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The Aw-Rascle traffic model:

Enskog-type kinetic derivation and generalisations

Giacomo Dimarco∗ Andrea Tosin†

Abstract

We study the derivation of second order macroscopic traffic models from kinetic descrip-
tions. In particular, we recover the celebrated Aw-Rascle model as the hydrodynamic limit
of an Enskog-type kinetic equation out of a precise characterisation of the microscopic binary
interactions among the vehicles. Unlike other derivations available in the literature, our ap-
proach unveils the multiscale physics behind the Aw-Rascle model. This further allows us to
generalise it to a new class of second order macroscopic models complying with the Aw-Rascle
consistency condition, namely the fact that no wave should travel faster than the mean traffic
flow.

Keywords: Traffic models, Boltzmann and Enskog-type descriptions, macroscopic equations,
kinetic derivation, hydrodynamic limit.

Mathematics Subject Classification: 35Q20, 35Q70, 90B20

1 Introduction

The kinetic description of vehicular traffic is probably one of the first examples in which methods
of the statistical physics were applied to a particle system which was not a standard gas. Such
an approach was initiated by the Russian physicist Ilya Prigogine in the sixties [17, 34, 35, 36],
in an attempt to explain the emergence of collective properties as a result of individual ones in
systems composed by human beings instead of molecules. In more recent times, the application
of kinetic equations to various systems of interacting agents (see for instance [5, 37, 44] for ap-
plication to traffic flows) has gained a lot of momentum. These equations, and more in general
the mathematical-physical theory on which they are grounded, have proved to be powerful tools
to increase the understanding of multi-agent systems, particularly as far as the exploration of the
interconnections among their properties at different scales is concerned [26, 31].

Coming back to vehicular traffic, in the literature there exists at least two other modelling
approaches based on differential equations. On one hand, there are the so-called microscopic
models, which describe the vehicles as point particles moving according to prescribed accelera-
tion/deceleration laws. We recall here, in particular, the well known follow-the-leader and optimal
velocity models [2, 16]. On the other hand, there are the macroscopic models, which, inspired by
the hyperbolic conservation/balance laws of fluid dynamics, treat the vehicles as a continuum with
density [33]. In this case, one distinguishes between first order models, which rely on the mass
conservation only, cf. e.g. [7, 24, 38], and second order models, which include also an equation for
the conservation or the balance of the mean speed, cf. e.g. [32]. Second order models allow one
to overcome the issue of the unbounded acceleration of the vehicles, which first order models may
suffer from, see [23] for a very recent contribution on this. However, they may fail to reproduce
the correct anisotropy of the interactions among the vehicles, namely the fact that vehicles are
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mainly influenced by the dynamics ahead than by those behind them. This issue was first pointed
out by Daganzo in [8] and later solved by Aw and Rascle [1] and, independently, by Zhang [45].
They proposed a heuristic second order hyperbolic traffic model, whose characteristic speeds never
exceed the speed of the flow. In this way, the small disturbances produced by a vehicle propagate
more slowly than the vehicles themselves, thereby guaranteeing that the movement of each vehicle
affects only the vehicles behind.

An interesting theoretical problem, left largely unexplored in the original papers [1, 45], is the
derivation of the Aw-Rascle macroscopic model from first principles. In [18, 21, 22], the authors
were the first to obtain the Aw-Rascle model as a hydrodynamic limit of a kinetic description
based on an Enskog-type equation. Their approach is very much inspiring, because it suggests to
look at the Enskog-type kinetic description instead of the more classical Boltzmann-type one. On
the other hand, in these cited works, the authors do not focus on the explicit characterisation of
fundamental microscopic interactions able to generate, at the macroscopic level, the Aw-Rascle
model. Moreover, in [21, 22] the hydrodynamic limit is performed by postulating the existence of
an equilibrium kinetic distribution function, which is not exhibited explicitly. In addition, partly
heuristic closures of other terms appearing in the equations are used. In [19, 20], the authors
introduce a Vlasov-Fokker-Planck model of multilane traffic, which, up to suitable simplifications,
they use to obtain the Aw-Rascle model via the method of moments. Their Vlasov-Fokker-
Planck equation shares some similarities with some equations that we deal with in this paper.
Nevertheless, the primary focus of the authors is in turn not the explicit characterisation of an
elementary particle physics leading ultimately to the Aw-Rascle hydrodynamics. Indeed, their
starting point is the Vlasov-Fokker-Planck model itself, which is somehow postulated by appealing
to heuristic considerations. Furthermore, the authors do not take advantage of any explicit local
equilibrium distribution to close the hydrodynamic equations. Instead, they obtain the Aw-Rascle
model by assuming that the temperature/pressure term, which would still depend on the kinetic
distribution function, may be dropped from the hydrodynamic equations. More recently, also the
direct link between follow-the-leader microscopic models and the Aw-Rascle macroscopic model
has been explored. In particular, in [9, 10] the authors prove that the trajectories of the former
converge, in the 1-Wasserstein metric, to the unique entropy solution of the latter when a suitable
large particle limit is considered. Their strategy consists in interpreting the follow-the-leader
model as a discrete Lagrangian approximation of the target macroscopic model. We observe that
this approach, although successful from the analytical point of view, does not explain the actual
multiscale physics behind the derivation of the Aw-Rascle model from a microscopic particle model.

In this paper, we investigate the possibility to obtain the Aw-Rascle model as the hydrodynamic
limit of kinetic descriptions of the traffic system. The highlights of our study, which differentiate
it from the other contributions recalled above, may be summarised as follows:

• we derive explicitly a minimal set of fundamental features of the microscopic interactions
among the vehicles, necessary to generate the Aw-Rascle macroscopic model. Furthemore, we
link some key elements of the Aw-Rascle model, such as e.g., the so-called “traffic pressure”,
to precise characteristics of the microscopic interactions. We observe that, in the model-
ling of multi-agent systems, the microscopic model of the agent behaviour is often largely
heuristic and, as such, somewhat arbitrary. In this respect, our result helps to identify a
paradigmatic class of interaction rules among the vehicles, which give rise to a physically
consistent macroscopic traffic model;

• we elucidate the multiscale physical structure underlying the Aw-Rascle model. In particular,
we show that an Enskog-type kinetic description, as opposed to a Boltzmann-type one, is
ultimately necessary to derive it, because the anticipatory nature of the Aw-Rascle dynamics
may be understood as the hydrodynamic result of local and non-local microscopic interactions
happening on different time scales;

• taking advantage of the previous analysis, we show how to generalise the Aw-Rascle model
to new classes of second order macroscopic traffic models, which take correctly into account
the anisotropy of the interactions among the vehicles.

2



In more detail, the paper is organised as follows: in Section 2, we discuss the microscopic
interactions at the basis of the whole theory. In Section 3, we show that a Boltzmann-type kinetic
description does not give rise to the Aw-Rascle model in the hydrodynamic limit nor, more in
general, to a macroscopic model correctly reproducing the anisotropy of the vehicle interactions
Conversely, in Section 4, we prove that the original Aw-Rascle model can be obtained as the
hydrodynamic limit of an Enskog-type kinetic description and we stress, in particular, the role
played by spatially non-local interactions among the vehicles towards this result. In Section 5, we
exploit the Enskog-type hydrodynamics to extend the Aw-Rascle model to a new class of second
order macroscopic traffic models, whose characteristic speeds are slower than the mean speed of
the flow. We derive these models from a suitable generalisation of the interactions discussed in
Section 2 and we establish a direct link between the new terms appearing in the macroscopic
equations and the features of the new microscopic interaction rules. In Section 6, we present
several numerical experiments, which both validate the theoretical passage from the kinetic to the
hydrodynamic descriptions and highlight analogies and differences among the various macroscopic
models obtained in the hydrodynamic limit. Finally, in Section 7, we present some concluding
remarks and we briefly sketch further research prospects.

2 Microscopic binary interactions

One of the leading ideas in kinetic theory is that the important interactions among the particles
of the system are binary, i.e. each of them involves two particles at a time. Interactions involving
simultaneously more than two particles are neglected as higher order effects. In our case, taking
inspiration from [41], we express a general binary interaction between any two vehicles as

v′ = v + γI(v, v∗; ρ) +D(v)η, v′∗ = v∗, (1)

where v, v∗ and v′, v′∗ are the pre- and post-interaction speeds, respectively, of the interacting
vehicles. Furthermore, I is a function modelling the speed variation of the v-vehicle due to the
leading v∗-vehicle, which, in contrast, does not change speed because of the front-rear anisotropy
of the interactions in the traffic stream. We assume that the interaction rule (1) is parametrised
by the traffic density ρ:

ρ(t, x) :=

∫ 1

0

f(t, x, v) dv,

where f : R+ × R × [0, 1] → R+ is the kinetic distribution function, because the global traffic
conditions may influence the reactions of the individual drivers. Finally, η is a centred random
variable, i.e. such that 〈η〉 = 0 with 〈·〉 denoting expectation, taking into account stochastic
fluctuations of the driver behaviour with respect to the deterministic law expressed by I. We
denote by σ2 > 0 the variance of η. The function D models the speed-dependent intensity of such
a stochastic fluctuation. As far as the variables and the coefficients in (1) are concerned, we will
assume

v, v∗, ρ, γ ∈ [0, 1], D(·) ≥ 0.

In particular, the unitary maximum values of the speed of the vehicles and of the traffic density
have to be understood as dimensionless, referred to suitable maximum physical values.

The binary rules (1) do not conserve, either pointwise or on average, the mean speed of the
interacting vehicles, indeed

v′ + v′∗ = v + v∗ + γI(v, v∗; ρ) +D(v)η, 〈v′ + v′∗〉 = v + v∗ + γI(v, v∗; ρ).

This is clearly reasonable in view of the physics of vehicle interactions as opposed to that of
molecule collisions in classical gas dynamics. Nevertheless, as it is well known in the approach to
hydrodynamics by local equilibrium closures, see e.g. [3, 4, 14], in order to obtain a second order
macroscopic traffic model, namely a model composed of a self-consistent pair of macroscopic
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equations, it is necessary that the binary interactions (1) conserve locally both the traffic density
ρ and the global mean speed u defined by

u(t, x) :=
1

ρ(t, x)

∫ 1

0

vf(t, x, v) dv.

Indeed, in this way the local “Maxwellian”, i.e. the local equilibrium speed distribution generated
by (1), is parametrised by the conserved quantities ρ, u, which play the role of the unknowns in
the hydrodynamic equations.

The local conservation of u requires a suitable assumption on the binary interaction rule (1). We
recall that if the vehicles are assumed to be homogeneously distributed in space then a statistical
description of the superposition of many interactions among them in any point x is provided by
the homogeneous Boltzmann-type equation, cf. [31]:

∂t

∫ 1

0

ϕ(v)f(t, x, v) dv =
1

2
(Q(f, f), ϕ), (2)

where ϕ : [0, 1]→ R is any test function, also called an observable quantity, and Q is the bilinear
interaction operator, whose action on a test function ϕ is defined as

(Q(f, g), ϕ) :=

∫ 1

0

∫ 1

0

〈ϕ(v′)− ϕ(v)〉f(t, x, v)g(t, x, v∗) dv dv∗.

Here, 〈·〉 denotes the average with respect to the distribution of the random variable η contained
in v′. Equation (2) is said to be homogeneous because the space variable plays in it the role of
a parameter, so that the statistical description of the traffic is actually the same in every point
x. Choosing ϕ(v) = 1, we immediately deduce the local conservation of the traffic density, indeed
∂tρ = 0. With ϕ(v) = v we obtain instead

∂tu =
γ

2ρ

∫ 1

0

∫ 1

0

I(v, v∗; ρ)f(t, x, v)f(t, x, v∗) dv dv∗,

therefore u is locally conserved provided∫ 1

0

∫ 1

0

I(v, v∗; ρ)f(t, x, v)f(t, x, v∗) dv dv∗ = 0, ∀ t ∈ R+, x ∈ R, ρ ∈ [0, 1]. (3)

A possible class of functions I satisfying (3), which we will henceforth consider throughout the
paper, is

I(v, v∗; ρ) := Ψ(v∗; ρ)−Ψ(v; ρ) (4)

for a given Ψ : [0, 1]× [0, 1]→ R.
We conclude this section by observing that, in order to be physically admissible, the binary

rules (1) should guarantee v′, v′∗ ∈ [0, 1] for every choice of v, v∗, ρ ∈ [0, 1]. This condition is also
necessary for the validity of the Boltzmann-type equation in the form (2), namely with a constant
(unitary, in this case) collision kernel on the right-hand side, which corresponds to considering
vehicles as Maxwellian particles. While v′∗ ∈ [0, 1] is obvious, it may be hard to prove, in general,
that the same is a priori true also for v′. Nevertheless, in the simple prototypical case

Ψ(v; ρ) := λ(ρ)v, (5)

where λ : [0, 1] → R+ is a prescribed density-dependent function, it can be proved [41] that a
sufficient condition for v′ ∈ [0, 1] is that η and D satisfy{

|η| ≤ c(1− γλ(ρ))

cD(v) ≤ min{v, 1− v}
(6)
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for an arbitrary constant c > 0. This implies that η is bounded and D vanishes for v = 0, 1.
In the particular case D = 0, a simpler sufficient condition for v′ ∈ [0, 1] is instead λ(ρ) ≤ 1

γ .

The choice (4)-(5) leads to the binary interaction

v′ = v + γλ(ρ)(v∗ − v) +D(v)η, v′∗ = v∗. (7)

Apart from the stochastic contribution, by interpreting γ as the (small) duration of the interaction

we see that the acceleration of the v-vehicle, i.e. v′−v
γ , is proportional to the relative speed with

the leading v∗-vehicle, i.e. λ(ρ)(v∗−v). This is consistent with the general structure of microscopic
follow-the-leader traffic models [16], the function λ playing the role of the sensitivity of the drivers.

3 Hydrodynamics from a Boltzmann-type description

A local kinetic description of traffic flow is provided by the following inhomogeneous Boltzmann-
type equation in weak form:

∂t

∫ 1

0

ϕ(v)f(t, x, v) dv + ∂x

∫ 1

0

vϕ(v)f(t, x, v) dv =
1

2
(Q(f, f), ϕ), (8)

which, by means of the second term on the right-hand side, extends (2) taking into account also
the transport of the vehicles in space according to the kinematic relationship ẋ = v. See [35, 36].

The usual way to derive macroscopic equations for the hydrodynamic parameters, such as ρ
and u, is to choose ϕ(v) = vn, n = 0, 1, 2, . . . , in (8). This procedure is however endless, because
the transport term generates systematically a moment of order n+ 1 in the nth equation, thereby
never making the latter closed. In order to overcome such a difficulty, a typical strategy consists
in introducing the following hyperbolic scaling of space and time:

x→ 2

ε
x, t→ 2

ε
t, (9)

with 0 < ε� 1, so that (8) becomes1

∂t

∫ 1

0

ϕ(v)f(t, x, v) dv + ∂x

∫ 1

0

vϕ(v)f(t, x, v) dv =
1

ε
(Q(f, f), ϕ) (10)

In this equation, ε plays conceptually the role of the Knudsen number of the classical kinetic theory.
If ε is sufficiently small then locally the interactions are much faster than the displacement of the
vehicles. As a consequence, a fluid dynamic regime is conceivable, in which the local equilibrium
distribution quickly produced by the interactions is simply transported by the traffic stream. This
allows one to solve (10) by splitting the contributions of the interactions and of the transport:

∂t

∫ 1

0

ϕ(v)f(t, x, v) dv =
1

ε
(Q(f, f), ϕ) (11)

∂t

∫ 1

0

ϕ(v)f(t, x, v) dv + ∂x

∫ 1

0

vϕ(v)f(t, x, v) dv = 0, (12)

analogously to what is commonly done in the numerical solution of the Boltzmann equation [11,
12, 30], see also [14].

The idea is now that if we are able to identify from (11) the local Maxwellian Mρ,u parametrised
by the two conserved quantities ρ, u, cf. Section 2, then we may plug it into (12) to obtain the
hydrodynamic equations satisfied by ρ, u.

1Also the variables x, t of the distribution function f are scaled according to (9). However, in order to avoid
introducing additional notations, we still denote by f(t, x, v) the scaled distribution function.
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3.1 The case D 6= 0

Unfortunately, when D 6= 0 in (1) it is in general not possible to compute explicitly the steady dis-
tributions of the homogeneous Boltzmann-type equation (11). However, at least in some particular
regimes, one may rely on powerful asymptotic procedures, which transform (11) in partial differ-
ential equations more amenable to analytical solutions. One of such procedures is the so-called
quasi-invariant interaction limit, introduced in [6, 40] and reminiscent of the grazing collision limit
applied to the classical Boltzmann equation [42, 43].

Let us assume that the system is locally close to equilibrium, so that each binary interaction (1)
produces a very small transfer of speed from the leading to the rear vehicle. In particular, we may
obtain such an effect by setting

γ = σ2 = ε, (13)

which, for ε small, implies that both the deterministic and the stochastic parts of the interaction
are small. In this situation, if ϕ is sufficiently smooth then the difference ϕ(v′)−ϕ(v) in (11) can
be expanded in Taylor series about v. After some computations, this yields

∂t

∫ 1

0

ϕ(v)f(t, x, v) dv =

∫ 1

0

∫ 1

0

ϕ′(v)I(v, v∗; ρ)f(t, x, v)f(t, x, v∗) dv dv∗

+
1

2

∫ 1

0

ϕ′′(v)D2(v)f(t, x, v) dv +Rεϕ(f, f),

where Rεϕ(f, f) is a bilinear reminder, which, under the assumptions that I is bounded and η has

bounded third order moment (i.e., 〈|η|3〉 < +∞), is asymptotic to
√
ε when ε → 0+, see [41] for

the details. On the whole, Rεϕ(f, f) → 0 for ε → 0+, so that in such a limit we obtain that f
satisfies the equation

∂t

∫ 1

0

ϕ(v)f(t, x, v) dv =

∫ 1

0

∫ 1

0

ϕ′(v)I(v, v∗; ρ)f(t, x, v)f(t, x, v∗) dv dv∗

+
1

2

∫ 1

0

ϕ′′(v)D2(v)f(t, x, v) dv. (14)

Integrating by parts the terms on the right-hand side, along with suitable conditions on f at
v = 0, 1 such that the boundary terms vanish (see again [41] for the details), we recognise that
this is the weak form of the following Fokker-Planck equation:

∂tf =
1

2
∂2
v

(
D2(v)f

)
− ∂v

((∫ 1

0

I(v, v∗; ρ)f(t, x, v∗) dv∗

)
f

)
, (15)

whose solutions approximate the large time behaviour of (11) in the quasi-invariant regime. In
particular, the equilibrium solution to (15), i.e. the local Maxwellian Mρ,u, satisfies

1

2
∂v
(
D2(v)Mρ,u

)
−
(∫ 1

0

I(v, v∗; ρ)Mρ,u(v∗) dv∗

)
Mρ,u = 0,

which, for the binary interaction (7), cf. also (4)-(5), becomes

1

2
∂v
(
D2(v)Mρ,u

)
− λ(ρ)(u− v)Mρ,u = 0,

whence

Mρ,u(v) =
C

D2(v)
exp

(
2λ(ρ)

∫
u− v
D2(v)

dv

)
,

C > 0 being a normalisation constant to be fixed in such a way that
∫ 1

0
Mρ, u(v) dv = ρ.
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To proceed further, we have to choose a diffusion coefficient D. A closed form of Mρ,u is

obtained, for instance, with2 D(v) =
√
v(1− v) and reads

Mρ,u(v) = ρ
v2λ(ρ)u−1(1− v)2λ(ρ)(1−u)−1

B(2λ(ρ)u, 2λ(ρ)(1− u))
, (16)

where B(·, ·) is the beta function. On the whole, we notice that 1
ρMρ,u(v) is the probability density

function of a beta random variable, interestingly quite consistent with some recent experimental
findings about the speed distribution in traffic flow [25, 28]. Entropy arguments can be invoked [15]
to prove that (16) is the unique and globally attractive steady solution with mass ρ to (15) with
binary rules (7).

Remark 3.1. Equation (14) may be rewritten as

∂t

∫ 1

0

ϕ(v)f(t, x, v) dv = (P(f), ϕ),

where the Fokker-Planck operator P is defined, in weak form, as

(P(f), ϕ) :=

∫ 1

0

∫ 1

0

ϕ′(v)I(v, v∗; ρ)f(t, x, v)f(t, x, v∗) dv dv∗

+
1

2

∫ 1

0

ϕ′′(v)D2(v)f(t, x, v) dv,

or equivalently, in strong form, as

P(f)(t, x, v) :=
1

2
∂2
v

(
D2(v)f(t, x, v)

)
− ∂v

((∫ 1

0

I(v, v∗; ρ)f(t, x, v∗) dv∗

)
f(t, x, v)

)
.

The quasi-invariant limit performed above implies that Q can be consistently approximated by
P in the regime in which γ, σ2 are small and the frequency of the interactions is high.

Plugging (16) into (12) along with the choices ϕ(v) = 1, v, and recalling the known formulas
for the moments of a beta random variable, we obtain the following second order macroscopic
model: 

∂tρ+ ∂x(ρu) = 0

∂t(ρu) + ∂x

(
ρu

2λ(ρ)u+ 1

2λ(ρ) + 1

)
= 0.

(17)

Introducing the vector of the conserved quantities U := (ρ, u)T , and assuming for simplicity that
λ > 0 is constant, (17) can be rewritten in quasilinear vector form as

∂tU +A(U)∂xU = 0, A(U) :=

(
u ρ

u(1−u)
(2λ+1)ρ

(2λ−1)u+1
2λ+1

)
. (18)

In particular, the eigenvalues of A are

µ± := u+
1− 2u

2(2λ+ 1)
± 1

2(2λ+ 1)

√
1 + 8λu(1− u).

Since obviously u ∈ [0, 1], µ± are both real, hence system (17) is hyperbolic. As it is well
known, µ± represent the speeds of propagation of the small disturbances in the flow and, in
macroscopic traffic models, they are required not to exceed the mean speed u of the flow itself. This

2We observe that such a function D does not comply with (6), because of the vertical tangents at v = 0, 1.
Nevertheless, it can be obtained as the uniform limit, for ε→ 0+, of a sequence of functions Dε(v), which instead
satisfy (6) for every ε > 0, see [40]. This justifies its use in the Fokker-Planck equation (15), i.e. after performing
the quasi-invariant limit.
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consistency condition, established in [1] in a successful attempt to cure the drawbacks of second
order macroscopic traffic models put in evidence in [8], is meant to preserve, at the macroscopic
level, the front-rear anisotropy of the microscopic vehicle interactions. We will henceforth call this
the Aw-Rascle condition.

Unfortunately, for model (17) it is immediately evident that

µ+ ≥ u+
1− u
2λ+ 1

> u ∀u ∈ [0, 1),

thus the hydrodynamic derivation based on the Boltzmann-type local equilibrium closure fails, in
general, to produce macroscopic traffic models consistent with the Aw-Rascle condition.

3.2 The case D = 0

If D = 0 in (1), i.e. if the stochastic fluctuations ascribable to the driver behaviour are neg-
lected, then it is much easier to compute the Maxwellian Mρ,u directly from (11). In fact, we see
straightforwardly that with I given by (4) and for any (continuous) Ψ the distribution

Mρ,u(v) = ρδ(v − u), (19)

where δ is the Dirac delta distribution, makes the right-hand side of (11) vanish. Moreover, if Ψ
is given in particular by (5) and 0 ≤ λ(ρ) < 1 then from (11) with ϕ(v) = v2 we deduce that the
energy of the system converges asymptotically in time to u2 regardless of the initial condition.
This implies that (19) is the unique and globally attractive steady solution to the interaction
step (11). The Maxwellian (19) is also called a monokinetic distribution, because it expresses the
fact that all vehicles travel locally at the same speed, which coincides with the mean speed of the
flow.

Plugging (19) into (12), we obtain the following second order macroscopic model:{
∂tρ+ ∂x(ρu) = 0

∂t(ρu) + ∂x(ρu2) = 0.
(20)

In particular, taking advantage of the first equation, we can rewrite the second equation in the
non-conservative form ∂tu+u∂xu = 0 and, finally, the whole system in quasilinear vector form as

∂tU +A(U)∂xU = 0, A(U) :=

(
u ρ
0 u

)
. (21)

Notice that, due to the monokinetic Maxwellian (19), system (20) is pressureless. Consequently, the
matrix A(U) has two coincident eigenvalues µ± = u, which formally comply with the Aw-Rascle
condition. Nevertheless, model (20) is much more trivial than the actual Aw-Rascle model [1].

4 Hydrodynamics from an Enskog-type description

The discussion set forth in Section 3 has shown that, in general, the local equilibrium closure
applied to a Boltzmann-type kinetic description of traffic flow fails to yield Aw-Rascle-type hydro-
dynamic models. On the other hand, in [21] the authors already pointed out some inconsistencies
in the fluid dynamic behaviour of second order macroscopic traffic models so derived, such as e.g.
the inability to reproduce density waves propagating backwards. In particular, they identified the
source of such a problem in the local nature of the interactions, namely the fact that in (8) the two
interacting vehicles occupy the same position x. Actually, also in the classical Boltzmann equation
the colliding gas molecules are supposed to occupy the same space position at the moment of the
collision. However, in that case their velocities are not forced to be non-negative, like in the case
of the vehicle speeds. This allows one to have, at the macroscopic level, a gas density flowing in
principle in any direction.
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In order to overcome such difficulties, in [21] the authors suggested to derive macroscopic traffic
models from an Enskog-type kinetic description, in which, similarly to the classical Enskog equation
for high density gases, the interacting vehicles are not supposed to occupy the same position.
Specifically, the Enskog-type equation for vehicular traffic takes the form of a modification of the
Boltzmann-type equation (8):

∂t

∫ 1

0

ϕ(v)f(t, x, v) dv + ∂x

∫ 1

0

vϕ(v)f(t, x, v) dv

=
1

2

∫ 1

0

∫ 1

0

〈ϕ(v′)− ϕ(v)〉f(t, x, v)f(t, x+H, v∗) dv dv∗, (22)

where H > 0 is the headway between the v-vehicle and the leading v∗-vehicle, which here we
assume to be constant for simplicity.

If H is small with respect to the characteristic distances along the road, we can write

f(t, x+H, v∗) = f(t, x, v∗) + ∂xf(t, x, v∗)H + o(H),

whence, suppressing the term o(H), we approximate (22) as

∂t

∫ 1

0

ϕ(v)f(t, x, v) dv + ∂x

∫ 1

0

vϕ(v)f(t, x, v) dv

=
1

2

∫ 1

0

∫ 1

0

〈ϕ(v′)− ϕ(v)〉f(t, x, v)f(t, x, v∗) dv dv∗

+
H

2

∫ 1

0

∫ 1

0

〈ϕ(v′)− ϕ(v)〉f(t, x, v)∂xf(t, x, v∗) dv dv∗.

From here, performing again the hyperbolic scaling (9) of space and time, we find

∂t

∫ 1

0

ϕ(v)f(t, x, v) dv + ∂x

∫ 1

0

vϕ(v)f(t, x, v) dv

=
1

ε

∫ 1

0

∫ 1

0

〈ϕ(v′)− ϕ(v)〉f(t, x, v)f(t, x, v∗) dv dv∗

+
H

2

∫ 1

0

∫ 1

0

〈ϕ(v′)− ϕ(v)〉f(t, x, v)∂xf(t, x, v∗) dv dv∗, (23)

ε playing again a role analogous to that of the Knudsen number. In particular, if ε is small we
can describe the hydrodynamic regime by means of the following splitting:

∂t

∫ 1

0

ϕ(v)f(t, x, v) dv =
1

ε
(Q(f, f), ϕ) (24)

∂t

∫ 1

0

ϕ(v)f(t, x, v) dv + ∂x

∫ 1

0

vϕ(v)f(t, x, v) dv =
H

2
(Q(f, ∂xf), ϕ). (25)

Notice that (24) is actually the same equation as (11). In particular, if we consider the regime of
small γ, σ2 expressed by the scaling (13) then, in view of Remark 3.1, we can consistently replace
(viz. approximate) (24) with

∂t

∫ 1

0

ϕ(v)f(t, x, v) dv = (P(f), ϕ). (26)

Conversely, unlike (12), the transport step (25) contains a correction on the right-hand side,
strictly related to the non-locality of the interactions. With reference to the interaction rules (7),
we observe that the correction term is such that

(Q(f, ∂xf), 1) = 0, (Q(f, ∂xf), v) = ρ2γλ(ρ)∂xu. (27)
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In practice, the idea behind system (24)-(25) may be paraphrased as follows: one determines
a local Maxwellian Mρ,u from (24), as if the interacting vehicles were localised in the same space
position. As a matter of fact, this is analytically doable in the quasi-invariant regime, taking
advantage of the Fokker-Planck approximation (26) of (24). Next, one transports Mρ,u by means
of (25), including a suitable correction to the pure transport (12) due to the actual non-locality of
the interactions. In this transport step, the parameter γ appearing on the right-hand side of (25),
cf. (27), will be assumed small, consistently with the quasi-invariant regime invoked to solve (24).

4.1 The case D 6= 0

In the case D 6= 0, we can repeat the same steps as in Section 3.1 to find the local Maxwellian (16).
Plugging it into (25) with ϕ(v) = 1, v, and recalling furthermore the interaction rule (7), we find
the following second order macroscopic model:

∂tρ+ ∂x(ρu) = 0

∂t(ρu) + ∂x

(
ρu

2λ(ρ)u+ 1

2λ(ρ) + 1

)
= ρ2 γλ(ρ)H

2
∂xu,

(28)

which, assuming again λ > 0 constant for simplicity, can be written in quasilinear vector form as

∂tU +A(U)∂xU = 0, A(U) :=

(
u ρ

u(1−u)
(2λ+1)ρ

(2λ−1)u+1
2λ+1 − γλ(λ−1)H

2λ+1 ρ

)
,

where, as usual, U := (ρ, u)T . Notice that, if H = 0, both model (28) and the matrix A(U) reduce
consistently to model (17) and matrix A(U) found in Section 3.1.

The eigenvalues of A(U) are, in this case,

µ± :=
4λu+ 1

2(2λ+ 1)
− γλHρ

4
±

√
1 + 8λu(1− u)

(2(2λ+ 1))2
+

(
γλHρ

4

)2

+
γλHρ

4(2λ+ 1)
(2u− 1).

Considering that u ∈ [0, 1], we estimate:

µ+ ≥
4λu+ 1

2(2λ+ 1)
− γλHρ

4
+

√
1

(2(2λ+ 1))2
+

(
γλHρ

4

)2

− γλHρ

4(2λ+ 1)

=
4λu+ 1

2(2λ+ 1)
− γλHρ

4
+

√(
1

2(2λ+ 1)
− γλHρ

4

)2

=
4λu+ 1

2(2λ+ 1)
− γλHρ

4
+

∣∣∣∣ 1

2(2λ+ 1)
− γλHρ

4

∣∣∣∣
and, assuming ρ < 2

(2λ+1)γλH , we continue this computation as

=
2λu+ 1

2λ+ 1
− γλHρ

2
= u+

1− u
2λ+ 1

− γλHρ

2
.

Finally, if we further restrict ourselves to the case u < 1, ρ < 2(1−u)
(2λ+1)γλH (which is a sub-case of

the one previously considered), we have 1−u
2λ+1 −

γλHρ
2 > 0, whence we conclude µ+ > u.

As Figure 1 shows, the interpretation is that there exists a non-empty subregion of the state
space {(ρ, u) ∈ R+ × [0, 1)} where µ+ certainly violates the Aw-Rascle condition. Notice that,
for H → 0+, such a subregion expands to cover the whole state space, consistently with the fact
that, as already observed, model (28) reduces to model (17).
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µ+ > u

0 2
(2λ+1)γλH

1

ρ

u

Figure 1: The region of the state space {(ρ, u) ∈ R+ × [0, 1)} where the greatest eigenvalue of

system (28) surely exceeds the flow speed u. The dash-dotted line has equation u = 1− (2λ+1)γλH
2 ρ.

4.2 The case D = 0 and the Aw-Rascle model

If D = 0 then (24) with the interaction rules (7) admits again the Maxwellian (19) as unique and
globally attractive local equilibrium. Plugging it into (25) yields∂tρ+ ∂x(ρu) = 0

∂t(ρu) + ∂x(ρu2) = ρ2 γλ(ρ)H

2
∂xu.

(29)

Using the first equation, the second equation of this system can be rewritten as

∂tu+

(
u− ργλ(ρ)H

2

)
∂xu = 0, (30)

which coincides with the Aw-Rascle equation for the mean speed upon identifying

p′(ρ) :=
γλ(ρ)H

2
, (31)

where p = p(ρ) denotes the traffic “pressure”. With this definition, (30) can be formally further
recast as ∂t(u+ p(ρ)) + u∂x(u+ p(ρ)) = 0, so that finally system (29) can be given the usual form
of the Aw-Rascle model: {

∂tρ+ ∂x(ρu) = 0

∂t(u+ p(ρ)) + u∂x(u+ p(ρ)) = 0.
(32)

In quasilinear vector form this reads

∂tU +A(U)∂xU = 0, A(U) :=

(
u ρ
0 u− ρp′(ρ)

)
,

whence we see that the eigenvalues of A(U) are µ− = u − ρp′(ρ), µ+ = u with clearly µ− ≤ u,
because λ(ρ) ≥ 0, hence p′(ρ) ≥ 0, by assumption (in other words, the traffic pressure p is a
non-decreasing function of the traffic density ρ).

Summarising, we have been able to recover the Aw-Rascle model organically from first prin-
ciples of the kinetic theory out of the following microscopic features of the binary interactions
among the vehicles:

(i) interactions change only the speed of the vehicles in such a way that the global mean speed
is locally conserved;

11



(ii) the possible randomness in the behaviour of the drivers is neglected, i.e. driver behaviour is
modelled as purely deterministic;

(iii) interactions are non-local in space, i.e. a headway H > 0 between the interacting vehicles is
taken into account.

Recalling (7) and (31), the first two features are realised by means of the interaction rules

v′ = v +
2

H
p′(ρ)(v∗ − v), v′∗ = v∗.

Notice, in particular, that the driver sensitivity λ(ρ) turns out to be proportional to the variation
of the traffic pressure and inversely proportional to the headway between the interacting vehicles.
Thus, the steeper the increase in the traffic pressure, or the closer the leading v∗-vehicle, the
prompter the reaction of the v-driver, which is a quite meaningful model of driver behaviour.
Moreover, the third feature indicates that Enskog-type equations are the natural kinetic setting
for the hydrodynamic derivation of the Aw-Rascle model.

Remark 4.1. The proposed derivation of the Aw-Rascle model requires that both parameters γ,
H are sufficiently small. This may give the impression that p′ in (31) has to be necessarily very
small. However, as discussed in Section 2, we recall that for D = 0 the physical admissibility
of the microscopic interaction rules imposes λ(ρ) ≤ 1

γ , whence we deduce that γλ(ρ) = O(1).

Therefore, the only small parameter left in (31) is actually H. Considering that (31) defines the
derivative of p with respect to ρ, the smallness of H simply indicates that the variations of the
traffic pressure within the traffic stream are as small as the characteristic length over which the
microscopic interactions among the vehicles take place. This is indeed physically consistent and
does not imply that the traffic pressure itself is mandatorily small.

5 Generalisations of the Aw-Rascle model

The procedure followed in Section 4.2 to derive the Aw-Rascle model from the microscopic inter-
actions (7) can be fruitfully exploited to obtain classes of second order macroscopic traffic models
complying with the Aw-Rascle condition.

Let us consider the interaction rules (1) with I given by (4) and D = 0, i.e.

v′ = v + γ (Ψ(v∗; ρ)−Ψ(v; ρ)) , v′∗ = v∗.

The monokinetic Maxwellian (19) is still an equilibrium to (24), indeed (Q(Mρ,u, Mρ,u), ϕ) = 0
for every test function ϕ. Moreover, considering that ∂xMρ,u = ∂xρ δ(v − u)− ρ∂xu δ′(v − u), we
compute

(Q(Mρ,u, ∂xMρ,u), 1) = 0, (Q(Mρ,u, ∂xMρ,u), v) = ρ2γ∂vΨ(u; ρ)∂xu,

whence, plugging Mρ,u into (25) together with ϕ(v) = 1, v, we determine the following macroscopic
model: ∂tρ+ ∂x(ρu) = 0

∂t(ρu) + ∂x(ρu2) = ρ2 γ∂vΨ(u; ρ)H

2
∂xu.

(33)

Again, using the first equation we can rewrite the second equation in non-conservative form as

∂tu+

(
u− ργ∂vΨ(u; ρ)H

2

)
∂xu = 0,

which makes it evident that the quasilinear vector form of system (33) is

∂tU +A(U)∂xU = 0, A(U) :=

(
u ρ

0 u− ργ∂vΨ(u; ρ)H
2

)
.

12



The eigenvalues of A(U), i.e. µ− = u− ργ∂vΨ(u; ρ)H
2 and µ+ = u, satisfy the Aw-Rascle condition

provided
∂vΨ(u; ρ) ≥ 0 ∀ (ρ, u) ∈ R+ × [0, 1], (34)

for then it results clearly µ− ≤ u. Under (34), we may therefore call (33) a generalised Aw-Rascle
model. We observe that (34) requires essentially that Ψ be a non-decreasing function of the speed
v for all the physically admissible values of the parameter ρ.

Motivated by the introduction of the traffic pressure defined by (31), which allows one to
rewrite the Aw-Rascle model in the form (32), we introduce now a generalised traffic pressure
P = P (ρ, u) defined by the relationships

∂ρP =
γ∂vΨ(u; ρ)H

2
∂uP, P (0, u) = u, (35)

which allows us to rewrite the generalised Aw-Rascle model (33) in the form{
∂tρ+ ∂x(ρu) = 0

∂tP (ρ, u) + u∂xP (ρ, u) = 0.

In practice, P generalises the expression u+ p(ρ) in (32). If, for instance, the function Ψ is such
that ∂vΨ(u; ρ) does not depend on u then from (35) we determine precisely P (ρ, u) = u + p(ρ)

with p′(ρ) := γ∂vΨ(ρ)H
2 , thereby recovering the Aw-Rascle model (32) with ∂vΨ(ρ) = λ(ρ).

6 Numerical experiments

In this section, we focus on the numerical description of the models introduced so far. We start
from an analysis of the microscopic model of Section 2, which describes the interactions among the
vehicles through a binary collision approach. Next, we analyse the various mesoscopic approaches
detailed in Sections 3, 4, investigating in particular the role of the scaling parameter ε. Then,
we end with some numerical comparisons between the macroscopic traffic models obtained in the
hydrodynamic limit and their corresponding kinetic descriptions. In particular, we show that, for
ε so small that the interactions lead quicly to a local equilibrium, the Enskog model is equivalent
to the Aw-Rascle macroscopic model, as anticipated by the theoretical results of Section 4. We
also show the anticipating nature of the Enskog model compared to the more standard Boltzmann
model.

6.1 Test 1: Microscopic model and trend to equilibrium

We consider the binary rule (7), which entails the conservation of both the mass and the global
mean speed of the vehicles. In Section 3.1, we have shown that the system reaches a local equilib-
rium when the number of interactions grows if the effect of each interaction is sufficiently small,
i.e. if we are in the so-called quasi-invariant regime. Therefore, we assume, in particular, the
quasi-invariant scaling (13) so that, with the choice D(v) =

√
v(1− v) for the diffusion coefficient,

we expect the beta probability density function (16) as the local Maxwellian.
Such a Maxwellian depends, on one hand, on the average speed of the vehicles. Since this

parameter does not play an important role in the convergence to equilibrium, in the numerical
simulations of this section we consider simply a fixed value, specifically u = 0.6 so as to make
the resulting distribution asymmetric. On the other hand, the Maxwellian depends also on the
sensitivity parameter λ(ρ), whose value strongly affects the shape of the distribution. For the
moment, instead of prescribing λ as a function of ρ, we consider directly several values of λ, namely
λ = 1, 2, 3, 4, and we compare the corresponding Maxwellians emerging from the microscopic
dynamics with the analytical expression (16) found in the quasi-invariant limit. Moreover, we
analyse the convergence of the microscopic model to the equilibrium for two different values of
the scaling parameter, specifically ε = 10−1 and ε = 10−3. As far as the stochastic fluctuation
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in (7) is concerned, we consider a uniformly distributed random variable η ∼ U([−0.5, 0.5]). As
a matter of fact, we notice that the particular type of distribution of η does not affect the final
Maxwellian but only the transient regime towards it.

In Figure 2, we show the equilibrium distributions obtained with the microscopic dynamics (7)
scaled according to (13). The curves have been obtained by using 103 vehicles and by averaging
the steady state solution over 105 realisations. In each plot, we also represent the analytical steady
state (16) of the Fokker-Planck equation (15) and the initial distribution f0 of the vehicles, which
has been taken uniform in the interval [0.5, 2.5]. In all the tested scenarios, an extremely good
agreement between the microscopic interaction dynamics and the Fokker-Planck asymptotics is
obtained for ε = 10−3, which better mimics the quasi-invariant limit ε→ 0+.

Finally, we notice that, for D = 0, the Maxwellian can be determined directly from the
Boltzmann-type equation (11) as explained in Section 3.2, hence, in particular, without resorting
to approximate asymptotic procedures. Such a Maxwellian is therefore exact in every regime
of the microscopic parameters and, for this reason, there is no need to report here a numerical
comparison.

6.2 Boltzmann-type model with and without stochasticity

We consider now a space non-homogeneous scenario and we report results for the Boltzmann-type
description of traffic flow coming from (10) under the binary interaction model (7) along with the
quasi-invariant scaling (13). We start by giving the details of the discretisation technique.

6.2.1 A Monte Carlo method for the Boltzmann model

Equation (10) is discretised using a Monte Carlo approach, in which we define an ensemble of

N particles (representing the vehicles) {Xk(t), Vk(t)}Nk=1, where Xk(t) ∈ Ω ⊆ R is the position
and Vk(t) ∈ [0, 1] the speed of the kth car at time t. Here, Ω is the space domain. We then
approximate the distribution function f by means of the empirical distribution

µ(t, x, v) := mp

N∑
k=1

δ(x−Xk(t))⊗ δ(v − Vk(t)),

where the mass mp of a particle (viz. vehicle) is defined as

mp :=
1

N

∫
Ω

ρ0(x) dx,

ρ0 denoting the initial density of the vehicles. Upon introducing in Ω × [0, 1] a space and speed
mesh with cell centres (xj , v`) and mesh widths ∆x, ∆v, respectively, an approximation of the
particle density f(t, x, v) can be obtained as an histogram by computing

f(t, xj , v`) =

∫ v`+∆v/2

v`−∆v/2

∫ xj+∆x/2

xj−∆x/2

dµ(t, x, v). (36)

Likewise, an empirical position density is obtained as

ρ(t, xj) =

∫ 1

0

∫ xj+∆x/2

xj−∆x/2

dµ(t, x, v). (37)

We are now ready to describe the details of the Monte Carlo discretisation. This is based on
the strong form of (10), which, by choosing formally ϕ(·) = δ(· − v), can be written as

∂tf(t, x, v) + v∂xf(t, x, v)

=
1

ε

[〈∫ 1

0

∫ 1

0

δ(v′1 − v)f(t, x, v1)f(t, x, v2) dv1 dv2

〉
− ρ(t, x)f(t, x, v)

]
, (38)
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Figure 2: Test 1. Different equilibria of the microscopic interaction model (7) under the quasi-
invariant scaling (13). Left column: ε = 10−1, right column: ε = 10−3. From top to bottom,
the interaction parameter λ increases from 1 to 4, leading to different shapes of the equilibrium
distribution.

where we have denoted by v1, v2 the pre-interaction speeds (dummy integration variables) and
by v′1 the post-interaction speed of the first vehicle. The Monte Carlo method corresponding
to (38) is obtained by splitting the interaction and the transport steps, exactly in the same spirit
as (11), (12), cf. [13, 29].
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Algorithm 1 Nanbu-like algorithm for (40)

1: for each cell j do
2: define Nn

j := total number of cars in the cell j at time tn = n∆t

3: define Nn
int,j :=

[
ρ̃nj ∆t

ε
·
Nn
j

2

]
, where [·] is a stochastic truncation to the closest integer

4: select uniformly Nn
int,j pairs (k, h) of vehicles in the cell j

5: let the selected pairs interact and, for each of them, set V n+1
k = V ′k, V n+1

h = V ′h,∗ according
to the interaction rule (7) with the scaling (13)

6: for all the remaining vehicles, set V n+1
k = V nk

7: end for

Transport Each car advances from time tn over a time interval of length ∆t by changing its
position according to

Xn+1
k = Xn

k + V nk ∆t.

This gives an intermediate empirical distribution:

µ̃n(x, v) := mp

N∑
n=1

δ(x−Xn+1
k )⊗ δ(v − V nk ),

whence the intermediate particle density f̃n(xj , v`) and position density ρ̃n(xj) can be computed
using (36), (37).

Interaction Next, we solve the interaction step:

∂tf(t, x, v) =
1

ε

[〈∫ 1

0

∫ 1

0

δ(v′1 − v)f(t, x, v1)f(t, x, v2) dv1 dv2

〉
− ρ(t, x)f(t, x, v)

]
,

which, by defining the gain operator

Q+(f, f)(t, x, v) :=

〈∫ 1

0

∫ 1

0

δ(v′1 − v)f(t, x, v1)f(t, x, v2) dv1 dv2

〉
, (39)

can be approximated as

fn+1(x, v) =

(
1− ρ̃n(x)∆t

ε

)
f̃n(x, v) +

ρ̃n(x)∆t

ε
Q+(f̃n, f̃n)(x, v). (40)

At the Monte Carlo level, (40) can be interpreted as follows:

• with probability 1− ρ̃n(x)∆t
ε , the interacting vehicle does not change speed;

• with probability ρ̃n(x)∆t
ε , the interacting vehicle changes speed to a new value V n+1

k , which
is determined by means of Algorithm 1 below.

We observe that the explicit time discretisation (40) requires a stability condition of the type

max
x∈Ω

ρ̃n(x)∆t

ε
≤ 1

in order for the coefficients of the convex combination (40) to be actual probabilities. This is
indeed the choice performed in the numerical results presented in the sequel.

The Algorithm 1, used to compute the post-interaction speed, relies on a so-called Nanbu-type
method [27], which is similar to the approach developed for the standard Boltzmann equation of
gas dynamics.
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6.2.2 A Finite Volume method for the hydrodynamic limit of the Boltzmann model

We now detail also the discretisation of the hydrodynamic models (17), (20). We use a fifth order
WENO method combined with a Rusanov flux for the hyperbolic derivatives [39]. Thus, given a
generic flux function F (U) with U ∈ Rn, we first reconstruct the unknown values U−, U+ at the
interfaces and then we employ the numerical Rusanov flux defined as:

H(U−, U+) :=
1

2

[
F (U+) + F (U−)−Θ(F ′)S(U+ − U−)

]
,

Θ(F ′) := max
U∈[U−, U+]

|λ(F ′(U))| ,

where S ∈ Rn×n is a transformation matrix and maxU∈[U−, U+] |λ(F ′(U))| is the maximum modulus
of the eigenvalues of the Jacobian matrix F ′ of the flux.

For system (17), the Jacobian matrix is given in (18). Moreover, we consider U = (ρ, q)T with
q = ρu and the corresponding two components of the flux at the interface:

f̂i+ 1
2

=
1

2

[
f(q+

i+ 1
2

) + f(q−
i+ 1

2

)−Θ(ρ, q)(ρ+
i+ 1

2

− ρ−
i+ 1

2

)
]

ĝi+ 1
2

=
1

2

[
g(ρ, q)+

i+ 1
2

+ g(ρ, q)−
i+ 1

2

−Θ(ρ, q)(q+
i+ 1

2

− q−
i+ 1

2

)
] (41)

with f(q) = q, g(ρ, q) = q 2λ(ρ)q/ρ+1
2λ(ρ)+1 and

Θ(ρ, q) =
q

ρ
+

1− 2q/ρ

2(2λ+ 1)
± 1

2(2λ+ 1)

√
1 +

8λq

ρ

(
1− q

ρ

)
.

For system (20), the Jacobian matrix is given in (21). The unknowns Q = (ρ, q)T are the same
as before, but the fluxes are different:

f̂∗i+ 1
2

=
1

2

[
f∗(q+

i+ 1
2

) + f∗(q−
i+ 1

2

)−Θ∗(ρ, q)(ρ+
i+ 1

2

− ρ−
i+ 1

2

)
]

ĝ∗i+ 1
2

=
1

2

[
g∗(ρ, q)+

i+ 1
2

+ g∗(ρ, q)−
i+ 1

2

−Θ∗(ρ, q)(q+
i+ 1

2

− q−
i+ 1

2

)
] (42)

with f∗(q) = q, g∗(ρ, q) = qu and Θ∗(ρ, q) = q/ρ.
The reconstruction of ρ, q at the grid interfaces i ± 1/2, necessary for the application of the

formulas (41), (42), may be performed as follows. Let w denote either ρ or q. Then the values
w−i+1/2, w+

i−1/2 are obtained as

w−
i+ 1

2

=

2∑
r=0

ωrw
(r)

i+ 1
2

, w+
i− 1

2

=

2∑
r=0

ωrw̃
(r)

i+ 1
2

with weights

ωr =
αr∑2
s=0 αs

, αr =
dr

(ε+ βr)2
, ω̃r =

α̃r∑2
s=0 α̃s

, α̃r =
d̃r

(ε+ βr)2
,

and with the standard smooth indicators

β0 =
13

12
(wi − 2wi+1 + wi+2)2 +

1

4
(3wi − 4wi+1 + wi+2)2

β1 =
13

12
(wi−1 − 2wi + wi+1)2 +

1

4
(wi−1 + wi+1)2

β2 =
13

12
(wi−2 − 2wi−1 + wi)

2 +
1

4
(3wi−2 − 4wi−1 + wi)

2,
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Table 1: Coefficients crj for the fifth order space WENO reconstruction on equispaced grid points

r
j

0 1 2

0 1
3

5
6 − 1

6

1 − 1
6

5
6

1
3

2 1
3 − 7

6
11
6

Figure 3: Test 2. Left: initial distribution f0(x, v). Right: density and mean speed corresponding
to f0(x, v), which mimic consistently the initial condition (43) of the hydrodynamic model.

where ε = 10−8, d0 = d̃2 = 3
10 , d1 = d̃1 = 3

5 , d2 = d̃0 = 1
10 . The values w

(r)

i± 1
2

represent the third

order reconstructions of the pointwise values w̄i. They are obtained through the formulas

w
(r)

i+ 1
2

=

2∑
j=0

crjw̄i−r+j , w
(r)

i− 1
2

=

2∑
j=0

c̃rjw̄i−r+j , r = 0, 1, 2,

where w̄i−r+j are the pointwise values of the unknown evaluated in the points xi−r, . . . , xi−r+2.
Since we use evenly spaced grid points, the coefficients crj can be precomputed as indicated in
Table 1.

Finally, we use a second order Runge-Kutta explicit time discretisation. In particular, the time
step ∆t is chosen according to the stability condition ∆t = 0.2∆x/maxx∈Ω{µ+, µ−}, where µ±
are the eigenvalues of the Jacobian matrix of the flux, cf. Sections 3.1, 3.2.

6.2.3 Test 2: Boltzmann vs hydrodynamics for D 6= 0

We now compare the results produced by the inhomogeneous Boltzmann-type model (10) for ε
small with those produced by the macroscopic model (17) obtained from the former with the local
equilibrium closure in the hydrodynamic limit ε→ 0+.

We consider the space domain Ω = [−10, 10] with periodic boundary conditions, which mimics
a circuit. To the macroscopic model, we prescribe the following initial condition:

ρ0(x) =

{
0.75 if x < 0

0.25 if x ≥ 0,
u0(x) =

{
0.5 if x < 0

0.9 if x ≥ 0,
(43)

which defines a Riemann problem with the discontinuity (shock) located at x = 0. Notice that, due
to the periodic boundary conditions, there is actually also a second discontinuity located at the
boundary of Ω, whose left and right states are switched with respect to those of the discontinuity
at x = 0.
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Figure 4: Test 2. Left: density and mean speed at the computational time t = 6 obtained with
the hydrodynamic model (17) and the Boltzmann-type kinetic model (10) with D 6= 0 in the
binary interactions (7). Right: kinetic distribution in the phase space. From top to bottom, the
scaling parameter ε grows from 10−3 to 10−2 and 10−1.

To reproduce such an initial condition at the kinetic level, we use N = 104 particles and we
consider a partition of the space domain Ω in 100 pairwise disjoint cells. Within each cell, we
distribute uniformly a number of vehicles ρ0(xj)/mp, xj ∈ Ω being the centre of the jth cell,
with speed equal to u0(xj) plus a small uniform perturbation of the order p(xj)u0(xj), where
p(xj) = 2 · 10−1 if xj < 0 and p(xj) = 10−2 if xj ≥ 0. Hence, we are imposing a non-equilibrium
initial condition. Figure 3 shows the resulting initial distribution f0(x, v) on the left panel and the
corresponding density and mean speed, which clearly mimic (43) consistently, on the right panel.

In Figure 4, we compare the evolution of the system at the computational time t = 6 calculated
via the hydrodynamic and the Boltzmann-type kinetic model. In particular, as far as the latter
is concerned, in the microscopic binary interactions (7) we fix λ(ρ) = ρ, η ∼ U([−0.5, 0.5]) and
we use the quasi-invariant scaling (13). We consider three different orders of magnitude of the
scaling parameter: ε = 10−3, 10−2, 10−1 (from the top to the bottom of Figure 4). For ε = 10−3,
we observe a very good matching between the kinetic and the macroscopic solutions, consistently
with the fact that the macroscopic model has been obtained from the kinetic model in the limit
ε → 0+. Conversely, for larger values of ε some differences appear, because the interactions in
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the kinetic model are actually farther and farther from the local equilibrium. For instance, for
ε = 10−2 the maximum mean speed computed with the kinetic model is nearly 0.7, thus visibly
lower than the maximum one computed with the macroscopic model, i.e. 0.9. This is probably
due to diffusive effects, which get more important far from equilibrium. Moreover, we notice that
the rarefaction waves characterising the macroscopic solution are slightly shifted rightwards in the
kinetic solution. For ε = 10−1, we observe even more marked differences with the hydrodynamic
solution: the mean speed computed with the kinetic model approaches a nearly constant value
around 0.5 while the waves are much more dampened and shifted rightwards.

6.2.4 Test 3: Boltzmann vs hydrodynamics for D = 0

Now, we test the case in which the driver behaviour does not contain any stochasticity. Thus,
the idea is to repeat the same simulations of Section 6.2.3, with however D = 0 in the interaction
rules (7) and still taking the scaling γ = ε into account, cf. (13). In the limit ε→ 0+, The expected
local equilibrium distribution is the Dirac delta (19), which leads to different dynamics for both
the density and the mean speed of the vehicles. Indeed, the obtained hydrodynamic equations
are, in this case, the so-called pressureless gas dynamics equations, cf. (20).

We prescribe again the initial condition (43) and we use the same parameters as in the previous
test, cf. Section 6.2.3. Moreover, we solve the Boltzmann-type equation (10) by means of the
same Monte Carlo method described in Algorithm 1, cf. Section 6.2.1, and the hydrodynamics
equations (20) by means of the same Finite Volume method described in Section 6.2.2.

Figure 5 shows the results of this test, in particular the density and the mean speed of the
vehicles on the left and the kinetic distribution function in the phase space on the right for
ε = 10−3, 10−2, 10−1 (from top to bottom). The differences with respect to Test 2, cf. Figure 4,
are evident by observing the shape of the kinetic distribution function. Compared to the case which
includes the stochastic driver behaviour, here f is definitely close to a Dirac delta for ε = 10−3.
Moreover, also for larger values of ε the distribution function exhibits important differences with
respect to the previous case, although it is not actually concentrated around the mean speed. By
analysing the results in terms of the macroscopic parameters, we observe that the density of the
vehicles features an incipient vacuum formation near x = 5, due to a rarefaction caused by the
faster vehicles moving rightwards. Such a vacuum formation is well reproduced by the kinetic
solution, especially for ε = 10−3. Conversely, near x = −5 we observe a peak in the density due to
faster vehicles reaching the slow traffic region from behind. This makes simultaneously the mean
speed decrease because of the congestion. Such a density peak is again very much well reproduced
by the kinetic solution for ε = 10−3, while for larger values of ε, i.e. far from the hydrodynamic
regime, the kinetic solution shows a bump profile with a considerably lower maximum. Parallelly,
the mean speed exhibits a much stronger rarefaction wave than in the hydrodynamic case.

6.3 Enskog-type model with and without stochasticity

We pass now to the case of Enskog-type kinetic dynamics. As it is clear from Section 4, in this
case we have two different types of interactions: quick local ones, described by (24), and slower
non-local ones modelled by (25). In the sequel, we first describe a suitable numerical algorithm
consistent with such a splitting of the interaction dynamics, then we compare the kinetic results
with the hydrodynamic ones by distinguishing again the cases D 6= 0 and D = 0 in the microscopic
interaction rules (7) with the quasi-invariant scaling (13).
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Figure 5: Test 3. Left: density and mean speed at the computational time t = 6 obtained with
the hydrodynamic model (20) and the Boltzmann-type kinetic model (10) with D = 0 in the
binary interactions (7). Right: kinetic distribution in the phase space. From top to bottom, the
scaling parameter ε grows from 10−3 to 10−2 and 10−1.

6.3.1 A Monte Carlo method for the Enskog model

In order to derive a Monte Carlo method for the approximation of the Enskog-type model, we first
rewrite (23) in strong form by choosing formally ϕ(·) = δ(· − v):

∂tf(t, x, v) + v∂xf(t, x, v)

=
1

ε

[〈∫ 1

0

∫ 1

0

δ(v′1 − v)f(t, x, v1)f(t, x, v2) dv1 dv2

〉
− ρ(t, x)f(t, x, v)

]
+
H

2

[〈∫ 1

0

∫ 1

0

δ(v′1 − v)f(t, x, v1)∂xf(t, x, v2) dv1 dv2

〉
− ∂xρ(t, x)f(t, x, v)

]
, (44)

where we have again switched to the notation v1, v2 for the pre-interaction speeds (dummy in-
tegration variables) and to v′1 for the post-interaction speed of the first vehicle. Next, we choose
the size ∆x of the spatial mesh as a submultiple of the headway H, i.e. such that H = k∆x with
k ∈ N. In particular, we fix k = 1 and we approximate the space derivatives at the right-hand

21



side with the upwind formula:

∂xf(t, x, v2) ≈ f(t, x+ ∆x, v2)− f(t, x, v2)

∆x
, ∂xρ(t, x) ≈ ρ(t, x+ ∆x)− ρ(t, x)

∆x
.

This produces the following approximation of the right-hand side of (44):

1

ε

[〈∫ 1

0

∫ 1

0

δ(v′1 − v)f(t, x, v1)f(t, x, v2) dv1 dv2

〉
− ρ(t, x)f(t, x, v)

]
+

1

2

[〈∫ 1

0

∫ 1

0

δ(v′1 − v)f(t, x, v1)f(t, x+ ∆x, v2) dv1 dv2

〉
− ρ(t, x+ ∆x)f(t, x, v)

]
, (45)

where we have further approximated the constant 1
ε−

1
2 in front of the first term with 1

ε , considering
that we are interested in the regime of small ε.

Starting from (45), the Monte Carlo method is composed of three steps.

Transport Each car advances from time tn over a time interval of length ∆t by changing its
position according to

Xn+1
k = Xn

k + V nk ∆t,

whence an intermediate particle density f̃n(xj , v`) and the corresponding macroscopic density
ρ̃n(xj) can be computed using (36), (37).

Local interaction Invoking the gain operator (39), from (45) with the splitting (24) we update
f̃n in consequence of the quick local interactions as

˜̃
fn(x, v) =

(
1− ρ̃n(x)∆t

ε

)
f̃n(x, v) +

ρ̃(x)∆t

ε
Q+(f̃n, f̃n)(x, v). (46)

From
˜̃
fn, we also compute the new macroscopic density ˜̃ρn.

Non-local interaction Defining from (45) the Enskog gain operator:

Q+
E(f, f)(t, x, v) :=

〈∫ 1

0

∫ 1

0

δ(v′1 − v)f(t, x, v1)f(t, x+ ∆x, v2) dv1 dv2

〉
,

we finally update
˜̃
fn by taking into account also the contribution of the non-local dynamics:

fn+1(x, v) =

(
1−

˜̃ρn(x+ ∆x)∆t

2

)
˜̃
fn(x, v) +

˜̃ρ(x+ ∆x)∆t

2
Q+
E(

˜̃
fn,

˜̃
fn)(x, v). (47)

At the Monte Carlo level, (46)-(47) may be interpreted as follows:

• in (46), with probability 1− ρ̃n(x)∆t
ε the interacting vehicle does not change speed, whereas

with probability ρ̃n(x)∆t
ε it changes speed from V nk to a new value Ṽ nk computed by means

of (7) with the quasi-invariant scaling (13). Such a change of speed is possibly caused by
another vehicle located within the same cell of the spatial grid (local interaction);

• in (47), with probability 1 − ˜̃ρn(x+∆x)∆t
2 the interacting vehicle does not change speed,

while with probability
˜̃ρn(x+∆x)∆t

2 it changes speed from Ṽ nk to a new value V n+1
k , which is

computed again with (7)-(13) but considering now another vehicle located in the next cell
of the spatial grid (non-local interaction).

The implementation of this algorithm follows very closely the one detailed in Algorithm 1, thus
it is not given here explicitly.
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6.3.2 A Finite Volume method for the hydrodynamic limit of the Enskog model

We now briefly discuss also the numerical approximation of the hydrodynamic equations (28), (29).
Both macroscopic models are discretised using a fifth order WENO method combined with

a Rusanov flux for the hyperbolic derivatives, as discussed in Section 6.2.2. In both cases, the
unknown is U = (ρ, q)T with q = ρu. Moreover, for (28) the numerical flux is given by (41) while
for (29) it is given by (42) with the same choices of f , g, Θ, f∗, g∗, Θ∗ indicated in Section 6.2.2.
Also the reconstruction of the macroscopic parameters ρ, q at the grid interfaces follows the same
lines outlined in Section 6.2.2.

The only difference, which requires an ad hoc discussion, is the discretisation of the term

ρ2 γλ(ρ)H

2
∂xu

appearing on the right-hand side of (28), (29), which does not have a counterpart in mod-
els (17), (20) because it is produced by the non-locality of the Enskog interaction operator. We
treat this term simply by a time splitting approach. Thus, we first compute

ρ
n+1/2
i = ρni −

∆t

∆x

(
f̂ni+ 1

2
− f̂ni− 1

2

)
, q

n+1/2
i = qni −

∆t

∆x

(
ĝni+ 1

2
− ĝni− 1

2

)
,

as if we were solving (17), (20), and then we update

ρn+1
i = ρ

n+1/2
i , qn+1

i = q
n+1/2
i −∆t(ρn+1

i )
2 γλ(ρni )H

2
·
u
n+1/2
i+1 − un+1/2

i

∆x
.

Finally, we fix the time step according to the stability condition ∆t = 0.2∆x/maxx∈Ω{µ+, µ−},
where µ± are the eigenvalues of the Jacobian matrix of the flux, cf. Sections 4.1, 4.2, and we use
a second order Runge-Kutta time discretisation.

6.3.3 Test 4: Enskog vs hydrodynamics for D 6= 0

The setting of this test is the same as that of Section 6.2.3 as far as the details of both the model
and the numerical discretisation are concerned, so as to allow for a straightforward comparison.
Figure 6 shows the results of the present test in terms of the density and the mean speed of the
vehicles on the left and of the kinetic distribution function in the phase space on the right for
increasing values of the scaling parameter from ε = 10−3 to ε = 10−2 and ε = 10−1 (top to
bottom). In particular, the density and the mean speed are computed both from the Enskog-
type kinetic model (23) and from the corresponding hydrodynamic model (28). As expected from
the theory, a good matching between the kinetic and the hydrodynamic solutions is obtained for
ε = 10−3.

With respect to the Boltzmann-type kinetic model, cf. Figure 4, we observe that the Enskog-
type solution exhibits either a more pronounced peak near x = −5 for ε = 10−2 or a more
pronounced incipient vacuum formation near x = 5 for ε = 10−1. On the other hand, for ε = 10−1

the mean speed seems to approach again the constant value 0.5. Instead, the two kinetic solutions,
and therefore also the corresponding macroscopic ones, are quite similar to each other near the
hydrodynamic regime, namely, in this test, for ε = 10−3.

6.3.4 Test 5: Enskog vs hydrodynamics for D = 0 (Aw-Rascle model)

Also this test shares the same modelling and numerical setting as the previous Tests 3, 4 discussed
in Sections 6.2.3, 6.3.3. In this case, we compare the Enskog-type kinetic model (23) with no
microscopic randomness in the driver behaviour (D = 0 in the binary interactions) and the corres-
ponding hydrodynamic model (29), which, as shown in Section 4.2, turns out to be the Aw-Rascle
macroscopic traffic model.

Figure 7 shows the results of this test in terms of the density and the mean speed of the
vehicles on the left and of the kinetic distribution function in the phase space on the right for
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Figure 6: Test 4. Left: density and mean speed at the computational time t = 6 obtained with
the hydrodynamic model (28) and the Enskog-type kinetic model (23) with D 6= 0 in the binary
interactions (7). Right: kinetic distribution in the phase space. From top to bottom, the scaling
parameter ε grows from 10−3 to 10−2 and 10−1.

increasing values of the scaling parameter from ε = 10−3 to ε = 10−2 and ε = 10−1 (top to
bottom). Compared to the case D 6= 0, cf. Section 6.3.3 and Figure 6, the qualitative differences
are evident. For small ε, we observe again a very good agreement between the hydrodynamic and
the kinetic solutions, as expected from the theory. In particular, the hydrodynamic results are
similar to those obtained in the Boltzmann-type case, cf. Figure 5: the rarefaction wave featured
by the macroscopic density on the right-hand side of the space domain is stronger, leading to
values close to zero, while the peak of the density on the left-hand side of the space domanin gets
much more pronounced in the limit ε → 0+. For increasing ε, the location of the density peak
shifts rightwards in the kinetic solution and the peak value diminishes.

6.4 Comparison of the hydrodynamic models

Finally, we compare the macroscopic models (17), (20), (28), (29) obtained in the hydrodynamic
limit. The numerical discretisation is the same as that described in Sections 6.2.2, 6.3.2, however
here we use a finer spatial grid made of 500 cells in order to better highlight the differences among
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Figure 7: Test 5. Left: density and mean speed at the computational time t = 6 obtained with
the hydrodynamic model (29) and the Enskog-type kinetic model (23) with D = 0 in the binary
interactions (7). Right: kinetic distribution in the phase space. From top to bottom, the scaling
parameter ε grows from 10−3 to 10−2 and 10−1.

the various cases.

Test 6 We begin from the same Riemann problem that we have considered so far, namely the
one described by the initial conditions (43). In Figure 8, we report the macroscopic density and
the mean speed produced by the four models at the computational time t = 12. We clearly observe
that the hydrodynamic models (20), (29), obtained from the Boltzmann-type and the Enskog-type
kinetic descriptions with D = 0, respectively, show the most relevant differences. In particular,
the solution of model (29) is shifted leftwards with respect to that of model (20) and, furthermore,
it produces milder congestion states due to the anticipatory ability of the drivers. Conversely, the
hydrodynamic models (17), (28), obtained from the Boltzmann-type and the Enskog-type kinetic
descriptions with D 6= 0, respectively, feature very little differences from each other, due to the
smoothing role played by the microscopic diffusion.
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Figure 8: Test 6. Density ρ (left) and mean speed u (right), both at the computational time
t = 12, computed with the four hydrodynamic models (17), (20), (28), (29), starting from the
initial condition (43) and with periodic boundary conditions.

Figure 9: Test 7. Density ρ (left) and mean speed u (right), both at the computational time
t = 12, computed with the four hydrodynamic models (17), (20), (28), (29), starting from the
initial condition (48) and with periodic boundary conditions.

Test 7 We now consider the propagation of an initially smooth wave, that we choose as

ρ0(x) =
1

3

[
2 + sin

(π
5
x
)]
, u0(x) =

1

2 + sin
(
π
5x
) . (48)

Figure 9 shows that the results are qualitatively analogous to those of the previous test: the
two hydrodynamic models with D 6= 0, namely (17) and (28), do not exhibit important differences,
which are instead more marked in the case D = 0 between the hydrodynamic models (20) and (29).
For D = 0, a density congestion arises. More specifically, in model (20), obtained from the
Boltzmann-type description, the congestion is stronger, while in model (29), obtained from the
Enskog-type description, it is milder due to the anticipatory nature of the interactions among the
vehicles, which start to slow down before reaching the queue. Conversely, for D 6= 0 we observe
a regularising effect of the microscopic diffusion on the macroscopic traffic, together with wave
propagation phenomena similar to the case of a linear hyperbolic system.

Test 8 Finally, we increase the strength of the interaction with the vehicles ahead, so as to
ascertain the effect of the anticipatory nature of the interactions in the Enskog-type setting. In

26



this test, we confine ourselves to the caseD = 0, namely we compare the pressureless hydrodynamic
model (20) with the Aw-Rascle hydrodynamic model (29). In particular, we set λ(ρ) = 10ρ, while
we remind that, so far, we have always used λ(ρ) = ρ. All of the other parameters are set as in
the previous tests. Furthermore, we prescribe the following initial condition:

ρ0(x) =

{
0.25 if x < 0

0.75 if x ≥ 0,
u0(x) =

{
0.2 if x < 0

0.4 if x ≥ 0
(49)

and we assign periodic boundary conditions. Similarly to (43), this setting defines a Riemann
problem with two discontinuities located in x = 0 and at the boundary of the domain, respectively.

Figure 10 shows the evolution of the density and of the mean speed, respectively, at the suc-
cessive computational times t = 2.5, 5, 7.5, 10. We clearly see that the Aw-Rascle model (29),
obtained from the Enskog-type description with D = 0, is able to anticipate the situation of the
traffic ahead and to account for a backward propagation of density waves. This also allows the
model to produce bounded congestion states. Conversely, the pressureless model (20), obtained
from the Boltzmann-type description with D = 0, forms a stronger and stronger localised conges-
tion, which moves forward. At the same time, in the Aw-Rascle model the mean speed is lower
than that of the pressureless model in correspondence of the traffic congestion.

The same qualitative results, here investigated in the limit hydrodynamic models, hold for the
Boltzmann-type and the Enskog-type kinetic models with a small enough scaling parameter ε > 0.
Consistently with what was argued in [21], this indicates that, in spite of the non-negativity of the
microscopic speeds, the Enskog-type description, unlike the Boltzmann-type one, is able to account
for backward propagating density waves. Not surprisingly, then, it constitutes an appropriate basis
for the derivation of the hydrodynamic Aw-Rascle model from kinetic principles.

7 Conclusions

In this paper, we have proved that the macroscopic Aw-Rascle traffic model [1], proposed in-
dependently also by Zhang [45], may be fruitfully explained as the hydrodynamic limit of an
Enskog-type kinetic description. In particular, we have shown that the non-locality of the mi-
croscopic interactions among the vehicles plays a fundamental role in conferring the anticipatory
nature on the macroscopic dynamics. More precisely, our results indicate that such a large scale
anticipatory behaviour is produced by the superposition of quick local interactions and slow back-
ground actions, that the drivers perform to adapt their pace to the mean flow. Background actions
are not present in a more standard Boltzmann-type kinetic description, which explains why, as
already implied in [21], the Aw-Rascle model cannot be obtained therefrom. However, our study
has highlighted that the non-locality of the interactions is not sufficient, by itself, to produce,
in the macroscopic limit, the Aw-Rascle model. It is also necessary that the microscopic rules
followed by the vehicles, here written as a relaxation towards the speed of the leading vehicle
(follow-the-leader), are deterministic, i.e. free from stochastic contributions caused by the driver
behaviour. Indeed, in this way the local interactions drive the system quickly towards the local
mean speed of the flow without fluctuations. If present, instead, the random fluctuations generate
a standard gas-dynamical pressure-like term in the macroscopic equations, which, as explained
in [1], is typically responsible for the violation of the Aw-Rascle condition.

By relying on this sound mathematical-physical understanding, we have used the Enskog-type
kinetic description and the related hydrodynamic limit to generalise the Aw-Rascle model to a new
class of second order macroscopic traffic models, which satisfy the Aw-Rascle condition. Also for
such new models, it has been possible to link precisely the key macroscopic features, such as e.g.,
the Aw-Rascle traffic pressure responsible for the anticipatory dynamics, to structural properties
of the microscopic binary rules modelling the behaviour of the vehicles.

We believe that the link we have established in this paper between the kinetic approach and
possibly generalised versions of the Aw-Rascle model may pave the way for the future investiga-
tion of hierarchical control problems, from the level of single vehicles (driver-assist/autonomous
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Figure 10: Test 8. Density (left) and mean speed (right) at successive times computed with
the hydrodynamic models (20), (29) starting from the initial condition (49) and with periodic
boundary conditions.

vehicles) to that of the aggregate flow, in the spirit of [41] and with specific focus on second order
macroscopic traffic models.
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