
system is intimately related to the FPs even at long times: a
manifold of infinitely many FPs in the phase space, that is
peculiar of V ! 4, allows the asymptotic π -synchronization
of the phases {θ j}, as we will show in Sec. VI. Being of
crucial importance for the determination of the dynamical
properties of the system, in this section, we systematically find
and chategorize the FPs, assigning names and acronymes to
the most relevant of them, that will be extensively adopted in
the remainder. A clear intuition of the FPs is given by their
systematic representation in Fig. 2, to which the reader may
refer throughout this section.
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FIG. 2. Schematic representation of the representative FPs of the
GPE (13) for an even V ! 4. For V = 20 sites we show the UC (a),
two other FPs with r = 0 [(b) and (c)], the SPAC (d), one π -aligned
configuration (e), and the SFC (f). The circular arrows indicate that
the phases of a FP are in general rotating at some constant rate *. (g)
The r = 0 FPs constitute a manifold in the phase space that ranges
from the UC to the SPAC. Notice that also for an odd V ! 5 there is
an analog manifold of infinitely many r = 0 FPs, just lacking of the
SPAC.

To find the FPs we conveniently adopt a definition for
stationarity that allows a common rotation of all the phases
{θ j} at some constant rate * (that can in fact always be
removed with a proper gauge transformation, as shown in
Appendix A 1). Therefore a configuration that fulfills for some
* the following stationarity conditions for all sites k:

d
√

ρk

dt
= ηr sin (θk − φ) = 0 , (20)

dθk

dt
= ηr

√
ρk

cos (θk − φ) − ρk = * , (21)

shall be called a FP of the GPE (13). Clearly, being * site-
independent, it follows from Eq. (21) that φ(t ) = φ(0) + *t .
With a suitable choice of the reference frame we set φ(0) = 0,
so that at t = 0 Eq. (10) reads

1
V

V∑

j=1

√
ρ jeiθ j = r, (22)

From Eq. (20), we find that only two kinds of FPs are possible:
the ones with sin(θk ) = 0 and the ones with r = 0. We address
these two classes of FPs separately. In the following, all the
relevant FPs are defined up to a site permutation (as natural
for a fully connected model) and a rotation of the reference
frame.

A. Superfluid and π-aligned fixed points

The first class of FPs is characterized by θk ∈ {0,π}. The
simpler FP with such property is the superfluid configuration
(SFC), with homogeneous density ρk = ρ0 and equal phases,

that is

ρk = 1

θk = 0, (23)

for which we get r = 1 and * = η − 1. A graphical repre-
sentation of the SFC is shown in Fig. 2(f). Maximizing r, the
SFC is the ground state of the semiclassical Hamiltonian (14).
In the nonequilibrium regime, the system will in general be
far from the SFC.

For an even V , a second relevant FP in this class is the one
with homogeneous density, one half of the phases equal to 0
and the other equal to π , reading

ρk = 1

θk = kπ , (24)

for which r = 0 and * = −1, that we call symmetric π -
aligned configuration (SPAC) and whose graphical represen-
tation is shown in Fig. 2(d). Experimentally, it is possible to
initialize a cold atoms system to the SPAC applying short
pulses to the condensate [38]. In such case, the short-time
dynamics can thus be studied linearizing the GPE around the
SPAC.

Other possible FPs in this class have a fraction α ̸= 1/2 of
sites with phase 0 and the remaining fraction 1 − α with phase
π and will generically be referred to as π -aligned configura-
tions [one example is shown in Fig. 2(e)]. The relevance for
our study of these configurations is limited.

B. r = 0 fixed points

The second class of FPs is characterized by r = 0, for
which the condition (21) reads ρk = −*. Consequently,
Eq. (22) reads

V∑

j=1

eiθ j = 0 . (25)

Equation (25) has in general many solutions (namely infinite
if and only if V ! 4). Of course, the aforementioned SPAC is
one of them, in fact being the only FP satisfying at the same
time r = 0 and θk − θ j ∈ {0,π}.

Certainly the most important FP for our study is the con-
figuration defined for V ! 3 by

ρk = 1

θk = 2π

V
k . (26)

that we call uniform configuration (UC), where the word
uniform is used to stress the uniform spacing 2π/V of the
phases. A graphical representation of the UC is shown in
Fig. 2(a). Importantly, we observe that, in the infinite dimen-
sional limit (V → ∞) and for a proper permutation of the
sites, the UC coincides with the MI (15), since a number
V → ∞ of uniform random phases in (0, 2π ) is equivalent
to V equispaced phases over the same interval. For a large
but finite V ≫ 1, random noise will instead make a generic
MI configuration (15) different from the UC (26) but close to
it. This observation crucially reflects into the fact that for a
MI to SF quench and V ≫ 1, the system is initialized in the
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FIG. 3. Graphical representation of the DC, defined for V = 4
lattice sites in (27). The DC is a parametric FP that, depending on
the value of the parameter , ∈ (π/2,π ), spans the entire manifold
of r = 0 FPs, ranging from the UC (for , = π/2) to the SPAC (for
, = π ).

proximity of the UC and the dynamics at short times can thus
be studied linearizing the GPE around the UC.

Finally, we notice that for V ! 4 the condition (25) defines
an infinity of FPs [e.g., the ones shown in Figs. 2(b) and 2(c)
for V = 20], constituting a (V − 3)-dimensional manifold in
the phase space and of which the UC and (if V is even) the
SPAC are part, as schematically shown in Fig. 2(g). For V = 4
such manifold is a line, and can be represented parametrically
by the following FP:

ρk = 1

θ1 = +π

2
− ,

2
θ2 = −θ1 (27)

θ3 = θ1 + π

θ4 = θ2 + π .

that we call delta configuration (DC) as it depends on the
parameter , and that ranges continuously from the UC (, =
π/2) to the SPAC (, = π ), as shown in Fig. 3. The impor-
tance of the DC lies in the fact that it enables us to carry on
analytical calculations along the manifold of the r = 0 FPs for
V = 4, with generalizations to V > 4, for which we instead
focus on the UC and the SPAC only.

V. SHORT-TIME BEHAVIOR: THE DYNAMICAL
PHASE TRANSITION

Having argued that at time t = 0 the system can be ini-
tialized either in the proximity of the UC or of the SPAC,
we can now proceed with the study of the dynamics of a
system initialized in the proximity of the FPs thanks to a
linearization of the GPE. Here, after briefly reviewing the
instructive V = 2 case, we extend it to all possible V ! 4,
thus covering also to the large dimensional limit V ≫ 1. In
the framework of the dynamical systems theory, by means
of a diagonalization of the Jacobian matrix J (not to be
confused with the dimensional hopping strength) associated
to the linearized GPE in the neighborhood of the most relevant
FPs, we explore the nonequilibrium dynamics at short times

after the quench. Particularly, this is relevant for a SF to MI
quench for V ≫ 1, for which the system is initialized in the
proximity of the UC (15) and for an initialization of the system
to the SPAC (achievable in cold atoms applying short pulses
to the condensate [38]). Looking at the eigenvalues of J , we
find two regions of the parameter space corresponding to two
qualitatively very different behaviors of the system in what
can be called a dynamical phase transition.

We start by linearizing the GPE (13). To this purpose we
introduce the 2V -dimensional column vector

y⃗ = (θ1, θ2, . . . , θV ,
√

ρ1,
√

ρ2, . . . ,
√

ρV )T , (28)

that describes the state of the system at the mean-field level.
The Jacobian J associated to the GPE (13) is the 2V × 2V -
dimensional matrix with entries

Jn,m = ∂

∂ym

(
dyn

dt

)
n, m = 1, 2, . . . , 2V . (29)

If the system is initialized in a state y⃗(0) in the proximity
of a FP y⃗FP, the solution of the linearized GPE reads [79]

y⃗(t ) = y⃗FP + eJt (⃗y(0) − y⃗FP), (30)

where the Jacobian matrix J is evaluated in y⃗FP. From Eq. (30)
it follows that the dynamics of a system is determined by the
eigenvalues {λn} of J [79]. For FPs with r = 0 (such as the
UC, SPAC, and DC) the latter turns out to read (see details in
Appendix C)

Jj,k = − η

V
sin(θk − θ j ),

Jj+V,k+V = − η

V
sin(θk − θ j ),

(31)
Jj+V,k = − η

V
cos(θk − θ j ),

Jj,k+V = + η

V
cos(θk − θ j ) − 2δk, j,

from which we readily find that Tr{J} = 0, meaning that the
real parts of the Jacobian eigenvalues cannot be all positive
or all negative, as expected for a conservative system. Rather,
depending on the considered FP and on η, only the following
two situations are possible: (1) all the eigenvalues {λn} are
purely imaginary (possibly 0), that is the FP is a linear center
of the dynamics: the solution of the linearized equations is a
state cycling periodically and close by the FP when initialized
in its proximity.

(2) Some eigenvalues have positive real part and some
others have negative real part, that is the FP is a saddle of the
dynamics: the solution of the linearized equations is a state
moving exponentially fast apart from the FP when initialized
in its surroundings (because of random noise on the initial
condition we exclude the possibility of system initialization
exactly along a linear combination of eigenvectors associated
to the eigenvalues with negative real part only).

Importantly, the FP in the former case is termed a linear
center, since the above arguments on the eigenvalues are exact
only for the linearized GPE. A priori, a linear center is not
necessarily a nonlinear center, that is the nonlinearities of
the GPE can make the system eventually move away from
the FP at long times even if the latter is a linear center [79].
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Interestingly, for a conservative system, a linear center is also
a nonlinear center if it is isolated (meaning that it is not part of
a continuum of FPs). Since if the FP is a saddle (linear center)
the system will (will not) drift away exponentially fast from
it, with some abuse of nomenclature we will often refer to it
as being stable (unstable).

Exploiting the presence of conserved quantities, in Sec. III,
we showed that a system initialized in the proximity of the
SFC always orbits closely around it, meaning that the SFC
is a nonlinear center of the dynamics for any value of η > 0.
With the above argument we can thus deduce that the SFC
is an isolated FP (as indeed found in Sec. IV) and that the
associated eigenvalues of J are purely imaginary (as explicitly
verified for completeness in Appendix C). Instead, for a given
FP with r = 0, it turns out that there exists a critical value ηFP

c
of the dimensionless hopping strength such that the FP is a
saddle for 0 < η < ηFP

c and a linear center for η > ηFP
c . This

feature, known as bifurcation in the dynamical systems theory,
leads to two qualitatively very different behaviors for a system
initialized in the proximity of the considered FP (e.g., UC for
a MI to SF quench for V ≫ 1) depending on η ≶ ηFP

c , that is
a DPT [18–20,22]. In this section, we exactly diagonalize the
Jacobian matrix J and find ηFP

c for the DC (V = 4), the UC
(for V ! 3), and the SPAC (for an even V ), thus locating the
DPT.

A. A short review of the V = 2 case

Before addressing the higher V case, it is useful to re-
call the results of the two-site system (that is a bosonic
dimer) [8,31,33,34,37,69–71,80], with further details given in
Appendix B. Exploiting the constraint of conservation of the
total number of particles (ρ1 + ρ2 = 2ρ0 = 2), one can reduce
the GPE (13) to

∂θ

∂t
= −δ − η

2
δ

√
1 − δ2

4

cos θ

∂δ

∂t
= 2η

√
1 − δ2

4
sin θ , (32)

where δ = ρ1 − ρ2 is the population imbalance and θ = θ1 −
θ2 is the phase difference between the two sites. The Jacobian
eigenvalues associated to the GPE (32) for the various FPs are

λSFC
1,2 = ±2i

√
η

2

(η

2
+ 1

)
,

λSPAC
1,2 = ±2

√
η

2

(
1 − η

2

)
, (33)

λ
PAC±
1,2 = ±2i

√
η

2

(
1 + 4

η2

)
,

where PAC+ and PAC− are two possible π -aligned con-
figurations existing only for η < ηc = 2 and having r ̸= 0.
Being λSFC

1,2 and λ
PAC±
1,2 purely imaginary for any η > 0, the

SFC and (when existing) the PAC± are linear centers of the
dynamics. Conversely, the SPAC presents a double nature
depending on the value of η: for 0 < η < ηc = 2, it is a
saddle of the dynamics (λSPAC

1 > 0 and λSPAC
2 < 0), whereas

for η > ηc = 2, it is a linear center of the dynamics (λSPAC
1,2 are

FIG. 4. Dynamics of the two-site model in the phase space with
coordinates θ = θ1 − θ2 and δ = ρ1 − ρ2. (a) Semiclassical energy
(14) in the surroundings of the SPAC (δ = 0, θ = π ) together
with some relevant trajectories (in blue) for η = 1 < ηSPAC

c = 2. (b)
Phase portrait for η = 1: we show the FPs (red dots), some relevant
nonequilibrium trajectories (blue lines), and the flow (green arrows)
associated to the GPE (32). [(c) and (d)] Energy landscape and
phase portrait for η = 3 > ηSPAC

c . The SPAC is either a saddle or a
maximum of the semiclassical Hamiltonian depending on η < ηc (a)
or η > ηc (c) and corresponding to a saddle (b) and a nonlinear center
(d) of the dynamics, respectively. Instead, the SFC (θ = δ = 0) and
the π -aligned configurations are nonlinear centers for any η > 0 and
for 0 < η < ηc. respectively [(b) and (d)]. Noticeably, the isolation
(from the other FPs) of the SPAC is in stark contrast with the V ! 4
case.

both purely imaginary). The nature of the FPs is intimately
related to the shape of the semiclassical energy landscape
[Figs. 4(a) and 4(c)], and heavily impacts on the features of
the trajectories of the system in the phase space [Figs. 4(b)
and 4(d)]. Trajectories starting in the proximity of the SPAC
will closely orbit around it for η > ηc, and instead drift away
from it exponentially rapidly (and eventually come back at
later times) if 0 < η < ηc. The instability of δ = 0 in the
latter case is at the origin of the MQST, that is a average
nonzero population imbalance [37]. A system initialized in the
sourroundings of the SFC will instead closely orbit around it
for any η > 0.

Importantly, being the system conservative and being all
the FPs isolated, linear centers of the dynamics will always
be nonlinear centers as well. This powerful information, ex-
tendible to V = 3 but in stark contrast with V ! 4, guarantees
that the solution of the linearized GPE is accurate even at long
times and for the whole nonlinear GPE (32) when close to
a linear center. This is clear from Fig. 4(c), where we show
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FIG. 5. Depending on the value of the dimensionless hopping
strength η, for a number of lattice sites V ! 4, the behavior of a
system initialized close to a r = 0 FP changes sharply in what we
refer to as a DPT. (a) The DC (defined for V = 4) is a saddle (linear
center) of the dynamics if η < ηDC

c = 2[1 + sin(,)] (η > ηDC
c ). If

and only if η < ηUC
c (η < ηSPAC

c ), for a system initialized in the
proximity of the UC (SPAC), the dynamical order parameter r will
grow exponentially at short times as r ∼ et/τUC

(r ∼ et/τSPAC
). (b)

Inverse of the characteristic time τ FP for both the UC (blue dashed
line) and SPAC (red continuous line). At the critical ηUC

c = 4 and
ηSPAC

c = 2, the characteristic time of the UC and SPAC, respectively,
diverges.

the energy landscape in the surroundings of the SPAC for
η > ηc and one possible trajectory (in blue). Since energy
is conserved and the SPAC is isolated, the trajectory must
necessary be a cycle around the SPAC, even at long times.

B. Stability of the uniform configuration (V ! 3) and
macroscopic quantum self-trapping

We now consider the case of the UC, that is we evaluate
the Jacobian matrix (31) for the configuration (26). This case
is particularly relevant since for a MI to SF quench and V ≫ 1
the system is initialized in the proximity of the UC, so that we
observe a DPT at ηUC

c .
The nonzero eigenvalues of the Jacobian matrix J read

(details in Appendix C)

λ±
+1 = iη ±

√
4η − η2

2
, (34)

λ±
−1 = −iη ±

√
4η − η2

2
. (35)

For η < ηUC
c = 4, some eigenvalues (λ+

1 , λ+
−1) have positive

real part and some others (λ−
1 , λ−

−1) negative real part, making
the UC a saddle point of the dynamics. If the system is
initialized in the proximity of the UC, it will drift away from
it aligning along the direction defined by the two eigenvectors
associated to the eigenvalues with positive real part (λ+

1 , λ+
−1).

Along this direction and at short times, the modulus r of '
grows as (details in Appendix C)

r ∼ et/τUC
, (36)

with characteristic timescale [dashed blue line in Fig. 5(b)]

τUC = 2
√

4η − η2
(37)

and where we used the symbol ∼ meaning that the exponential
divergence will occur after a possible very short transient in

FIG. 6. Exact numerical solution of the nonlinear dynamics (13)
up to long times for V = 500 sites and a MI to SF quench. [(a)–
(c)] Graphical representation of the mean-field state for a single
simulation with initial condition given by Eq. (15). For graphical
clarity, only the blue markers of 300 out of the V = 500 bosonic
variables are represented. At time t = 0, the phases are randomly
distributed (a), whereas at t = 1000 either the {ρ j} are spread around
ρ0 (b) or the {θ j} are π -synchronized (c). (d) Dynamics of the
expected value ⟨r⟩ obtained according to Eq. (16) as an average
over 3000 simulations [each one for a different realization of the
random initial phases (15)]. For η = 2 < ηUC

c = 4 (blue continue
line), ⟨r⟩ grows exponentially at short times (⟨r⟩ ∼ exp[t/τUC], see
inset with logarithmic ordinate axis) and relaxes to a finite value 0.38
at long times, indicating MQST and reflected in the spread of the
{ρ j} in (b). For η > ηUC

c (red dashed line), ⟨r⟩ remains instead small.
(b) Dynamics of the expected value ⟨S⟩ of the π -synchronization
parameter S obtained as an average over 3000 simulations. For η =
5 > ηUC

c , ⟨S⟩ asymptotically relaxes to a finite value 0.35, indicating
a robust shift of the system towards the SPAC.

which the system aligns with the unstable eigenvector. Such
short transient and the exponential growth of r at short times
for η < ηUC

c are correctly observed for η = 2 in the inset of
Fig. 6(d), with logarithmic ordinate axis. Close to the DPT we
have τUC ∼ |1 − η

ηc
|−β with critical exponent β = 1/2. For

η < ηUC
c , the increase of r corresponds to an increase of the

spread of the boson numbers at each site {ρ j} around their
mean value ρ0 [see Sec. III and Fig. 6(b)], that is to a symme-
try breaking and the emergence of MQST. In particular, from
Eq. (18), we got that the variance over the sites of the number
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of bosons {ρ j} at each site reads ⟨(ρ j − ρ0)2⟩ j = 2η(r2 − r2
0 )

and thus grows as ∼ e2t/τUC
at short times.

For η > ηUC
c = 4 instead, λ+

1 , λ−
1 , λ+

−1, λ
−
−1 are all purely

imaginary, the UC is a linear center and, at least at short
times, the system cycles around it. For a MI to SF quench
and large V , r will correspondingly remain small (∼1/

√
V )

and fluctuate in time.

C. Stability of the symmetric π-aligned configuration (even V )

To obtain information on the stability of the SPAC, assum-
ing an even number of lattice sites V , we diagonalize exactly
the Jacobian matrix J evaluated in the configuration (24),
finding (see Appendix C) the following nonzero eigenvalues:

λ+ = +
√

η(2 − η), (38)

λ− = −
√

η(2 − η). (39)

For a system initialized in the proximity of the SPAC the DPT
is thus located at ηSPAC

c = 2. For η < ηSPAC
c , the divergence

timescale is τ SPAC = 1/λ+ = (η(2 − η))−1/2 [continuous red
line in Fig. 5(b)].

D. Stability of the delta configuration (V = 4)

We now aim, for V = 4, to study the linear stability of
the DC, that runs parametrically over the whole manifold of
r = 0 FPs, ranging from the UC to the SPAC. With the help of
a symbolic manipulation software we plug the configuration
(27) into the Jacobian matrix (31), exactly finding its associ-
ated characteristic polynomial

P(λ) = λ4(λ4 + η(η − 2)λ2 + η2 sin(,)). (40)

Studying the roots of P(λ), that are the eigenvalues of the
Jacobian, it is easy to show that

ηDC
c = 2(1 + sin(,)), (41)

such that the DC corresponding to a given , is a saddle (linear
center) of the dynamics if η < ηDC

c (η > ηDC
c ), as shown in the

dynamical phase diagram of Fig. 5(a). In agreement with the
previous results, we find that ηc = 2 for the SPAC (, = π )
and that ηc = 4 for the UC (, = π/2).

As a final remark, we stress that the validity of the present
linear stability analysis is limited to short times only. Indeed,
in the long-time regime, the nonlinearities of the GPE (13)
crucially impact on the system dynamics. In particular, for
V ! 4 and η > ηUC

c , the UC is a linear center but not neces-
sarily a nonlinear center, since it is nonisolated (it is in fact a
part of the manifold of the r = 0 FPs). This means that in the
long-time and nonlinear regimes, a system initialized in the
proximity of the UC (as for the MI to SF quench for V ≫ 1)
can a priori still drift away from it, even for η > ηUC

c . This
reasoning is peculiar of the V ! 4 case and at the basis of the
possible emergence of the π -synchronization of the bosonic
phases {θ j} that we address in the next section.

VI. LONG-TIME DYNAMICS AND π-SYNCHRONIZATION

In this section, we go beyond the linear analysis presented
above and investigate the long-time (t ≫ 1/|λ±

±1|) nonlinear

dynamics. To this purpose we solved numerically the GPE (8)
with the MATLAB built-in adaptive ordinary differential equa-
tions solver ODE45, for V ≫ 1 and a MI to SF quench, so that
the DPT is located at a critical dimensionless hopping strength
ηUC

c = 4 and that r0 = r(t = 0) ∼ 1√
V

≪ 1. The TWA is then
considered averaging the mean-field observables over a large
number of simulations (each one with different random initial
phases {θ j}) to approximately compute the dynamics of the
expectation values at any time t ! 0 according to Eq. (16). In
this way, we find that for η < 4 (η > 4) a macroscopic dy-
namical order parameter ⟨r⟩ (⟨S⟩) relaxes to a finite value, the
finiteness of ⟨S⟩ underlying π -synchronization of the phases
{θ j}, that is their tendency to split into two groups with phase
difference π . With its intuitive phase-space representation and
its analytical results, our fully connected model is consistent
with the idea that in high-dimensional lattices the system
asymptotically builds up long-range correlations [68] only
at low effective temperatures (that is weak quenches, i.e.,
small η).

A. Long-time dynamics for η < 4

In the long-time regime, the nonlinearities of the GPE
(13) comes into play. If we look at the dynamics of r for a
given initial condition [e.g., Figs. 6(a) and 6(b) for η = 2 at
t = 0 and t = 1000, respectively), we find that, after the initial
growth predicted by the linear stability analysis of Sec. V, r
fluctuates in time around a finite value. When considering the
average ⟨r(t )⟩ over a large number of simulations [in the spirit
of Eq. (16)], these long-time fluctuations vanish, revealing
an asymptotic relaxion to a finite value (e.g., ⟨r⟩ → 0.38 for
η = 2), as showed in Fig. 6(d). As explained in Sec. III, the
finiteness of ⟨r⟩ at long times corresponds to a well-defined
spread of the {ρ j} around their mean value ρ0 (that is MQST),
that is displayed at t = 1000 for one specific initial condition
in Fig. 6(b). Notice that the growth of ⟨r⟩ does not indicate
at all a tendency of the system to reach the SFC (for which
r = 1 and ρ j = ρ0). In Sec. III, we have in fact shown this
to be forbidden by the presence of conserved quantities in the
nonequilibrium regime. The relaxation of the system to the
SFC will possibly happen on much longer timescales thanks
to the interaction with the environment, that goes beyond the
interests of our study.

B. Long-time dynamics for η > 4

As shown in Sec. V by solving the linearized GPE, if
η > ηUC

c at short times the system orbits in the phase space
around the UC, that is in fact a linear center of the dynamics.
Correspondingly, r remains small (in the same order of r0,
meaning that no MQST occurs) and fluctuates, eventually
relaxing at long times [dashed red line for η = 5 in Fig. 6(d)].
However, in striking contrast with the V = 2, 3 cases, the
UC is a nonisolated FP (it is in fact part of the continuous
manifold of r = 0 FPs), and in general is thus not a nonlinear
center of the dynamics, despite the system being conservative.
That is, when considering the whole nonlinear GPE (13),
at long times the system can actually drift away from the
initial condition, moving in the proximity of the manifold of
the r = 0 FPs and along it, still conserving energy and total
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S

TrTT ajectories (a), (b)

SFC

SPAC

UC

PACs

Phase space
Fixed points

Line ofr = 0 FPs

IC r≈ 0.38
r=1

S=1

S ≈0.35

r=0
S=0

FIG. 7. [(a) and (b)] Schematic representation of the trajectories
of the system (in blue) in the phase space for η = 2 and η = 5,
respectively, after a MI to SF quench, under the nonlinear GPE, up to
long times and for an even V ≫ 1. The red line and dots represent the
FPs, and the most relevant configurations are displayed. The blue dot
represents the initial condition. For η = 2 (η = 5), the system drifts
away from (orbits close to) the manifold of the r = 0 FPs, finally
relaxing to a state characterized by a finite r (S). For instance, in
reference to Fig. 6, the state at long time is characterized by r ≈ 0.38
(S ≈ 0.35).

number of particles. For instance, considering the particular
initialization at t = 0 of Fig. 6(a), the system at t = 1000
for η = 5 looks considerably differently but still with r ≪ 1,
[Fig. 6(c)]. To track the position of the system in the phase
space with respect to the manifold of r = 0 FPs, we introduce
therefore a π -synchronization dynamical order parameter S
defined as

S(t ) = 1
V 2

V∑

j,k=1

ψ∗
k ψ∗

k ψ jψ j . (42)

An interpretation of S is easily accessible expressing it as S =
1

V 2

∑V
j,k=1 ρ jρk[2 cos(θ j − θk )2 − 1]. This quantity, which re-

sembles the order parameter typically considered in the study
of liquid crystals at equilibrium [77], provides a measure of
the tendency of the phases {θ j} to π -synchronize. In the sense
of Eq. (16), averaging S over a large number of different
mean-field evolutions we approximate the expectation value
of the corresponding quantum operator 1

V 2

∑V
j,k=1 a†

ka†
ka ja j .

On the manifold of the r = 0 FPs, S ranges from 0 (for
the UC) to 1 (for the SPAC). Looking at the evolution of S
we are therefore able to quantify the position of the system
with respect to such manifold in time. This can be clearly
seen in the case of V = 4, for which the parametric DC is
characterized by S(,) = cos2(,), and works analogously for
larger V . In Fig. 6(e), we plot ⟨S⟩ against t for V = 500.
For η = 5 > ηUC

c (red dashed line), ⟨S⟩ increases from 0,
corresponding to the initial MI, up to a finite value 0.35,
underlying the dynamical emergence of π -synchronization of
the bosonic phases {θ j}. Importantly, the growth at short times
is not exponential, confirming once more to be intimately
connected to the nonlinearities of the GPE. Once more, we
stress that this phenomenon is enabled by the manifold of

isoenergentic r = 0 FPs that, only for V ! 4, opens a channel
for the nonequilibrium dynamics connecting the UC to the
SPAC, towards which the system shifts robustly. Notice that,
since the system is isolated, the stabilization of ⟨S⟩ for large
V is an intrinsic property and is not due to the presence
of driving and dissipation, as typically considered in the
literature [44–51].

In Fig. 7, we schematically show some possible trajectories
of the system (in blue) evolving in the phase space under
the GPE for a large and even V (the schematic for a odd
V would be very similar though, just without the SPAC),
together with the graphical representation of the most relevant
configurations. For a MI to SF quench and η = 2 < ηUC

c = 4
(a), the system drifts away from the manifold of r = 0 FPs
because of the linear instability, eventually relaxing to a state
characterized by ⟨r⟩ ≈ 0.38 and by consequent spread of the
number of bosons per site {ρ j}. Conversely, for η = 5, the
system closely orbits around the aforementioned manifold
(since the latter is made of linear centers of the dynamics),
while progressively shifting towards the SPAC due to the
nonlinearities of the GPE (b).

VII. DISORDER-INDUCED SYNCHRONIZATION
CROSSOVER

Having discovered in the previous section that the dynam-
ics generated by the nonlinear GPE can lead at long times
to a partial π -synchronization of the phases {θ j}, we now
show that such synchronization does not require fine-tuning
of the model parameters, and is rather robust with respect
to the introduction of site-dependent disorder. We consider
thus the following disordered version of the Bose-Hubbard
Hamiltonian

H = HBH +
V∑

j=1

* jn j , (43)

where {* j} are a set of independent and identically distributed
Gaussian random numbers of zero mean and standard devia-
tion 0. Applying a mean-field approximation analog to the
one used to obtain (13), we find the following GPE associated
to the Hamiltonian (43):

d
√

ρk

dt
= ηr sin (θk − φ)

dθk

dt
= η

r
√

ρk
cos (θk − φ) − ρk + ωk, (44)

where ωk = *k
uρ0

. We call disorder strength the dimension-
less parameter σ = 0

uρ0
, that is the standard deviation of the

random numbers {ω j}. Interpreting the variables {θ j} as the
phases of a population of classical oscillators (one per lattice
site), in Eq. (44), the disorder can be regarded as affecting the
oscillators natural frequencies {ω j}, thus competing against
the tendency of the oscillators to π -synchronize. This is
reminiscent of the Kuramoto model for classically coupled
nonlinear oscillators [41–43].

To investigate such competition, we solve the GPE (44) for
V = 300 lattice sites and a MI to SF quench. Looking at the
mean-field dynamics obtained for η = 5 for one given initial
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FIG. 8. The disorder competes against the tendency of the phases
{θ j} to π -synchronize. We numerically solve the GPE (44) for V =
300 lattice sites and a MI to SF quench. [(a) and (c)] Graphical
representation of the mean-field state of the system for a single
simulation at initial time (a), and at time t = 200 for σ = 0 (b) and
σ = 45 × 10−3 (c). The polar histogram of the phases {θ j} helps to
visualize the reduction of π -synchronization due to the disorder. (d)
Time dynamics of the expected value ⟨S⟩ of the π -synchronization
parameter S computed as an average over 1000 simulations [each
one with a different realization of the initial random phases (15)] ac-
cording to Eq. (16). ⟨S⟩ is smaller for larger disorder strengths (σ =
0, 15, 30, 45, 60 × 10−3). (e) Asymptotic value ⟨S(t → ∞)⟩ vs the
disorder strength σ . For increasing disorder, the π -synchronization
is progressively broken in a synchronization crossover with onset
decreasing with η.

condition [shown in Fig. 8(a)], at time t = 200 we observe
a clear reduction of the π -synchronization in the disordered
case [σ = 0.045, Fig. 8(c)] with respect to the nondisordered
one [σ = 0, Fig. 8(a)]. The dynamics of the expectation value
⟨S⟩ of the π -synchronization parameter S is then computed
within the TWA as an average over the dynamics obtained for
1000 different realization of the initial random phases (15). In
Fig. 8(d), we show ⟨S⟩ to decrease for an increasing disorder
strength σ = 0, 15, 30, 45, 60 × 10−3. In Fig. 8(e), we plot
the asymptotic value of ⟨S⟩ against the disorder strength for
η = 5 (continue blue line) and 10 (dashed red line), showing a
smooth synchronization crossover with onset decreasing with
η. For small (large) disorder σ , at long time, the phases {θ j}
are π -synchronized (uncorrelated).

VIII. CONCLUSIONS

In conclusion, we studied the nonequilibrium dynamics
induced by a quantum quench to the SF regime in the
Bose-Hubbard model (1) on a fully connected (or all-to-all
coupled) V -dimensional lattice, with potential experimental
applications ranging from cold atoms in optical lattices to
superconducting qubits. We derived the semiclassical, discrete
and nonlinear GPE (13), which amounts to a problem of
V classical and nonlinearly coupled oscillators with variable
phase and length {θ j,

√
ρ j}, and accounted for quantum fluc-

tuations considering an ensemble of stochastic initial phases
{θ j} in the so called TWA. Having compacted the GPE thanks
to the introduction of a complex dynamical order parameter
r, we showed that for V ! 4, there exists a peculiar class of
infinitely many FPs of the GPE (namely the ones with r = 0
and homogeneous density ρ j = ρ0) forming a manifold in the
phase space. Among the FPs of such manifold, particularly
relevant are the SPAC (24) and the UC (26), the latter being
in the proximity of the initial condition in case of a MI to
SF quench for V ≫ 1. Linearizing the GPE and diagonalizing
the respective Jacobian matrix, we studied the short-time
dynamics for a system initialized in the proximity of the most
relevant FPs, that is the UC (for V ! 3), the SPAC (for even
V ), and the DC (a parametric FP spanning the r = 0 manifold
for V = 4). We found that, depending on the considered FP,
there exists a certain critical hopping strength ηFP

c such that
at short times if η > ηFP

c (i.e., small interactions) the system
remains close to the initial condition, whereas if η < ηFP

c (i.e.,
large interactions) it drifts away from the FP exponentially
fast (⟨r⟩ ∼ et/τ FP

), indicating MQST. Such sharp change of
dynamic behavior when varying η across a critical value is
a DPT, that we located at ηUC

c = 4, ηSPAC
c = 2, and at ηDC

c =
2(1 + sin(,)). Furthermore, for a MI to SF quench with V ≫
1, we investigated numerically the long-time dynamics gen-
erated by the whole, nonlinear GPE, computing expectation
values as averages over the random initial phases according
to the TWA. For η < ηUC

c = 4, we proved the emergence
of MQST whereas for η > ηUC

c = 4, we showed that the
system exhibits a slow drift in the phase space from the
proximity of the UC towards the SPAC, eventually relaxing
to a state where the phases {θ j} are π -synchronized. We
argued this phenomenon, which we quantified with a suitable
dynamical order parameter S, to be intimately connected to
the presence of the manifold of r = 0 FPs. We finally studied
the robustness of the long-time π -synchronization against the
introduction in the model of site-dependent disorder, finding
that ⟨S⟩ vanishes in a smooth synchronization crossover for
an increasing disorder strength, meaning that no fine-tuning
of the model parameters is needed for the π -synchronization
to occur.

Future developments. We conclude by outlining possi-
ble developments of the present investigation. A fascinat-
ing challenge is to work out analytical approaches that en-
able to understand at a deeper level the emergence of π -
synchronization, that is intimately connected to the nonlinear
terms of the GPE. One possibility is represented by the contin-
uum limit for V → ∞ of the nonlinear GPE, that is addressed
in Appendix D. It is then crucial to analyze the effects beyond
the TWA due to the finiteness of ρ0 [39]. Furthermore, we
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notice that the TWA is potentially a powerful tool to address
the emergence of spontaneous synchronization in generic (al-
most) isolated many-bosons quantum systems different from
the one considered in the present work or in Refs. [36,38,68].
As seen, under particular circumstances, such systems can in
fact be turned into systems of nonlinearly coupled classical
oscillators (in general of variable phase and length), for which
synchronization is a universal and fundamental concept [81].
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APPENDIX A: DYNAMICAL EQUATIONS

1. Explicitation of the Heisenberg equation of motion

To compute the commutators of Eq. (4), we evaluate the
following terms:

[n j (n j − 1), ak] = −2n ja jδ j,k,

[n j (n j − 1), a†
k] = +2a†

j n jδ j,k,

[a†
i a j + a†

j ai, ak] = −δi,kak − δ j,kak,

[a†
i a j + a†

j ai, a†
k] = δi,ka†

k + δ j,ka†
k, (A1)

so that Eq. (4) is explicitly rewritten as

dak

d (it )
= + J

V

V∑

j ̸=k

a j − unkak + µak . (A2)

Exploiting the gauge freedom we can safely operate the fol-
lowing substitution for the bosonic creation and annihilation
operators:

a†
j → a†

j e
−i*Gt ,

a j → a jei*Gt , (A3)

where *G is an arbitrary real and time-independent number.
Under the transformation (A3), the bosonic commutation
relations are in fact preserved, that is [akei*Gt , a†

j e
−i*Gt ] =

[ak, a†
j ] = δk, j , meaning that a jei*Gt and a†

j e
−i*Gt are still

annihilation and creation bosonic operators associated to the
jth site, respectively. Under the gauge transformation (A3),
(A2) transforms into

dak

d (it )
= +*Gak + J

V

V∑

j ̸=k

a j − unkak + µak . (A4)

Considering *G = J
V − µ, we finally get

dak

d (it )
= + J

V

V∑

j=1

a j − unkak, (A5)

that is (5).

2. Dynamical equations for ρk and θk

We can derive the dynamical equations for ρk and θk , that
are the squared modulus and the phase of ψk , respectively,
starting from the ones for ψk and ψ∗

k (8). We just have to
write ρk = ψkψ

∗
k and θk = 1

2i log( ψk
ψ∗

k
) and proceed with the

following straightforward computations:

dρk

d (it )
= ψ∗

k
dψk

d (it )
+ ψk

dψ∗
k

d (it )
= + J

V

V∑

j=1

(ψ jψ
∗
k − ψ∗

j ψk )

= +2i
J
V

V∑

j=1

√
ρ jρk sin(θ j − θk ), (A6)

dθk

d (it )
= d

d (it )
1
2i

log
(

ψk

ψ∗
k

)
= 1

2i

ψk
d (it )ψ

∗
k − ψ∗

k
d (it )ψk

|ψk|2

= −i

⎛

⎝ J
V

V∑

j=1

|ψ j |
|ψk|

cos(θ j − θk ) − u|ψk|2
⎞

⎠, (A7)

that is Eq. (9).

APPENDIX B: TWO-SITE MODEL

In this section, we review some results on the simple
case of V = 2 (a bosonic dimer) [8,31,33,34,37,69–71,80].
Exploiting the conservation of the total number of particles
ρ1 + ρ2 = 2ρ0 = 2 and introducing the population imbalance
δ = ρ1 − ρ2, we express the population in the two sites as
ρ1,2 = 1 ± δ/2 and reduce the GPE (13) to a two-dimensional
system of dynamical equations

∂θ

∂t
= −δ − η

2
δ

√
1 − δ2

4

cos θ ,

∂δ

∂t
= 2η

√
1 − δ2

4
sin θ , (B1)

that is Eq. (32) and where θ = θ1 − θ2 is the difference of
the phases of the two sites. Since δ = ±2 corresponds to the
case of all particles being in the same site (that is V = 1), we
consider |δ| < 2 without loss of generality. The stationarity
conditions read

−δ = η

2
δ

√
1 − δ2

4

cos θ , (B2)

2η

√
1 − δ2

4
sin θ = 0. (B3)

Of course, the condition (B2) allows a common rotation of the
phases θ1 and θ2.
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Equation (B3) is solved either by θ = 0 or by θ = π . In the
two cases, Eq. (B2) reads

−δ = η

2
δ

√
1 − δ2

4

for θ = 0,

+δ = η

2
δ

√
1 − δ2

4

for θ = π , (B4)

respectively, reading the following four FPs:

θ = 0, δ = 0 SFC,

θ = π , δ = 0 SPAC,

θ = π , δ = ±
√

4 − η2 PAC±. (B5)

Of course, PAC+ and PAC− exist only for η < 2, since δ and
θ are real variables. As well, notice that the existence and the
nature of the FPs generally depends on the sign of the on-site
interaction u. In the present work, we only focus on repulsive
in-situ interaction (u, η > 0).

To study the stability of the FPs, we diagonalize the two-
dimensional Jacobian matrix J associated to Eq. (B1). For
the various FPs, we find the following Jacobian matrices and
associated eigenvalues λ1,2:

JSFC =
(

0 − η
2 − 1

2η 0

)
→ λSFC

1,2 = ±2i

√
η

2
+ η2

4
, (B6)

JSPAC =
(

0 η
2 − 1

−2η 0

)
→ λSPAC

1,2 = ±2

√
η

2
− η2

4
, (B7)

JPAC± =
(

0 − 4
η2 − 1

−2η 0

)
→ λ

PAC±
1,2 = ±2i

√
η

2
+ 2

η
.

(B8)

Notice that, as shown in Sec. V C, considering the 4 × 4-
dimensional Jacobian (29) would just have generated two
additional zero eigenvalues, that are nevertheless not relevant
for the determination of the stability of the FPs.

APPENDIX C: LINEAR STABILITY ANALYSIS

In this section, we derive the Jacobian matrix associated
to the linearized GPE and diagonalize it exactly, finding its
eigenvalues (and eventually eigenvectors), for any V and for
the various relevant FPs, that are the UC, SPAC, and SFC.
Since the stationarity condition (21) allows a common rotation
of all the phases at rate *, we move to a frame rotating exactly
at the angular speed * associated to the considered FP, where
the equations of motion (13) read

∂θ j

∂t
= −x2

j + ηr
1
x j

cos(φ − θ j ) − *

∂x j

∂t
= −ηr sin(φ − θ j ) (C1)

with x j = √
ρ j . In the new frame we recover the familiar

definition of FP, reading dθk/dt = 0 (i.e., the phases of a FP
are not rotating). Since the first and the second halves of the
state vector y⃗ refer to the phases and to the moduli of the

mean-field bosonic variables, respectively, it is convenient to
distinguish the following four terms of the Jacobian (29)

Jj,k = ∂

∂θk

(
dθ j

dt

)
,

Jj+V,k+V = ∂

∂xk

(
dx j

dt

)
,

(C2)

Jj+V,k = ∂

∂θk

(
dx j

dt

)
,

Jj,k+V = ∂

∂xk

(
dθ j

dt

)
.

To build the Jacobian matrix, we evaluate the following partial
derivatives:

∂

∂θk
r cos(φ − θ j ) = −xk

V
sin(θk − θ j ) + δk, j r sin(φ − θ j ),

∂

∂θk
r sin(φ − θ j ) = xk

V
cos(θk − θ j ) − δk, j r cos(φ − θ j ),

(C3)
∂

∂xk
r cos(φ − θ j ) = 1

V
cos(θk − θ j ),

∂

∂xk
r sin(φ − θ j ) = 1

V
sin(θk − θ j ),

δk, j being the Kronecker delta (δk, j = 1 if k = j, δk, j = 0
else). Using (C3), the Jacobian (C2) reads

Jj,k = η

V

[
xk

x j
sin(θ j − θk ) + δk, j

rV
x j

sin(φ − θ j )
]
,

Jj+V,k+V = − η

V
sin(θk − θ j ),

Jj+V,k = − η

V
[xk cos(θk − θ j ) − δk, j rV cos(φ − θ j )],

(C4)

Jj,k+V = −2δk, jxk + η

V
1
x j

cos(θk − θ j )

− δk, jηr
1
x2

k

cos(φ − θk ).

In particular, in the case of FPs with r = 0, like the UC, SPAC,
and DC, (C4) simplifies to

Jj,k = − η

V
sin(θk − θ j ),

Jj+V,k+V = − η

V
sin(θk − θ j ),

(C5)

Jj+V,k = − η

V
cos(θk − θ j ),

Jj,k+V = + η

V
cos(θk − θ j ) − 2δk, j,

that is Eq. (31). Having written explicitly J , we now aim to
diagonalize it exactly, that is to solve the following eigenvalue
problem:

Jy⃗ = λ⃗y . (C6)
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1. Diagonalization of J for the UC

Since the first and the second halves of the state vector y⃗
(28) refer to the phases and to the moduli of the mean-field
bosonic variables, respectively, it is handful to write y⃗ as

y⃗ =
(

y⃗(1)

y⃗(2)

)
, (C7)

with y⃗(1) and y⃗(2) V -dimensional column vectors defined by
y(1)

j = θ j and y(2)
j = x j . Performing the multiplication of the

matrix J times the column vector y⃗, we can thus write

(Jy⃗) j = − η

V

V∑

k=1

sin(θk − θ j )y
(1)
k

+ η

V

V∑

k=1

cos(θk − θ j )y
(2)
k − 2y(2)

j ,

(C8)

(Jy⃗) j+V = − η

V

V∑

k=1

sin(θk − θ j )y
(2)
k

− η

V

V∑

k=1

cos(θk − θ j )y
(1)
k .

Since the sine and the cosine can be written in terms of
exponentials and since for the UC θk = 2π

V k, the form of
(C8) suggests us to introduce the following discrete Fourier
transform:

ṽq = 1
V

V∑

k=1

eiq 2π
V kvk q ∈ Z, (C9)

where v⃗ is a V -dimensional vector and where we denoted q
the Fourier wave number. It is easy to verify that ṽq1 = ṽq2

if (q1 − q2)/V ∈ Z, so that it is possible to restrict, without
loss of generality, q ∈ {0, 1, 2, . . . ,V − 1} and to refer to q =
V − 1 as to q = −1. Looking at (C8) we are thus interested in
the evaluation of the following terms:

1
V

V∑

k=1

sin(θk − θ j )vk = Im{ṽ1e−iθ j },

1
V

V∑

k=1

cos(θk − θ j )vk = Re{ṽ1e−iθ j }, (C10)

where Re and Im denote the real and the imaginary parts, re-
spectively. Having introduced the Fourier transform (C9) and
having evaluated the terms of (C10), we can write Eq. (C8) in
the following compact form:

(Jy⃗) j = −ηIm
{
ỹ(1)

1 e−iθ j
}

+ ηRe
{
ỹ(2)

1 e−iθ j
}

− 2y(2)
j ,

(Jy⃗) j+V = −ηIm
{
ỹ(2)

1 e−iθ j
}

− ηRe
{
ỹ(1)

1 e−iθ j
}
, (C11)

which allows us to write the eigenvalue problem (C6) as
{

λy(1)
j = −ηIm

{
ỹ(1)

1 e−iθ j
}

+ ηRe
{
ỹ(2)

1 e−iθ j
}

− 2y(2)
j

λy(2)
j = −ηIm

{
ỹ(2)

1 e−iθ j
}

− ηRe
{
ỹ(1)

1 e−iθ j
}
.

(C12)

The solution of (C12) will provide us with the Jacobian eigen-
values {λn}. Equation (C12) can be approached performing a

Fourier transform on it. To do it, we evaluate the following
terms:

(Im{Ae−iθ j })1 = 1
V

V∑

j=1

A − A∗e2iθ j

2i
= −i

A
2

,

(Re{Ae−iθ j })1 = 1
V

V∑

j=1

A + A∗e2iθ j

2
= A

2
,

(Im{Ae−iθ j })−1 = 1
V

V∑

j=1

Ae−2iθ j − A∗

2i
= +i

A∗

2
,

(C13)

(Re{Ae−iθ j })−1 = 1
V

V∑

j=1

Ae−2iθ j + A∗

2
= A∗

2
,

(Im{Ae−iθ j })q = 1
V

V∑

j=1

Aei(q−1)θ j − A∗ei(q+1)θ j

2i
= 0,

(Re{Ae−iθ j })q = 1
V

V∑

j=1

Aei(q−1)θ j + A∗ei(q+1)θ j

2
= 0,

A being an arbitrary complex number and (• j )q being an al-
ternative notation for the Fourier transform of the function • j
with respect to the Fourier wave number q = 0, 1, 2, . . . ,V −
1 (that is (• j )q = •̃q). Importantly, we notice that expres-
sions (C13) for q = ±1 are valid if and only if V ! 3,
since

∑V
j=1 Ae±2iθ j ̸= 0 for V = 2. We therefore assume for

the following treatment that V ! 3. Performing the Fourier
transform of (C12) for q = ±1 and exploiting the expressions
(C13), we get

⎧
⎪⎪⎨

⎪⎪⎩

λỹ(1)
1 = i

η

2
ỹ(1)

1 +
(

η

2
− 2

)
ỹ(2)

1

λỹ(2)
1 = i

η

2
ỹ(2)

1 − η

2
ỹ(1)

1 ,

(C14)

⎧
⎪⎪⎨

⎪⎪⎩

λỹ(1)
−1 = −i

η

2
ỹ(1)
−1 +

(
η

2
− 2

)
ỹ(2)
−1

λỹ(2)
−1 = −i

η

2
ỹ(2)
−1 − η

2
ỹ(1)
−1,

(C15)

that are two-dimensional eigenvalue problems for ỹ(1)
1 , ỹ(2)

1

and for ỹ(1)
−1, ỹ(2)

−1, respectively, and where we recall the
subscripts ±1 to refer to the Fourier wave vector q and the
superscripts 1,2 to refer to the bipartition of y⃗ in it first and
second halves. We rewrite the problems (C14) and (C15) in a
matricial form as

(
i η

2

(
η
2 − 2

)

− η
2 i η

2

)(
ỹ(1)

1

ỹ(2)
1

)

= λ

(
ỹ(1)

1

ỹ(2)
1

)

, (C16)

(−i η
2

(
η
2 − 2

)

− η
2 −i η

2

)(
ỹ(1)
−1

ỹ(2)
−1

)

= λ

(
ỹ(1)
−1

ỹ(2)
−1

)

, (C17)
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and find the respective eigenvalues λ±
+1 and λ±

−1 and eigenvec-
tors v±

+1 and v±
−1:

λ±
1 = iη ±

√
4η − η2

2
, λ±

−1 = −iη ±
√

4η − η2

2
, (C18)

v±
1 = (∓

√
η(4 − η), η)T , v±

−1 = v±
1 . (C19)

We proceed looking for other nonzero eigenvalues, that is
for λ /∈ {0, λ+

1 , λ−
1 , λ+

−1, λ
−
−1}. Performing the Fourier trans-

form of equation (C12) for q ̸= ±1, we get

λỹ(1)
q = −2ỹ(2)

q

λỹ(2)
q = 0

for q = 0, 2, 3, . . . ,V − 2, (C20)

that, assuming λ ̸= 0, is solved by ỹ(1)
q = ỹ(2)

q =
0 ∀ q = 0, 2, 3, . . . ,V − 2. We observe that, if λ /∈
{λ+

1 , λ−
1 , λ+

−1, λ
−
−1}, then ỹ(1)

1 = ỹ(2)
1 = ỹ(1)

−1 = ỹ(2)
−1 = 0, since

Eqs. (C16) and (C17) still need to be satisfied. This implies
that y⃗ = 0, being all its Fourier components equal to 0.
Thus, we conclude that the only nonzero eigenvalues are
λ+

1 , λ−
1 , λ+

−1, λ
−
−1, and that λ0 = 0 is an eigenvalue with

algebraic multiplicity ma = 2V − 4.
We are now interested in understanding how r grows for a

system that is initialized in the proximity of the UC for η <
ηUC

c . Consider a configuration initialized as

θ j = 2π

V
j + δθ , j ,

x j = 1 + δx, j, (C21)

with δθ , j, δx, j ≪ 1. For such configuration we can write reiφ

as

reiφ = 1
V

V∑

j=1

x jeiθ j = 1
V

V∑

j=1

(1 + δx, j )eiδθ , j ei 2π
V j, (C22)

that corresponds to a Fourier transform of the term (1 +
δx, j )eiδθ , j . Approximating the exponential at linear order, we
obtain

reiφ ≈ δ̃x1 + iδ̃θ1 , (C23)

that is, r and φ can be written in terms of the unstable Fourier
modes [Eq. (C19)], so that it is easy to conclude that for η <
ηc = 4

reiφ ∼ (−i
√

η(4 − η) + η)e
√

4η−η2

2 t . (C24)

2. Diagonalization of J for the SPAC

Considering an even V and plugging the configuration (24)
into Eq. (31) we find the following Jacobian matrix for the
SPAC

Jj,k = 0,

Jj+V,k+V = 0,
(C25)

Jj+V,k = − η

V
νkν j,

Jj,k+V = + η

V
νkν j − 2δk, j,

where, after a proper permutation of the sites, νk = 1 for k =
1, . . . ,V/2 and νk = −1 for k = V/2 + 1, . . . ,V . It is there-
fore handy to view J as composed of V/2 × V/2-dimensional
blocks and to write a 2V -dimensional column vector y⃗ as

y⃗ =

⎛

⎜⎜⎜⎝

y⃗(1)

y⃗(2)

y⃗(3)

y⃗(4)

⎞

⎟⎟⎟⎠
, (C26)

y⃗(i) being a V/2-dimensional column vector. The eigenvalue
problem (C6) reads then

Jy⃗ =

⎛

⎜⎜⎜⎜⎝

+ η
2

(
ỹ(3)

0 − ỹ(4)
0

)
− 2⃗y(3)

− η
2

(
ỹ(3)

0 − ỹ(4)
0

)
− 2⃗y(4)

+ η
2

(
− ỹ(1)

0 + ỹ(2)
0

)

− η
2

(
− ỹ(1)

0 + ỹ(2)
0

)

⎞

⎟⎟⎟⎟⎠
= λ

⎛

⎜⎜⎜⎝

y⃗(1)

y⃗(2)

y⃗(3)

y⃗(4)

⎞

⎟⎟⎟⎠
, (C27)

where we introduced ỹ(i)
0 = 2

V

∑V/2
j=1 y⃗(i)

j .
Looking for nonzero eigenvalues, that is for λ ̸= 0, we

readily obtain y⃗(2) = −y⃗(1) and y⃗(4) = −y⃗(3), reducing the
problem to

{
+ηỹ(3)

0 − 2⃗y(3) = λ⃗y(1)

−ηỹ(1)
0 = λ⃗y(3).

(C28)

The second equation of (C28) implies the components of y⃗(3)

to be all equal, that is y(3)
j = ỹ(3)

0 ∀ j = 1, 2, . . . ,V/2 and
ηỹ(1)

0 = −λỹ(3)
0 . From the first equation of (C28), we get that

also all the components of y⃗(1) are equal, and we are thus left
with

−η(η − 2)ỹ(1)
0 = λ2ỹ(1)

0 . (C29)

Since we look for nontrivial solutions (that is with nonzero y⃗),
we consider ỹ(1)

0 ̸= 0 and finally obtain the eigenvalues

λ± = ±
√

η(2 − η). (C30)

Thus, we conclude that the only nonzero eigenvalues are
λ+ and λ−, and that λ0 = 0 is an eigenvalue with algebraic
multiplicity ma = 2V − 4.

3. Diagonalization of J for the SFC

We now study the stability of the SFC. The argument of
Sec. III is actually sufficient to state that the SFC is a nonlinear
center of the dynamics for any η > 0, but for completeness
we report here a direct and instructive study of its stability by
means of the diagonalization of its Jacobian matrix. For the
SF (24), the Jacobian (C4) reads

Jj,k = 0 ,

Jj+V,k+V = 0 ,

Jj+V,k = − η

V
+ ηδk, j ,

Jj,k+V = + η

V
− (2 + η)δk, j . (C31)

It is therefore again natural to write a 2V -dimensional column

vector y⃗ as y⃗ =
(⃗y(1)

y⃗(2)
)
, y⃗(i) being a V -dimensional column
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vector. The eigenvalue problem (C6) is rewritten as

Jy⃗ =
(

+ηỹ(2)
0 − (2 + η )⃗y(2)

−ηỹ(1)
0 + η⃗y(1)

)

= λ

(
y⃗(1)

y⃗(2)

)
, (C32)

where ỹ(i)
0 = 1

V

∑V
j=1 y⃗(i)

j . Looking for nonzero eigenvalues,
that is, λ ̸= 0, we can multiply the first equation of (C32) by
λ, getting

{
+ηλỹ(2)

0 − (2 + η)λ⃗y(2) = λ2y⃗(1)

−ηỹ(1)
0 + η⃗y(1) = λ⃗y(2).

(C33)

Plugging λỹ(2)
0 from the second equation of (C33) into the first

one, we get

−(2 + η)
(
− ηỹ(1)

0 + η⃗y(1)) = λ2y⃗(1), (C34)

from which we find ỹ(1)
0 = 0, so that

−η(2 + η )⃗y(1) = λ2y⃗(1), (C35)

giving λ1,2 = ±i
√

η(2 + η). These are the only nonzero
eigenvalues and can therefore be used to argue on the stability
of the SFC. Since for any value of η > 0 the nonzero eigen-
values are purely imaginary complex conjugate numbers, the
SFC is a linear center of the dynamics for any η > 0. As we
already noticed in Sec. III, the SFC is actually not only a linear
center, but a nonlinear center as well.

APPENDIX D: V → ∞ LIMIT AND
CONTINUOUS EQUATIONS

We consider the instructive V → ∞ limit, with potential
application in the analytical approach of synchronization phe-
nomena for the phases {θ j}. We replace the discrete site index
j = 1, 2, . . . ,V with a continuous variable s ∈ (0, 2π ), so
that the GPE (13) transform into

∂
√

ρ(s, t )
∂t

= ηr sin (θ (s, t ) − φ)

∂θ (s, t )
∂t

= ηr√
ρ(s, t )

cos (θ (s, t ) − φ) − ρ(s, t ) , (D1)

where ' = reiφ is redefined as

reiφ = 1
V

V∑

j=1

√
ρ jeiθ j

V →∞−−−→ 1
2π

∫ 2π

0
ds

√
ρ(s)eiθ (s) . (D2)

In this way, we passed from a system of 2V ordinary differ-
ential equations in the 2V variables {ρ j, θ j}, to a system of
two integrodifferential equations in the variables ρ(s, t ) and
θ (s, t ). Notice that for equation (D1) to be valid we require as
assumption that there exists a permutation of the sites indexes
such that the functions ρ(s, t ) and θ (s, t ) are continuous, that
is such that ρ j

V →∞−−−→ ρ j+1 and θ j
V →∞−−−→ θ j+1 ∀ j = 1, . . . ,V

and ρV
V →∞−−−→ ρ1 and θV

V →∞−−−→ θ1. This requirement is for
instance fulfilled for the initial condition (15) of the MI to
SF quench, on which we focus here. In the V → ∞ limit, the
UC is defined by

θUC(s, t ) = s + *t

ρUC(s, t ) = 1 , (D3)

that, having r = 0 and for * = −1, is obviously a FP of the
dynamical equations (D1). We move to the frame rotating at
angular frequency * and express the state of the system as

θ (s) = s + ξ (s)
√

ρ(s) = 1 + δ(s) . (D4)

Importantly, small δ and ξ correspond to a system being in
the proximity of the UC, but we do not need to assume it. The
equations of motion (D1) read

∂δ(s, t )
∂t

= ηr sin (θ (s, t ) − φ)

∂ξ (s, t )
∂t

= ηr
1 + δ(s, t )

cos (θ (s, t ) − φ) − 2δ(s, t ) − δ(s, t )2,

(D5)

where ' = reiφ can be expressed as reiφ = 1
2π

∫ 2π

0 (1 +
δ)eiξ eis = ((1 + δ)eiξ )1, where we denoted [A(s)]q =

1
2π

∫ 2π

0 A(s)eiqsds. That is, we expressed ' as the Fourier
transform of a composition of the functions δ(s, t ) and ξ (s, t )
with respect to the variable s. Thus (D5) reads

⎧
⎪⎪⎨

⎪⎪⎩

∂δ

∂t
= −ηIm{((1 + δ)eiξ )1e−iθ }

∂ξ

∂t
= η

1 + δ
Re{((1 + δ)eiξ )1e−iθ } − 2δ − δ2.

(D6)

We Fourier transform the first equation of (D6) getting
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂δ1

∂t
= i

η

2
((1 + δ)eiξ )1

∂δ−1

∂t
= −i

η

2
((1 + δ)eiξ )−1

∂δq

∂t
= 0 ∀ q ∈ {0, 2, 3, . . . ,V − 2}

∂ξ

∂t
= η

1 + δ
Re{((1 + δ)eiξ )1e−iθ } − 2δ − δ2.

(D7)

Importantly, to go from Eq. (D1) to Eq. (D7), we have
introduced no approximations, that is (D7) coincides exactly
with the GPE (13). The form of (D7) is particularly convenient
since for q ̸= ±1, we find δq = cst (even for the whole nonlin-
ear dynamics). From (D7), it is of course possible to study the
linear stability of the UC considering small δ and ξ , obtaining
the Jacobian eigenvalues λ+

+1, λ
−
+1, λ

+
−1, λ

−
−1 and highlighting

a DPT at the critical hopping trength ηUC
c = 4 (that is not

surprising at all since the results of Sec. V are valid for
any V ! 3). However, the nonlinearities of Eq. (D7) are the
fundamental ingredient to try to capture the emergence of π -
syncrhonization for a MI to SF quench. Such synchronization
is encapsulated into the increase of S up to a finite value, that
corresponds to the growth of the Fourier components of ξ
with even wave number q. Additionally, a potentially useful
idea in analogy with the Kuramoto model [43] is treating r
as a parameter and considering a function p(θ , t ) describing
the density of oscillators at the angle θ at time t (a partial
differential equation describing the dynamics of p(θ , t ) would
then be the continuity equation).
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[64] Z. Ristivojevic, A. Petković, P. Le Doussal, and T. Giamarchi,
Phys. Rev. Lett. 109, 026402 (2012).

[65] F. Jendrzejewski, A. Bernard, K. Mueller, P. Cheinet, V. Josse,
M. Piraud, L. Pezzé, L. Sanchez-Palencia, A. Aspect, and P.
Bouyer, Nat. Phys. 8, 398 (2012).

[66] E. V. H. Doggen, G. Lemarié, S. Capponi, and N. Laflorencie,
Phys. Rev. B 96, 180202 (2017).

[67] T. Giamarchi and H. Schulz, Europhys. Lett. 3, 1287
(1987).

[68] J. Dziarmaga, M. Tylutki, and W. H. Zurek, Phys. Rev. B 86,
144521 (2012).

[69] G. J. Milburn, J. Corney, E. M. Wright, and D. F. Walls, Phys.
Rev. A 55, 4318 (1997).

[70] R. Franzosi, V. Penna, and R. Zecchina, Int. J. Mod. Phys. B 14,
943 (2000).

[71] S. Longhi, J. Phys. B: At. Mol. Opt. Phys. 44, 051001
(2011).

[72] R. Franzosi and V. Penna, Phys. Rev. E 67, 046227
(2003).

[73] B. Liu, L.-B. Fu, S.-P. Yang, and J. Liu, Phys. Rev. A 75, 033601
(2007).

[74] F. Trimborn, D. Witthaut, and H. J. Korsch, Phys. Rev. A 79,
013608 (2009).

[75] H. Qiu, B. Julia-Diaz, M. A. Garcia-March, and A. Polls, Phys.
Rev. A 90, 033603 (2014).

[76] S. E. Nigg, N. Lörch, and R. P. Tiwari, Sci. Adv. 3, e1602273
(2017).

[77] J. Prost, The Physics of Liquid Crystals, International Series
Of Monographs On Physics Vol. 83 (Oxford University Press,
1995).

[78] T. Langen, R. Geiger, and J. Schmiedmayer, Annu. Rev.
Condens. Matter Phys. 6, 201 (2015).

[79] S. H. Strogatz, Nonlinear Dynamics and Chaos: with Appli-
cations to Physics, Biology, Chemistry, and Engineering (CRC
Press, 2018).

[80] M. Chuchem, K. Smith-Mannschott, M. Hiller, T. Kottos, A.
Vardi, and D. Cohen, Phys. Rev. A 82, 053617 (2010).

[81] A. Pikovsky, M. Rosenblum, J. Kurths, and J. Kurths, Syn-
chronization: a Universal Concept in Nonlinear Sciences, Cam-
bridge Nonlinear Science Series Vol. 12 (Cambridge University
Press, 2003).

094301-18


