
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Multiscale fluid–particle thermal interaction in isotropic turbulence / Carbone, M.; Bragg, A. D.; Iovieno, M.. - In:
JOURNAL OF FLUID MECHANICS. - ISSN 0022-1120. - STAMPA. - 881:(2019), pp. 679-721. [10.1017/jfm.2019.773]

Original

Multiscale fluid–particle thermal interaction in isotropic turbulence

Publisher:

Published
DOI:10.1017/jfm.2019.773

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2764613 since: 2019-10-31T15:15:54Z

Cambridge University Press



This draft was prepared using the LaTeX style file belonging to the Journal of Fluid Mechanics 1

Multiscale fluid–particle thermal interaction in
isotropic turbulence.

M. Carbone1,2, A. D. Bragg2† and M. Iovieno1

1Dipartimento di Ingegneria Meccanica e Aerospaziale, Politecnico di Torino, Corso Duca degli
Abruzzi 24, 10129 Torino, Italy

2Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708,
USA

(Received xx; revised xx; accepted xx)

We use direct numerical simulations to investigate the interaction between the tem-
perature field of a fluid and the temperature of small particles suspended in the flow,
employing both one and two-way thermal coupling, in a statistically stationary, isotropic
turbulent flow. Using statistical analysis, we investigate this variegated interaction at
the different scales of the flow. We find that the variance of the carrier flow temperature
gradients decreases as the thermal response time of the suspended particles is increased.
The probability density function (PDF) of the carrier flow temperature gradients scales
with its variance, while the PDF of the rate of change of the particle temperature, whose
variance is associated with the thermal dissipation due to the particles, does not scale in
such a self-similar way. The modification of the fluid temperature field due to the particles
is examined by computing the particle concentration and particle heat fluxes conditioned
on the magnitude of the local fluid temperature gradient. These statistics highlight that
the particles cluster on the fluid temperature fronts, and the important role played by
the alignments of the particle velocity and the local fluid temperature gradient. The
temperature structure functions, which characterize the temperature fluctuations across
the scales of the flow, clearly show that the fluctuations of the carrier flow temperature
increments are monotonically suppressed in the two-way coupled regime as the particle
thermal response time is increased. Thermal caustics dominate the particle temperature
increments at small scales, that is, particles that come into contact are likely to have
very large differences in their temperature. This is caused by the nonlocal thermal
dynamics of the particles: the scaling exponents of the inertial particle temperature
structure functions in the dissipation range reveal very strong multifractal behavior.
Further insight is provided by the flux of temperature increments across the scales. All
together, these results reveal a number of non-trivial effects, with a number of important
practical consequences.

Key words:

1. Introduction
The interaction between inertial particles and scalar fields in turbulent flows plays a

central role in many natural problems, ranging from cloud microphysics (Pruppacher &
Klett 2010; Grabowski & Wang 2013) to the interactions between plankton and nutrients
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(De Lillo et al. 2014), and dust particle flows in accretion disks (Takeuchi & Lin 2002). In
engineered systems, applications involve chemical reactors and combustion chambers, and
more recently, microdispersed colloidal fluids where the enhanced thermal conductivity
due to particle aggregations can give rise to non-trivial thermal behavior (Prasher et al.
2006; Momenifar et al. 2015), and which can be used in cooling devices for electronic
equipment exposed to large heat fluxes (Das et al. 2006).

In this work, we focus on the heat exchange between advected inertial particles and
the fluid phase in a turbulent flow, with a parametric emphasis relevant to understanding
particle-scalar interactions in cloud microphysics. Understanding the droplet growth in
clouds requires to characterize the interaction between water droplets and the humidity
and temperature fields. A major problem is to understand how the interaction between
turbulence, heat exchange, condensational processes, and collisions can produce the
rapid growth of water droplets that leads to rain initiation (Pruppacher & Klett 2010;
Grabowski & Wang 2013). While the study of the transport of scalar fields and particles
in turbulent flows are well established research areas in both theoretical and applied fluid
dynamics (Kraichnan 1994; Taylor 1922), the characterization of the interaction between
scalars and particles in turbulent flows is a relatively new topic (Bec et al. 2014), since the
problem is hard to handle analytically, requires sophisticated experimental techniques,
and is computationally demanding.

When temperature differences inside the fluid are sufficiently small, the temperature
field behaves almost like a passive scalar, that is, the fluid temperature is advected
and diffused by the fluid motion but has negligible dynamical effect on the flow. Even
in this regime, the statistical properties of the passive scalar field are significantly
different from those of the underlying velocity field that advects it. Different regimes
take place according to the Reynolds number and the ratio between momentum and
scalar diffusivities (Shraiman & Siggia 2000; Warhaft 2000; Watanabe & Gotoh 2004).

Experiments, numerical simulations and analytical models show that a passive scalar
field is always more intermittent than the velocity field, and passive scalars in turbulence
are characterized by strong anomalous scaling (Holzer & Siggia 1994). This is due to the
formation of ramp–cliff structures in the scalar field (Celani et al. 2000; Watanabe &
Gotoh 2004): large regions in which the scalar field is almost constant are separated by
thin regions in which the scalar abruptly changes. The regions in which the scalar mildly
changes are referred to as Lagrangian coherent structures. The thin regions with large
scalar gradient, where the diffusion of the scalar takes place, are referred to as fronts.
It has been shown that the large scale forcing influences the passive scalar statistics at
small scales (Gotoh & Watanabe 2015). In particular, a mean scalar gradient forcing
preserves universality of the statistics while a large scale Gaussian forcing does not.
However, the ramp-cliff structure was observed with different types of forcing, implying
that this structure is universal to scalar fields in turbulence (Watanabe & Gotoh 2004;
Bec et al. 2014). Moreover, recent measurements of atmospheric turbulence have shown
that external boundary conditions, such as the magnitude and sign of the sensible heat
flux, have a significant impact on the fluid temperature dynamics within the inertial
range, while for the same scales the fluid velocity increments are essentially independent
of these large-scale conditions (Zorzetto et al. 2018).

When a turbulent flow is seeded with inertial particles, the particles can sample the
surrounding flow in a non-uniform and correlated manner (Toschi & Bodenschatz 2009).
Particle inertia in a turbulent flow is measured through the Stokes number St ≡ τp/τη,
which compares the particle response time to the Kolmogorov time scale. A striking
feature of inertial particle motion in turbulent flows is that they spontaneously cluster
even in incompressible flows (Maxey 1987; Wang & Maxey 1993; Bec et al. 2007; Ireland
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et al. 2016a). This clustering can take place across a wide range of scales (Bec et al. 2007;
Bragg et al. 2015a; Ireland et al. 2016a), and the small-scale clustering is maximum when
St = O (1). A variety of mechanisms has been proposed to explain this phenomena: when
St � 1 the clustering is caused by particles being centrifuged out of regions of strong
rotation (Maxey 1987; Chun et al. 2005), while for St > O (1), a non-local mechanism
generates the clustering, whose effect is related to the particles memory of its interaction
with the flow along its path-history (Gustavsson & Mehlig 2011, 2016; Bragg & Collins
2014a; Bragg et al. 2015b,a). Note that recent results on the clustering of settling inertial
particles in turbulence have corroborated this picture, showing that strong clustering can
occur even in a parameter regime where the centrifuge effect cannot be invoked as the
explanation for the clustering, but is caused by a non-local mechanism (Ireland et al.
2016b).

When particles have finite thermal inertia, they will not be in thermal equilibrium with
the fluid temperature field, and this can give rise to non-trivial thermal coupling between
the fluid and particles in a turbulent flow. A thermal response time τθ can be defined so
that the particle thermal inertia is parameterized by the thermal Stokes number Stθ ≡
τθ/τη (Zaichik et al. 2009). Since both the fluid temperature and particle phase-space
dynamics depend upon the fluid velocity field, there can exist non-trivial correlations
between the fluid and particle temperatures even in the absence of thermal coupling.
Indeed, it was show by Bec et al. (2014) that inertial particles preferentially cluster on
the fronts of the scalar field. Associated with this is that the particles preferentially
sample the fluid temperature field, and when combined with the strong intermittency of
temperature fields in turbulent flows, that can cause particles to experience very large
temperature fluctuations along their trajectories.

Several works have considered aspects of the fluid-particle temperature coupling using
numerical simulations. For example, Zonta et al. (2008) investigated a particle-laden
channel flow, with a view to modeling the modification of heat transfer in micro–
dispersed fluids. They considered both momentum and temperature two–way coupling
and observed that, depending on the particle inertia, the heat flow at the wall can increase
or decrease. Kuerten et al. (2011) considered a similar set-up with larger dispersed
particles, and they observed a stronger modification of the fluid temperature statistics
due to the particles. Zamansky et al. (2014, 2016) considered turbulence induced by
buoyancy, where the buoyancy was generated by heated particles. They observed that
the resulting flow is driven by thermal plumes produced by the particles. As the particle
inertia was increased, the inhomogeneity and the effect of the coupling were enhanced
in agreement with the fact that inertial particles tend to cluster on the scalar fronts.
Kumar et al. (2014) examined how the spatial distribution of droplets is affected by large
scale inhomogeneities in the fluid temperature and supersaturation fields, considering the
transition between homogeneous and inhomogeneous mixing. A similar flow configuration
was also investigated by Götzfried et al. (2017).

Each of these studies was primarily focused on the effect of the inertial particles on
the large-scale statistics of the fluid temperature field. However, the results of Bec et al.
(2014) imply that the effects of fluid-particle thermal coupling could be strong at the small
scales, owing to the fact that they cluster on the fronts of the temperature field. Moreover,
there is a need to understand and characterize the multiscale thermal properties of the
particles themselves. In order to address these issues, we have conducted direct numerical
simulations (DNS) to investigate the interaction between the scalar temperature field and
the temperature of inertial particles suspended in the fluid, with one and two-way thermal
coupling, in statistically stationary, isotropic turbulence. Using statistical analysis, we
probe the multiscale aspects of the problem and consider the particular ways that the
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inertial particles contribute to the properties of the fluid temperature field in the two-way
coupled regime.

The paper is organized as follows. In section 2 we present the physical model used
in the DNS, and present the parameters in the system. In section 3 the statistics of
the fluid temperature and time derivative of the particle temperature are considered,
which allow us to quantify the contributions to the thermal dissipation in the system
from the fluid and particles. In section 4 we consider the statistics of the fluid and
particle temperature. In section 5 we consider the heat flux due to the particle motion
conditioned on the local fluid temperature gradients in order to obtain insight into the
details of the thermal coupling. In section 6 we consider the structure functions of the
fluid and particle temperature increments, along with their scaling exponents. In section
7 we consider the probability density functions (PDFs) of the fluxes of fluid and particle
temperature increments across the scales of the flow. Finally, concluding remarks are
given in section 8.

2. The physical model
In this section we present the governing equations of the physical model which will

be solved numerically to simulate the thermal coupling and behavior of a particle-laden
turbulent flow.

2.1. Fluid phase
We consider a statistically stationary, homogeneous and isotropic turbulent flow,

governed by the incompressible Navier-Stokes equations. The turbulent velocity field
advects the fluid temperature field (assumed a passive scalar), together with the inertial
particles. In this study, we account for two-way thermal coupling between the fluid and
particles, but only one-way momentum coupling. Therefore, the governing equations for
the fluid phase are

∇ · u = 0, (2.1a)

∂tu+ u · ∇u = − 1

ρ0
∇p+ ν∇2u+ f , (2.1b)

∂tT + u · ∇T = κ∇2T − CT + fT . (2.1c)

Here u (x, t) is the velocity of the fluid, p (x, t) is the pressure, ρ0 is the density of
the fluid, ν is its kinematic viscosity, T (x, t) is the temperature of the fluid and κ is
the thermal diffusivity. The ratio between the momentum diffusivity ν and the thermal
diffusivity κ defines the Prandtl number Pr ≡ ν/κ. In this work, we consider Pr = 1,
leaving further exploration of its effect on the system to future work. The f and fT terms
in equations (2.1b) and (2.1c) represent the external forcing, and CT is the thermal
feedback of the particles on the fluid temperature field, that is, the heat exchanged per
unit time and unit volume between the fluid and particles at position x.

When the forcing is confined to sufficiently large scales, it is assumed that the de-
tails of the forcing do not influence the small-scale dynamics. Previous experimental
evidence seems to confirm this (Sreenivasan 1996), leading to a universal behaviour of
the small-scales. However, recent studies (Gotoh & Watanabe 2015) pointed out that
this hypothesis of universality is partially violated by the advected scalar fields, whose
inertial range statistics exhibit sensitivity to the details of the imposed forcing. Since we
aim to characterize temperature and temperature gradient fluctuations in the dissipation
range for different inertia of the suspended particles, we employ a forcing that imposes
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Kinematic viscosity ν 0.005
Prandtl number Pr 1
Velocity fluctuations dissipation rate ε 0.27
Temperature fluctuations dissipation rate χ 0.1
Kolmogorov time scale τη 0.136
Kolmogorov length scale η 0.0261
Taylor micro-scale λ 0.498
Integral length scale ` 1.4
Root mean square velocity u′ 0.88
Kolmogorov velocity scale uη 0.192
Small scale temperature Tη 0.117
Taylor Reynolds number Reλ 88
Integral scale Reynolds number Rel 244
Forced wavenumber kf

√
2

Number of Fourier modes N 128 (3/2)
Resolution Nη/2 1.67

Table 1: Flow parameters for the numerical simulations in this study. Dimensional
parameters are non-dimensionalized into arbitrary code units. The characteristic
parameters of the fluid flow are defined from its energy spectrum E (k) ≡´
‖k‖=k ‖û (k)‖2 dk/2. The dissipation rate of turbulent kinetic energy is: ε ≡
2ν
´
k2E (k) dk. The Kolmogorov length η ≡

(
ν3/ε

)1/4, time scale τη ≡ (ν/ε)
1/2 and

velocity scale uη ≡ η/τη. The Taylor micro-scale is: λ ≡ u′/

√
〈|∇u|2〉. The root

mean square velocity is u′ ≡
√
(2/3)

´
E (k) dk and the integral length scale ` ≡

π
/(

2u′2
) ´

E (k) /kdk. Similarly, the spectrum, root mean square value and dissipation

rate of the scalar field are: ET (k) ≡
´
‖k‖=k

∣∣∣T̂ (k)
∣∣∣
2

dk/2, T ′ ≡
√

2
´
ET (k) dk,

χf ≡ 2κ
´
k2ET (k) dk. The small scale temperature is determined by the viscosity and

dissipation rate: Tη ≡ √χτη. Since the Prandtl number is unitary the small scales of the
scalar and the velocity field are of the same order.

the same total dissipation rate for all the simulations. This produces results which can
be meaningfully compared for different parameters of the suspended particles, since the
response of the system to the same injected thermal power can be examined. Therefore,
we employ the large scale forcing (Kumar et al. 2013, 2014),

f̂(k, t) = ε
û(k, t)∑

kf∈Kf ‖û(kf , t)‖ 2
δk,kf , f̂T (k, t) = χ

T̂ (k, t)
∑

kf∈Kf

∣∣∣T̂ (kf , t)
∣∣∣ 2
δk,kf , (2.2)

in the wavenumber space. A hat indicates the Fourier transform and kf is the wavenumber
which here belongs to the set of forced wavenumbers, Kf = {kf : ‖kf‖ = kf}; ε and χ
are the imposed dissipation rates of velocity and temperature variance, respectively. This
employed forcing scheme thus allows to control the overall dissipation rate and, therefore,
to control the Stokes number.

The value of the parameters relative to the fluid flow, employed in the simulations are
in table 1.
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2.2. Particle phase
We consider rigid, point-like particles which are heavy with respect to the fluid, and

small with respect to any scale of the flow. In particular, the particle density ρp is much
larger than the fluid density ρp � ρ0, and the particle radius rp is much smaller than the
Kolmogorov length scale rp � η. With these assumptions (and neglecting gravity) the
particle acceleration is described by the Stokes drag law. Analogously, the rate of change
of the particle temperature is described by Newton’s law for the heat conduction

dxp
dt
≡ vp, (2.3a)

dvp
dt

=
u (xp, t)− vp

τp
, (2.3b)

dθp
dt

=
T (xp, t)− θp

τθ
. (2.3c)

Here τp ≡ 2ρpr
2
p

/
(9ρ0ν) is the particle momentum response time, τθ ≡ ρpcpr

2
p

/
(3ρ0c0κ)

is the particle thermal response time, cp is the particle heat capacity, and c0 is the fluid
heat capacity at constant pressure. The Stokes number is defined as St ≡ τp/τη , and
the thermal Stokes number is defined as Stθ ≡ τθ/τη , where τη is the Kolmogorov time
scale.

We consider nine values of Stθ and three values of St in order to explore the behavior
of the system over a range of parameter values. Since we are accounting for thermal
coupling, each combination of Stθ and St must be simulated separately, and when
combined with the large number of particles in the flow domain, the set of simulations
require considerable computational resources. Therefore, in the present study we restrict
attention to Reλ = 88, but future explorations should consider larger Reλ in order to
explore the behavior when there exists a well-defined inertial range in the flow.

In order to obtain deeper insight into the role of the two-way thermal coupling, we
perform simulations with (denoted by S1) and without (denoted by S2) the thermal
coupling. The particle parameters employed in the simulations are in table 2.

2.3. Thermal coupling
In the two-way thermal coupling regime, the thermal energy contained in the fluid is

finite with respect to the thermal energy of the particles, therefore, when heat flows from
the fluid to the particle the fluid loses thermal energy at the particle position. Due to the
point-mass approximation, the feedback from the particles on the fluid temperature field
is a superposition of Dirac delta functions, centered on the particles. Hence the coupling
term in equation (2.1c) is given by

CT (x, t) =
4

3
π
ρp
ρ0

cp
c0
r3p

NP∑

p=1

dθp
dt

δ (x− xp) . (2.4)

2.4. Validity and limitations of the model
The physical model in sections 2.1–2.3, is normally referred to as point-particle model.

The two-way thermal coupling regime is considered, that is, the particles can affect the
fluid temperature field while the direct particle-particle thermal interaction is neglected.
Previous estimations (Elghobashi 1991) have shown that particle-particle interactions
become relevant at average volume fractions φ exceeding 10−3. In this work, the volume
fraction lies in the two-way coupling regime and the average distance between particles
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Particle phase volume fraction φ 0.0004
Particle to fluid density ratio ρp/ρ0 1000
Particle back reaction CT S1: included; S2: neglected.
Stokes number St 0.5; 1; 3.
Thermal Stokes number Stθ 0.2; 0.6; 1; 1.5; 2; 3; 4; 5; 6.
Number of particles NP 12500992; 4419584; 847872.

Table 2: Particles parameters in dimensionless code units. The Stokes number is St ≡
τp/τη and thermal Stokes number Stθ ≡ τθ/τη and the particle response times are defined
in the text. In the simulations, Stθ is varied by varying the particle heat capacity. The
different combinations of St and Stθ are simulated including the two-way thermal thermal
coupling (simulations S1) and neglecting it (simulations S2).
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Figure 1: (a) Three-dimensional energy spectrum of the fluid velocity field (open
squares) and temperature field (open circles). The temperature field is computed without
any feedback from the particles on the fluid flow (simulations S2). (b) Second order
longitudinal structure functions of the particle velocity for various Stokes numbers.

exceeds the particle diameter by an order of magnitude. In our simulations φ = 4 ×
10−4, which is small enough to neglect particle collisions, but large enough for two-way
momentum coupling between the particles and fluid to be important (e.g. Elghobashi
1994). Nevertheless, we ignore two-way momentum coupling in the present study. The
motivation is that including both two-way momentum and two-way thermal coupling
introduces too many competing effects that would compound a thorough understanding
of the problem. We therefore employ a reductionistic approach, seeking first to understand
the role of two-way thermal coupling in the absence of momentum coupling, and then in
a future study will explore their combined effects. Even aside from this methodological
point, the results still have physical relevance since the thermal relaxation time is often
larger than the momentum relaxation time in many particle-laden flows. For example,
Stθ/St ranges from 2 to 6 for many liquid droplets in air (≈ 4 for water droplets in
air). Therefore thermal feedback can be more relevant to the thermal balance than
momentum feedback on momentum balance. This is confirmed by the analysis of the effect
of momentum coupling and elastic collisions on the temperature statistics, presented in
Appendix A. An additional set of simulations shows that, in the range of parameters
considered in this work, both phenomena have a minimal effect.
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The numerical solution of equations (2.1) and (2.3) is considered a Direct Numerical
Simulation, insofar as that the Kolmogorov scale is resolved (M. Kuerten 2016), even
though the details of the flow near the surface of each particle are not resolved. This point-
particle simplification is formally valid for particles which are smaller than the smallest
active scale in the flow, the Kolmogorov microscale (Toschi & Bodenschatz 2009). When
the particle Reynolds number (based on the slip velocity between the particle and the
local fluid) is small, the effect of the stresses on the particle can be described using a
Stokes drag force (Maxey & Riley 1983). Under an analogous set of conditions, the heat
transfer between the particle and the fluid is a diffusive process, that has a timescale
r2p/κ. For small point-like particles, this timescale is much smaller than the Kolmogorov
time-scale, so that the heat transfer is a quasi-steady process which leads to the Newton-
like equation for heat transfer in (2.4) (Zonta et al. 2008; Bec et al. 2014). In this work,
the ratio between the particle radius rp and the Kolmogorov scale η is well below 0.1 for
St = 0.5 and St = 1 and about 0.1 at St = 3. Therefore finite size effects are negligible
up to St = 1, while there may be small errors for St = 3. The impact of these small errors
should be quantified in a future work using a more sophisticated model that resolves the
flow around the particle surface. Also the fluid continuity equation should be in principle
modified, due to the volume occupied by inertial particles. However, the error introduced
in the continuity equation, proportional to the rate of change of the local volume fraction,
is of the same order of the error introduced by other approximations in the model which
are quite small.

In the point-mass Eulerian-Lagrangian here employed, the fluid temperature in equa-
tion (2.3c) should be understood as the temperature of the carrier fluid flow without
the local effect of the disturbance due to the presence of the particles (Boivin et al.
1998). Neglecting this disturbance is justified for particles with a diameter much smaller
than the Kolmogorov scale and much smaller than the grid spacing. In the case of two-
way momentum coupling, the error introduced by neglecting the disturbance can be
estimated to be less than 10% for the particle parameters we are considering (Horwitz &
Mani 2016). A similar estimation is expected for the fluid temperature disturbance due to
the particle, since the equations for the particle velocity and temperature are analogous.
At the largest simulated Stokes number, St = 3, the same estimation indicates that an
error of about 15% can be introduced. Therefore, the error is larger for this case, though
certainly a sub-leading effect. Some simplified, efficient ways to compute the effect of the
particle disturbance are available for the two-way momentum coupling (Horwitz & Mani
2016), but equivalent models for the thermal coupling problem are not well developed
or tested. Given this, and the fact that for our small particles the corrections due to the
disturbance terms would be sub-leading, it is justified to neglect their effect as a first
approximation for understanding this complex problem.

We also emphasize that the statistics of the fluid temperature field presented in the
paper refer to the carrier, resolved, temperature field, with the disturbance temperature
field produced by the particles neglected. The actual (or total) temperature field is
the superposition of the carrier temperature field and the disturbance induced by the
particles. In the limit of large scale separation between the particle size and Kolmogorov
scale and in the dilute regime, the disturbance field produced by the particle can be
determined analytically and so the statistics of the actual temperature field can be
reconstructed knowing the resolved carrier flow and the analytic solution for the particle
temperature disturbance field. This aspect is discussed in Appendix B.

Summarizing, because of the marked scale separation between the particle size and
the Kolmogorov scale, rp � η, and low particle volume fraction, φ � 1, which are the
conditions explored in our study, the point-particle method provides a good first approx-
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imation to the complex problem under consideration. The statistics for the temperature
field reported in the paper refer to the carrier temperature field, in which the near-particle
temperature changes are excluded, while the statistics of the actual temperature field can
be recovered a posteriori on the basis of the modelling hypothesis. Future work should
explore the problem using methods where the flow around the particle is resolved, referred
to as FRDNS (Fully Resolved DNS) (Boivin et al. 1998; Gualtieri et al. 2015). However,
even with currently available High Performance Computational resources, FRDNS is
limited to a small number of particles making it unfeasible at present to explore the
problem of interest in this work (Botto & Prosperetti 2012).

2.5. Numerical method

We perform direct numerical simulation of incompressible, statistically steady and
isotropic turbulence on a tri-periodic cubic domain. Equations (2.1a), (2.1b), and (2.1c)
are solved by means of the pseudo-spectral Fourier method for the spatial discretization.
The 3/2 rule is employed for dealiasing (Canuto et al. 1988), so that the maximum
resolved wavenumber is kmax = N/2. The required Fourier transforms are executed in
parallel using the P3DFFT library (Pekurovsky 2012). Forcing is applied to a single
scale, that is to all wavevectors satisfying ‖k‖2 = kf , with kf = 2, and the equations
for the fluid velocity and temperature Fourier coefficients are evolved in time by means
of a second order Runge-Kutta exponential integrator (Hochbruck & Ostermann 2010).
This method has been preferred to the standard integrating factor because of its higher
accuracy and, above all, because of its consistency. Indeed, in order to obtain an accurate
representation of small scale temperature fluctuations, it is critical that the numerical
solution conserves thermal energy. The same time integration scheme is used to solve
particle equations (2.3a), (2.3b) and (2.3c), thus providing overall consistency, since the
system formed by fluid and particles is evolved in time as a whole.

The fluid velocity and temperature are interpolated at the particle position by means of
fourth order B-spline interpolation. The interpolation is implemented as a backward Non-
Uniform Fast Fourier Transform (NUFFT) with B-spline basis: the fluid field is projected
onto the B-spline basis in Fourier space through a deconvolution, than transformed into
the physical space by means of a inverse Fast Fourier Transform (FFT). A convolution
provides the interpolated field at particle position (Beylkin 1995). Since B-splines have
a compact support in physical space and deconvolution in Fourier space reduces to a
division, this provide an efficient way to obtain high order interpolation. This guarantees
smooth and accurate interpolation and its efficient implementation is suitable for pseudo-
spectral methods (Hinsberg, van et al. 2012). The coupling term (2.4) has to be projected
on the Cartesian grid used to represent the fields. This is performed by means of
the forward Non-Uniform Fast Fourier Transform with B-spline basis (Beylkin 1995).
Briefly, the algorithm works as follows (Carbone & Iovieno 2018). The convolution of the
distribution CT (x, t) with the B-spline polynomial basis B (x) is computed in physical
space, so that it can be effectively represented on the Cartesian grid

C̃T (x, t) = CT ∗B =
4

3
π
ρp
ρ0

cp
c0
r3p

NP∑

p=1

dθp
dt

B (x− xp) . (2.5)

The smoothed field C̃T is transformed by means of a FFT obtaining F
[
C̃T

]
in Fourier
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space. Finally, the convolution with the B-spline is removed in Fourier space,

Ĉ (k, t) =
F [CT ∗B]

F [B]
=
F
[
C̃T

]

F [B]
. (2.6)

Since the convolution is removed in Fourier space, increasing the order of B-spline
provides higher accuracy, without introducing non locality, even if the number of grid
points influenced by each particle becomes larger in the preliminary convolution. A fourth
order B-spline polynomial is employed in these simulations and a test with the same
forcing, same parameters, with a larger resolution (2563 Fourier modes) confirmed the
grid-independence of the results. Also, the backward and forward transformations are
symmetric, that guarantees energy conservation (Sundaram & Collins 1996). A detailed
description and assessment of the NUFFT in the framework of particles in turbulence
can be found in Carbone & Iovieno (2018).

3. Characterization of the thermal dissipation rate
In the flow under consideration, the total dissipation rate of the temperature field χ is

constant due to the forcing term fT . The total dissipation has a contribution from the
carrier fluid and particle phases and is given by

χ = κ
〈
‖∇T‖2

〉
+
φ

τθ

ρpcp
ρ0c0

〈
(T (xp, t)− θp)2

〉
. (3.1)

An analogous balance was derived for kinetic energy dissipation rate (Sundaram & Collins
1996). It is worth noting that, in practice, the sense of the bracket operator is not strictly
the same for the two terms: one is computed as spatial and time average, while the other
is computed as time average over the set of particles. We indicate with χf the dissipation
due to the fluid temperature gradient and with χp the dissipation due to the particles,
the two terms in the right hand side of equation (3.1), so that χ = χf + χp. Note that
both contributions to the dissipation rate are proportional to the kinematic thermal
conductivity of the fluid since τθ ∝ 1/κ, and hence both the dissipation mechanisms are
due to molecular diffusivity. By inserting the definition of the particle thermal relaxation
time into equation (3.1), it is possible to rewrite it as

χ = κ

[〈
‖∇T‖2

〉
+ 3φ

〈(
T (xp, t)− θp

rp

)2
〉]

, (3.2)

which evidences that the temperature disturbance induced by the particle has a length-
scale of the order of the particle radius.

The portion of temperature fluctuations dissipated by the two different mechanisms
depends on the statistics of the differences between the particle and local carrier flow
temperatures. In the limit Stθ → 0 we have T (xp, t) = θp, such that all of the dissipation
is associated with the fluid. In the general case, the statistics of T (xp, t) − θp depend
not only on Stθ, but also implicitly upon St , with the statistics of T (xp, t) depending on
the spatial clustering of the particles. This coupling between the particle momentum and
temperature dynamics can lead to non-trivial effects of particle inertia on χp. Physically,
the overall dissipation rate of the temperature field is due to the gradients of the total
temperature gradients, which is the superposition of the carrier temperature field and
the near-particle temperature field, with the total temperature equal to the particle
temperature at the particle surface. However, the point-particle model separates the
dissipation rate due to the carrier, resolved, temperature field χf and the dissipation
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Figure 2: PDF of the carrier flow temperature gradient ∂xT from simulations S1, at St =
3, for various Stθ (a) and (b) dissipation rate, χf , of the fluid temperature fluctuations,
for different St as a function of Stθ. The filled lines indicate the maximum deviations of
the dissipation rate occurred in the time interval used to compute averages.

rate due to the suspended particles χp. This is allowed because of the marked scale
separation between the smallest scale of the carrier field, that is the Kolmogorov scale
η, and the scale of the gradients induced by the suspended particles, that is the particle
size rp, with rp � η. This is detailed in Appendix B, in which the relation between
the moments of the carrier temperature field gradient and the actual temperature field
gradient is also discussed.

3.1. Thermal dissipation due to the carrier temperature gradients
Since the flow is isotropic, χf is given by

χf = 3κ
〈
(∂xT )

2
〉

(3.3)

We consider fixed Reynolds number and Pr = 1, thus κ is the same in all the presented
simulations, and so 〈(∂xT )2〉 fully characterizes χf . Moreover, given the expected struc-
ture of the field ∂xT , it is instructive to consider its full Probability Density Function
(PDF), in addition to its moments in order to know how different regions of the flow
contribute to the average dissipation rate χf .

Figure 2(a) shows the normalized PDFs of ∂xT for St = 3, for various Stθ, where
the PDFs are normalized using the standard deviation of the distribution, σ∂xT . The
distribution is almost symmetric and it displays elongated exponential tails. The largest
temperature gradients exceed the standard deviation by an order of magnitude (Overholt
& Pope 1996). Remarkably, the shape of the PDF shows a very weak dependence on St
and Stθ, over all the considered range of these parameters, such that the PDF shape
scales with σ∂xT . Consistently, the kurtosis of the fluid temperature gradients distribution
is approximately constant, which confirms that the fluid temperature gradient PDF is
approximately self-similar.

The variance of the resolved fluid temperature gradient is proportional to the actual
dissipation rate of the temperature fluctuation χf (the proportionality factor being 3κ,
the same in all the simulations). In contrast to the PDF shape, the suspended particles
have a strong impact on χf , as shown in figure 2. As Stθ is increased, χf decreases.
However, this is mainly due to the fact that as Stθ is increased, χp increases, and so χf
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must decrease since χ = χf + χp is fixed. The influence of the Stokes number on χf is
very small in the range of parameters considered.

3.2. Thermal dissipation due to the particle dynamics
The dissipation rate due to the particles, χp, depends on the difference between the

particle temperature and the fluid temperature at the particle position,

χp = 3κφ

〈(
T (xp, t)− θp

rp

)2
〉
. (3.4)

For notational simplicity, we define ϕp ≡
√
3φ (T (xp, t)− θp)/rp . When ϕp is normalized

by its standard deviation, we can relate this to the rate of change of the particle
temperature using equation (2.3c)

θ̇p
σθ̇p

=
ϕp
σϕp

. (3.5)

The normalized PDF of θ̇p for St = 1 and St = 3, and for various Stθ is shown
in figure 3. Figure 3(a) shows the normalized PDF of θ̇p, for St = 1 for the set of
simulations S1, in which the two-way thermal coupling is taken to account. Figure 3(b)
shows the corresponding results for simulations S2, in which the two-way thermal coupling
is neglected. The normalized PDF of θ̇p for St = 3, with and without the two-way thermal
coupling, is shown in figures 3(c-d).

In contrast to the fluid temperature gradient PDFs, the shape of the PDF of θ̇p is not
self-similar with respect to its variance. As Stθ is increased, the normalized PDF becomes
narrower. This is due to the fact that as Stθ is increased, the particles respond more slowly
to changes in the fluid temperature field, analogous to the “filtering” effect for inertial
particle velocities in turbulence (Salazar & Collins 2012; Ireland et al. 2016a). The PDF
shapes are mildly affected by St , and for larger Stθ, extreme fluid temperature-particle
temperature differences are suppressed when the two-way thermal coupling is neglected.

The variance of θ̇p is proportional to the particle dissipation rate χp,

〈
θ̇2p

〉
=

〈
(T (xp, t)− θp)2

τ2θ

〉
=

r2pχp

3κφτ2θ
, (3.6)

and the results for this are shown in figure 3(e), for various St and Stθ, and for simulations
S1 and S2. The results show that as Stθ is increased, χp increases. This is mainly because
as Stθ is increased, the thermal time correlation of the particle increases, and the particle
temperature depends strongly on its encounter with the fluid temperature field along its
trajectory history for times up to O (τθ) in the past. As a result, the particle temperature
can differ strongly from the local carrier flow temperature. The results also show that χp
is dramatically suppressed when two-way thermal coupling is accounted for. One reason
for this is that as shown earlier, two-way thermal coupling leads to a suppression in the
fluid temperature gradients. As these gradients are suppressed, the fluid temperature
along the particle trajectory history differs less from the local carrier flow temperature
than it would have in the absence of two-way thermal coupling, and as a result χp is
decreased.

The results for kurtosis of θ̇p, as a function of Stθ and for various St are shown in figure
3(f). The results show that the kurtosis decreases with increasing Stθ. This is mainly due
to the filtering effect mentioned earlier, wherein as Stθ is increased, the particles are
less able to respond to rapid fluctuations in the fluid temperature along their trajectory.
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Figure 3: PDF of θ̇p for St = 1 (a-b) and St = 3 (c-d), and for various Stθ. Plots (a-c)
are from simulations S1, in which the two-way thermal coupling is considered, while plots
(b-d) are from simulations S2, in which the two-way coupling is neglected. (e) Dissipation
rate χp of the temperature fluctuations due to the particles, for different St as a function
of Stθ. (f ) Kurtosis of the PDF of θ̇p.
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Figure 4: (a) Variance of the particle temperature rate of change as a function of the
thermal Stokes number for different Stokes numbers. The dotted lines represent the
expected asymptotic behaviour for Stθ � 1 and Stθ � 1. (b) Normalized PDF of the
particle temperature rate of change, θ̇p at Stθ = 1 for various Stokes number. The dotted
line shows a Gaussian PDF for reference. Results obtained neglecting the particle thermal
feedback.

Further, the kurtosis is typically larger when the two-way thermal coupling is taken
into account (simulations S1), and is maximum for St = 1. This is due to the particle
clustering on the fronts of the fluid temperature field, as will be discussed in section 5.

Our results for the PDF of θ̇p and its moments differ somewhat from those in Bec
et al. (2014). This is in part due to the difference in the forcing methods employed by
Bec et al. (2014) and that in our study. The solution of (2.3c) may be written as (Bec
et al. 2014)

〈
θ̇p

2
〉
=

1

2τ3θ

ˆ ∞
0

〈(
δtTp(t)

)2〉
exp

(
− t

τθ

)
dt, (3.7)

where δtTp(t) ≡ T (xp (t) , t) − T (xp (0) , 0). In the regime Stθ � 1, the exponential in
(3.7) decays very fast in time so that the main contribution to the integral comes from
δtTp for infinitesimal t, with δtTp ∼ tn for t → 0. Substituting δtTp ∼ tn into (3.7) we
obtain the leading order behavior

〈
θ̇p

2
〉
∼ 1

2τ3θ

ˆ ∞
0

t2n exp

(
− t

τθ

)
dt ∼ St2n−2θ , Stθ � 1. (3.8)

Bec et al. (2014) used a white in time forcing for the fluid scalar field, giving n = 1/2, and
yielding 〈θ̇p

2〉 ∼ St−1θ for Stθ � 1. However, the forcing scheme that we have employed
generates a field T (x, t) that evolves smoothly in time, so n = 1 and 〈θ̇p

2〉 ∼ constant
for Stθ � 1.

For Stθ � 1, the integral in (3.7) is dominated by uncorrelated temperature increments,
δtT ∼ t0, such that 〈θ̇p

2〉 ∼ St−2θ . The comparison between figure 4(a) and figure 5 of
Bec et al. (2014) highlights the different asymptotic behavior of σ2

θ̇p
≡ 〈θ̇p

2〉 for Stθ �
1, but the same behavior 〈θ̇p

2〉 ∼ St−2θ for Stθ � 1. Further, as expected, our DNS
data approaches these asymptotic regimes for both the cases with and without two-way
thermal coupling.
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Another difference is that in the results of Bec et al. (2014), the tails of the PDFs of θ̇p
for Stθ = 1 become heavier as St is increased, whereas our results in figure 3 show that
while the kurtosis of these PDFs increases from St = 0.5 to St = 1, it then decreases
from St = 1 to St = 3. In order to examine this further, we performed simulations
(without two-way thermal coupling) for Stθ = 1 and St 6 0.4. The results are shown
in figure 4(b), and in this regime we do in fact observe that the tails of the PDFs of θ̇p
become increasingly wider as St is increased. Taken together with the results in figure
3, this implies that in our simulations, the tails of the PDFs of θ̇p become increasingly
wider as St is increased until St ≈ 1, where this behavior then saturates, and upon
further increase of St the tails start to narrow. This non-monotonic behavior is due to
the particle clustering in the fronts of the temperature field, which is strongest for St ≈ 1
(see §5). While the results in Bec et al. (2014) over the range St 6 3.7 do not show the
tails of the PDFs of θ̇p becoming narrower, their results clearly show that the widening of
the tails saturates (see inset of figure 5 in Bec et al. (2014)). It is possible that if they had
considered larger St , they would have also began to observe a narrowing of the tails as St
was further increased. Possible reasons why the widening of the tails saturates at a lower
value of St in our DNS than it does in theirs include is the effect of Reynolds number
(Reλ = 315 in their DNS, whereas in our DNS Reλ = 88), and differences in the scalar
forcing method. This raises the question about Reynolds number dependency. We expect
that the strong intermittency of advected passive scalars in high Reynolds number flows
may affect the results quantitatively. However, two-way coupled simulations at higher
Reynolds numbers are computationally demanding and are left for a future work.

4. Characterization of the temperature fluctuations
This section consists of a short overview of the one-point temperature statistics. Note

that due to the large scale forcing used in the DNS, the one-point statistics of the flow can
be affected by the forcing method employed (Dhariwal & Rani 2018). The deterministic
forcing may also generate some long standing patterns at large scales. However, the
analyzed configuration allows to fix the same average dissipation rate of temperature and
velocity fluctuations for all the Stokes numbers considered, which provides considerable
advantages for the interpretation of the results.

The statistics of the carrier temperature field, in which the near-particle disturbances
are excluded, are presented in this section. As discussed in Appendix B, the one-point
statistics of the carrier temperature field are very close to the one-point statistics of the
actual fluid temperature field in the dilute regime.

4.1. Fluctuations of the carrier temperature field
Figures 5(a-b) show the normalized one-point PDF of the carrier flow temperature for

St = 1 and St = 3, respectively, and for various Stθ. The PDFs are normalized with the
standard deviation of the distribution σT . The PDFs are almost Gaussian for low Stθ,
while the tails become wider as Stθ is increased. However, we are unable to explain the
cause of this enhanced non-Gaussianity. The temperature PDFs are also not symmetric,
and display a bump in the right tail. This behavior was also reported by (Overholt &
Pope 1996) for the case without particles, and it appears to be a low Reynolds number
effect that is also dependent on the forcing method employed.

The effect of St on σT is striking, whereas we saw earlier in figure 2(c) that χf only
weakly depends on St . To explain the dependence upon the Stokes number we note that
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Figure 5: PDF of the carrier flow temperature for St = 1 (a) and St = 3 (b), and for
various Stθ. (c) Variance of the carrier flow temperature fluctuations for different St as
a function of Stθ. (d) Kurtosis of the carrier flow temperature PDF. These results are
from simulations S1 in which the two-way thermal coupling is considered.

the energy balance (3.2) can be rewritten as

χ = κ

[〈
‖∇T‖2

〉
+

2

3

φ

η2
ρp
ρ0

1

St

〈
(T (xp, t)− θp)2

〉]
. (4.1)

The factor φρp/
(
ρ0η

2
)
is constant in our simulations. Therefore, since our DNS data

suggest that χf is a function of Stθ only (see figure 2(c)), from (4.1) and (2.3c) we obtain
〈
T (xp, t)

2
〉
−
〈
θ2p
〉
∝ Stf (Stθ) . (4.2)

The kurtosis of the fluid temperature fluctuation is shown in figure 5(d), as a function
of Stθ and for various St . For small Stθ, the kurtosis of the fluid temperature fluctuation
is close to the value for a Gaussian PDF, namely 3. However, as Stθ is increased, the
kurtosis increases. Furthermore, the kurtosis decreases with increasing St for the range
considered in our simulations. The explanation of these trends in the kurtosis is unclear.
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Figure 6: PDF of the particle temperature for St = 1 (a-b) and St = 3 (c-d), for
various Stθ. Plots (a-c) are from simulations S1, in which the two-way thermal coupling
is considered, while plots (b-d) are from simulations S2, in which the two-way coupling is
neglected. (e) Variance of the particle temperature fluctuations for different St numbers
as a function of Stθ. (f ) Kurtosis of the particle temperature distribution.
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4.2. Particle temperature fluctuations
Figures 6(a-b) show the normalized one-point PDF of the particle temperature with

St = 1, for various Stθ, and for simulations S1 and S2. Figures 6(c-d) show the
corresponding results for St = 3, and the PDFs are normalized by their standard
deviations. When the two-way thermal coupling is accounted for, the tails of the particle
temperature distribution tend to become wider as Stθ is increased. On the other hand,
when the two-way coupling is neglected, the PDF of the particle temperature is very
close to Gaussian, and its shape is not sensitive to either St or Stθ.

The variance of the particle temperature fluctuations monotonically decrease with
increasing Stθ, as shown in figure 6(e). The results also show a strong dependence on
St , but most interestingly, the dependence on St is the opposite for the cases with and
without two-way coupling. To understand this we note that using the formal solution to
the equation for θ̇p(t) (ignoring initial conditions) we may construct the result

〈
θ2p(t)

〉
=

1

τ2θ

ˆ t

0

ˆ t

0

〈
T (xp(s), s)T (xp(s

′), s′)
〉
e−(2t−s−s

′)/τθ ds ds′. (4.3)

If we now substitute into this the exponential approximation

〈T (xp(s), s)T (xp(s′), s′)〉 ≈ 〈T 2(xp(t), t)〉 exp[−|s− s′|/τT ],
where τT is the timescale of T (xp(t), t), then we obtain

〈
θ2p(t)

〉
=
〈T 2(xp(t), t)〉
1 + τθ/τT

. (4.4)

This result reveals that the particle temperature variance is influenced by St in two
ways. First, 〈T 2(xp(t), t)〉 depends upon the spatial clustering of the inertial particles,
and this depends essentially upon St . Second, the timescale τT is the timescale of
the fluid temperature field measured along the inertial particle trajectories, and hence
depends upon St . For isotropic turbulence, this timescale is expected to decrease as
St is increased, which would lead to 〈θ2p(t)〉 decreasing as St increases, which is the
behavior observed in figure 6(e). In the presence of two-way coupling, however, 〈T 2(x, t)〉
increases with increasing St , as shown earlier. In the two-way coupled regime this increase
in 〈T 2(x, t)〉 leads to an increase in 〈T 2(xp(t), t)〉 that dominates over the decrease of τT
with increasing St , and as a result 〈θ2p(t)〉 increases with increasing St .

The kurtosis of the particle temperature increases with increasing Stθ when the two-
way thermal coupling is accounted for, as shown in figure 6(f) (simulations S1, filled
symbols). Conversely, the kurtosis of the particle temperature remains constant as Stθ is
increased when the two-way thermal coupling is ignored (simulations S2, open symbols).

5. Statistics conditioned on the local carrier flow temperature
gradients

In this section we consider additional quantities to obtain deeper insight into the one-
point particle to fluid heat flux. In particular, we explore the relationship between this
heat flux and the local carrier flow temperature gradients.

5.1. Particle clustering on the temperature fronts
It is well known that inertial particles in turbulence form clusters (Bec et al. 2007),

which may be quantified using the radial distribution function (RDF). As shown in
figure 7(a), the particle number density in our simulations at small separations is a
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Figure 7: (a) Radial distribution function (RDF) as a function of the separation r/η
for various St . (b) Particle number density conditioned on the magnitude of the fluid
temperature gradient at the particle position, for various St . These results are from
simulations S2, in which the two-way thermal coupling is neglected.

order of magnitude larger than the mean density when St = O (1). Bec et al. (2014)
showed that inertial particles also exhibit a tendency to preferentially cluster in the fluid
temperature fronts where the temperature gradients are large. To demonstrate this, they
measured the temperature dissipation rate at the particle positions and showed that this
was higher than the Eulerian dissipation rate of the fluid temperature fluctuations. Note
that previous works (Gualtieri et al. (2013, 2015)) have shown that the radial distribution
function can be reduced by momentum coupling, which we are neglecting. A future work
that includes two-way momentum coupling should consider how this affects the way
inertial particles sample high temperature gradients in the flow.

We quantify the tendency for inertial particles to cluster in the fluid temperature fronts
by computing the single particle position probability density, conditioned upon the norm
of the fluid temperature gradient:

ρ (xp| ‖∇T‖) =
ρ (‖∇T‖ (xp))
ρ(‖∇T‖) (5.1)

This conditioned probability can also be understood as the ratio between the fraction
of inertial particles np (St ; ‖∇T‖) located in a region of a given temperature gradient
magnitude ‖∇T‖ and the number of particles np (0; ‖∇T‖) which would be located in
the same region for St → 0, that is, when particles follow fluid trajectories:

ρ (xp| ‖∇T‖) =
np (St ; ‖∇T‖)
np (0; ‖∇T‖)

. (5.2)

By defining ‖∇T‖rms as the rms value of ‖∇T‖, small values of ‖∇T‖/‖∇T‖rms may be
interpreted as corresponding to the large scales, and are associated with the Lagrangian
coherent structures in which the temperature field is almost constant. Large values
of ‖∇T‖/‖∇T‖rms may be interpreted as corresponding to the small scales, and are
associated with fronts in the fluid temperature field. The results for ρ (xp| ‖∇T‖) are
shown in figure 7(b), for the simulations without two-way thermal coupling (the results
show only a weak dependence on Stθ when the two-way coupling is included). Due to
the clustering on the temperature fronts, ρ(xp|‖∇T‖) is an increasing function of ‖∇T‖
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Figure 8: (a) Results for 〈|q0(‖∇T‖)|〉 /uη, for various St . (b) Results for 〈| cosαp|〉 as
a function of ‖∇T‖, for various St . These results are from simulations S2, in which the
two-way thermal coupling is neglected.

and it is larger than unity in the region of large temperature gradient. The probability to
observe a gradient of a certain magnitude (which is proportional to np(0; ‖∇T‖)) decays
almost exponentially with increasing ‖∇T‖, as in figure 2(a). For values of St at which
the maximum particle clustering takes place, np(St ; ‖∇T‖) is up to four times larger
than np(0; ‖∇T‖) in regions of strong temperature gradients. We expect even higher
values at the largest ‖∇T‖, however it is difficult to obtain statistically relevant results
in correspondence of such extreme events. These results therefore support the conclusions
of Bec et al. (2014) that inertial particles preferentially cluster in the fronts of the fluid
temperature field where ‖∇T‖/‖∇T‖rms is large.

5.2. Particle motion across the temperature fronts
To obtain further insight into the thermal coupling between the particles and fluid we

consider the properties of the particle heat flux conditioned on ‖∇T‖. In particular, we
consider the following quantity

qn (‖∇T‖) ≡ (T (xp)− θp)n vp · nT (xp)
∣∣∣
‖∇T‖

, (5.3)

where nT is the normalized, resolved, temperature gradient

nT (xp) ≡
∇T (xp)

‖∇T (xp)‖
. (5.4)

The statistics of qn provide a way to quantify the relationship between the particle
heat flux and the local carrier temperature gradients in the fluid. Understanding this
relationship is key to understanding how the particles modify the properties of the fluid
temperature and temperature gradient fields. It is justified to investigate the interaction
between the resolved temperature field, in which the near-particle disturbances are not
represented, since, in the dilute regime, particles are statistically far enough that a
particle rarely finds itself in the disturbance region of another particle. As discussed
in Appendix B, the norm of the gradient of the perturbation field induced by the particle
is proportional to r−2p and, therefore, it is usually large.

The efficiency with which the particles cross the fronts in the carrier flow tempera-
ture field is quantified by 〈|q0|〉, and our results for this quantity in one-way coupled
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simulations are shown in figure 8(a). The curves are normalized with the Kolmogorov
velocity scale uη. At moderate Stokes number, particles tend to accumulate near the front,
therefore they cross the front with a small velocity. On the other hand, particles with large
inertia slowly respond to a change of the local velocity/temperature and therefore they are
less affected by the local value of the temperature gradient, carrying large temperature
increments across the temperature field. Accordingly, the velocity magnitude becomes
nearly independent of the local value of the temperature gradient as the particle inertia
is increased, as shown in figure 8.

It is also important to consider whether the reduction of 〈|q0|〉 as ‖∇T‖ increases is
due to the reduction of the norm of the particle velocity or to the lack of alignment
between the particle velocity and the fluid temperature gradient at the particle position.
Figure 8(b) displays the average of the absolute value of the cosine of the angle between
the particle velocity and temperature gradient

cosαp ≡
vp
‖vp‖

· ∇T (xp)

‖∇T (xp)‖
, (5.5)

conditioned on ‖∇T‖. The results show that as ‖∇T‖ is increased, the particle motion
becomes misaligned with the local carrier flow temperature gradient. This then shows
that the reduction of 〈|q0|〉 as ‖∇T‖ increases is due to non-trivial statistical geometry in
the system. The results also show that as St is increased, the cosine of the angle between
the fluid temperature gradient and the particle velocity becomes almost independent of
‖∇T‖, and 〈|cosαp|〉 ≈ 1/2, the value corresponding to cosαp being a uniform random
variable. This shows that as St is increased, the correlation between the direction of the
particle velocity and the local carrier fluid velocity gradient vanishes.

5.3. Heat flux due to the particle motion across the fronts
We now turn to consider the quantity 〈q1〉. When the particle moves from a cold to a

warm region of the fluid, the component of the particle velocity along the temperature
gradient is positive, vp · nT (xp) > 0. If the particle is also cooler than the local fluid so
that T (xp)− θp > 0, then as it moves into the region where the fluid is warmer, q1 > 0
meaning that the particle will absorb heat from the fluid, and will therefore tend to reduce
the local fluid temperature gradient. When the particle moves from a warm to a cold
region of the flow, if T (xp)−θp < 0 then q1 is also positive, so that again the particle will
act to reduce the local temperature gradient in the fluid. Therefore, q1 > 0 indicates that
the action of the inertial particles is to smooth out the fluid temperature field, reducing
the magnitude of its temperature gradients, and q1 < 0 implies the particles enhance the
temperature gradients.

The results for 〈q1〉 are shown in figure 9 for various St and Stθ, including (simulations
S1) and neglecting (simulations S2) the two-way thermal coupling. On average we observe
〈q1〉 > 0, such that the particles tend to make the fluid temperature field more uniform.
The results show that 〈q1〉 tends to zero as ‖∇T‖ → 0. This indicates that the particles
spend enough time in the Lagrangian coherent structures to adjust to the temperature
of the fluid. However, 〈q1〉 increases significantly as ‖∇T‖ increases, suggesting that
inertial particles can carry large temperature differences across the fronts. In the limit
Stθ → 0, 〈q1〉 → 0 reflecting the thermal equilibrium between the particles and the
fluid. As Stθ is increased, the heat-flux becomes finite, however, if Stθ is too large,
the particle temperature decorrelates from the fluid temperature and the heat exchange
is not effective. Hence, 〈q1〉 can saturate with increasing Stθ. The results show that
〈q1〉 increases with increasing St , associated with the decoupling of vp and nT (xp)
discussed earlier. Finally, the results also show that two-way thermal coupling reduces
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Figure 9: Results for 〈q1 (‖∇T‖)〉 / (uηTη) for St = 0.5 (a-b), St = 1 (c-d) and St = 3
(e-f ), and for various Stθ. Plots (a-c-e) are from simulations S1, in which the two-way
thermal coupling is considered, while plots (b-d-f ) are from simulations S2, in which the
two-way coupling is neglected.
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〈q1〉. This is simply a reflection of the fact that since the particles tend to smooth out
the fluid temperature gradients, the disequilibrium between the particle and local fluid
temperature is reduced, which in turn reduces the heat flux due to the particles.

6. Temperature structure functions
We now turn to consider two-point quantities in order to understand how the two-way

thermal coupling affects the system at the small scales.

6.1. Structure functions of the carrier temperature field
The n-th order structure function of the resolved fluid temperature field is defined as

SnT (r) ≡ 〈|∆T (r, t)|n〉 (6.1)

where ∆T (r, t) it the difference in the carrier temperature field at two points separated
by the distance r (the “temperature increment”). The results for S2

T , with different St and
Stθ are shown in figure 10. The structure functions of the actual temperature field differ
from the structure functions of the carrier temperature field, due to the near-particle
temperature disturbances. As discussed in Appendix B, the impact of the local near-
particle perturbation is marked at small separation and the carrier flow temperature
field can be understood as the actual temperature field filtered at the grid resolution
scale. In order to emphasize this fact, the carrier flow temperature structure functions
are reported only down to the Kolmogorov scale, which is comparable to the grid spacing.

The results show that S2
T decreases monotonically with increasing Stθ at all scales

when the two-way thermal coupling is taken to account. In the dissipation range, S2
T

is directly connected to the dissipation rate, and is suppressed in the same way for the
three different St considered. Conversely, the suppression of the large scale fluctuations
is stronger as St is reduced, at least for the range of St considered here.

The scaling exponents of the structure functions of the carrier temperature field

ζnT ≡
d logSnT (r)

d log r
(6.2)

are shown in figure 10(d) for r 6 2η. The results show that the resolved fluid temperature
field remains smooth (to within numerical uncertainty) even when inertial particles are
suspended in the flow.

6.2. Particle temperature structure functions
The n-th order structure function of the particle temperature θp (t) is defined as

Snθ (r) ≡ 〈|∆θp|n〉r (6.3)

where ∆θp(t) is the difference in the temperature of the two particles, and the brackets
denote an ensemble average, conditioned on the two particles having separation r. The
results for S2

θ for different St and Stθ, with and without two-way thermal coupling, are
shown in figure 11.

The results show that S2
θ depends on Stθ in much the same way as the inertial

particle relative velocity structure functions depend on St (Ireland et al. 2016a). This is
not surprising since the equation governing θ̇p is structurally identical to the equation
governing the particle acceleration. However, important differences are that θ̇p depends
on both St and Stθ, and also that the fluid temperature field is structurally different from
the fluid velocity field, with the temperature field exhibiting the well-known ramp-cliff
structure.
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Figure 10: Results for S2
T for different Stθ, for St = 0.5 (a), St = 1 (b) and St = 3 (c).

(d) Scaling exponents of the fluid temperature structure functions at small separation,
r 6 2η, at St = 1. The data is from simulations S1 in which the two-way thermal coupling
is considered.

To obtain further insight into the behavior of S2
θ and Snθ in general, we note that the

formal solution for ∆θp(t) is given by (ignoring initial conditions)

∆θp (t) =
1

τθ

ˆ t

0

∆T (xp (s) , rp (s) , s) exp

(
− t− s

τθ

)
ds, (6.4)

where ∆T (xp (s) , rp (s) , s) is the difference in the fluid temperature at the two particle
positions xp (s) and xp (s) + rp (s). Equation (6.4) shows that ∆θp (t) depends upon ∆T
along the path-history of the particles, and ∆θp (t) is therefore a non-local quantity.
The role of the path-history increases as Stθ is increased since the exponential kernel
in the convolution integral decays more slowly as τθ is increased. Since the statistics
of ∆T increase with increasing separation, particle-pairs at small separations are able
to be influenced by larger values of ∆T along their path-history, such that ∆θp (t) can
significantly exceed the local fluid temperature increment ∆T (xp (t) , rp (t) , t). This then
causes S2

θ to increase with increasing Stθ, as shown in figure 11. This effect is directly
analogous to the phenomena of caustics that occur in the relative velocity distributions
of inertial particles at the small scales of turbulence (Wilkinson & Mehlig 2005), and
which occur because the inertial particle relative velocities depend non-locally on the
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Figure 11: Results for S2
θ for different Stθ, for St = 0.5 (a-b), St = 1 (c-d) and St = 3

(e-f ). Plots (a-c-e) are from simulations S1, in which the two-way thermal coupling is
considered, while plots (b-d-f ) are from simulations S2, in which the two-way coupling
is neglected.

fluid velocity increments experienced along their trajectory history (Bragg & Collins
2014b). In analogy, we may therefore refer to the effect as “thermal caustics”, and they
may be of particular importance for particle-laden turbulent flows where particles in close
proximity thermally interact.
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Figure 12: Scaling exponent of the structure functions of the particle temperature at
small separation, 0.2η 6 r 6 2η, for various thermal Stokes numbers Stθ, at fixed Stokes
number St = 0.5 (a-b) and St = 1 (c-d). Plots (a-c) are from simulations S1, in which
the two-way thermal coupling is considered, while plots (b-d) are from simulations S2,
in which the two-way coupling is neglected.

The results in figure 11 also reveal a strong effect of St , and one way that St affects these
results is through the spatial clustering and preferential sampling of the fluid temperature
field by the inertial particles. There is, however, another mechanism through which St
can affect S2

θ . In particular, since, due to caustics, the relative velocity of the particles
increases with increasing St at the small scales, then the values of ∆T (xp (s) , rp (s) , s)
that may contribute to ∆θp (t) become larger. This follows since if their relative velocities
are larger, then over the time span t − s 6 O (τη) the particle-pair can come from even
larger scales where (statistically) ∆T (xp (s) , rp (s) , s) is bigger. This effect would cause
S2
θ to increase with St for a given Stθ, further enhancing the thermal caustics, which is

exactly what is observed in figure 11. The results also show that the thermal caustics are
stronger for Stθ > O (1) when the two-way thermal coupling is ignored. This is mainly due
to the reduction in the fluid temperature gradients due to the two-way thermal coupling
described earlier, noting that in the limit of vanishing fluid temperature gradients, the
thermal caustics necessarily disappear.

At larger scales where the statistics of ∆T vary more weakly with r, the non-local effect
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Figure 13: Second order mixed structure functions of the carrier flow temperature field,
for different thermal Stokes numbers of the suspended particles, at St = 0.5 (a) and
St = 1 (b). The data refer to the set of simulations S1, with thermal particle back-
reaction included.

weakens, the thermal caustics disappear, and a filtering mechanism takes over which
causes S2

θ to decrease with increasing Stθ. This filtering effect is directly analogous to
that dominating the large-scale velocities of inertial particles in isotropic turbulence, and
is associated with the sluggish response of the particles to the large scale flow fluctuations
due to their inertia (Ireland et al. 2016a).

The particle temperature structure functions Snθ behave as power laws at small sepa-
ration, logSnθ (r) ≈ ζnθ log r + an, and the associated scaling exponents ζnθ are shown in
figure 12. The exponents are obtained by fitting the logarithm of the structure function in
the dissipation range according to ordinary least squares. To reduce statistical noise, we
estimate ζnθ by fitting the data for Snθ over the range 0.2η 6 r 6 2η. Over this range, Snθ do
not strictly behave as power laws, and hence the exponents measured are understood as
average exponents. The error bars indicate the largest deviations from the mean exponent
observed in the considered range. The results in figure 12 reveal that particle temperature
increments exhibit a strong multifractal behaviour. This multifractility is due to the non-
local thermal dynamics of the particles and the formation of thermal caustics, described
earlier. In particular, there exists a finite probability to find inertial particle-pairs that are
very close but have large temperature differences because they experienced very different
fluid temperatures along their trajectory histories. As with the thermal caustics, the
multifractility is enhanced as St is increased. Most interestingly, the results for ζnθ are
only weakly affected by the two-way thermal coupling, despite the fact that we observed
a significant effect of the coupling on S2

θ . This suggests that the two-way coupling affects
the strength of the thermal caustics, but only weakly affects the scaling of the structure
functions in the dissipation range.

6.3. Mixed structure functions
We turn to consider the behaviour of the flux of the temperature increments across

the scales of the flow, which is associated with the mixed structure functions

SQ(r) ≡
〈
(∆T (r, t))

2
∆u‖(r, t)

〉
(6.5)
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Figure 14: Second order mixed structure functions of the particle temperature, for
different thermal Stokes numbers, at St = 0.5 (a-b) and St = 1 (c-d). The plots on
the left (a-c) refer to the set of simulations S1, in which the thermal particle back-
reaction is included. The plots on the right (b-d) refer to the set of simulations S2, in
which the thermal particle back-reaction is neglected.

where ∆u‖ is the longitudinal relative velocity difference. The results for SQ, for different
St and Stθ are shown in figure 13. Just as we observed for the fluid temperature structure
functions, −SQ decreases monotonically with increasing Stθ, as was also observed for
the fluid temperature dissipation rate χf . The mixed structure functions of the carrier
temperature field are reported to separation down to the Kolmogorov scale, that is the
scale at which the carrier temperature field is resolved, as discussed in Appendix B.

To consider the flux of the particle temperature increments, we begin by considering
the exact equation that can be constructed for Snθ using PDF transport equations. In
particular, if we introduce the PDF P(r, ∆θ, t) ≡ 〈δ(rp(t) − r)δ(∆θp(t) −∆θ)〉 and the
associated marginal PDF %(r, t) ≡

´
P d∆θ, where r and ∆θ are time-independent phase-

space coordinates, then we may derive for a statistically stationary system the result (see
Bragg & Collins (2014a); Bragg et al. (2015b) for details on how to derive such results)

〈
[∆θp(t)]

2
〉
r
=
〈
∆T (xp(t),rp(t), t)∆θp(t)

〉
r
− τθ

2%

∂

∂r
· %
〈
[∆θp(t)]

2wp(t)
〉
r
, (6.6)

where wp(t) ≡ ∂trp(t). The first term on the right-hand side is the local contribution



Scalar field–particle interaction 29

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

-80 -60 -40 -20  0  20  40  60  80
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

-80 -60 -40 -20  0  20  40  60  80

 

 

 

 

 

 

(a)(a)

Q/σQQ/σQ

σ
P

D
F

σ
P

D
F

no feedback
S1: St = 0.5; Stθ = 0.2

1.0
2.0
4.0
6.0

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

-80 -60 -40 -20  0  20  40  60  80
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

-80 -60 -40 -20  0  20  40  60  80

 

 

 

 

 

 

(b)(b)

Q/σQQ/σQ

σ
P

D
F

σ
P

D
F

no feedback
S1: St = 1.0; Stθ = 0.2

1.0
2.0
4.0
6.0

Figure 15: Probability density function in normal form of the flux of carrier flow
temperature increments at small separations, r 6 2η, at St = 0.5 (a) and St = 1
(b). The data refer to the set of simulations S1, with thermal feedback included.

that remains when there exist no fluxes across the scales, and this term determines the
behavior of 〈[∆θp(t)]2〉r at the large scales of homogeneous turbulence where the statistics
are independent of r. The second term on the right-hand side is the non-local contribution
that arises for Stθ > 0, and it is this term that is responsible for the thermal caustics
discussed earlier. It depends on the spatial clustering of the particles through % (which is
proportional to the RDF), and the flux 〈[∆θp(t)]2wp(t)〉r which, for an isotropic system,
is determined by the longitudinal component

SQp(r) ≡
r

r
·
〈
[∆θp(t)]

2wp(t)
〉
r
. (6.7)

The results for SQp from our simulations are shown in figure 14, and they show that
without two-way coupling, −SQp monotonically increases with increasing Stθ at the
smallest scales. However, with two-way coupling, −SQp is maximum for intermediate
values of Stθ, and this occurs because as shown earlier, as Stθ is increased, the fluid
temperature fluctuations are suppressed across the scales.

7. Distribution of the temperature fluxes
We finally look at the distribution of temperature flux across the scales, in the

dissipation range. We consider the PDFs of the carrier flow temperature flux Q =
(∆T (r, t))

2
∆u‖(r, t) and particle temperature flux Q = [∆θp(t)]

2w‖(t), where w‖(t) is
the parallel component of the particle-pair relative velocity.

The PDF of the carrier flow temperature flux, which does not include the contribution
of the near-particle field changes, is plotted in normal form for r 6 2η in figure 15. These
normalized PDFs collapse onto each other for all St and Stθ values considered. Thus, the
distribution of the resolved temperature increments flux simply scales with its variance in
the dissipation range, and the variance of the flux is modulated by the particles but the
shape of the distribution is not affected by the particle dynamics. The PDF are strongly
negatively skewed and have a negative mean value, associated with the mean flux of
thermal fluctuations from large to small scales in the flow.

The PDF of the particle temperature flux is plotted in normal form for r 6 2η in
figure 16. The PDF of the particle temperature flux across the scales is not self-similar
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Figure 16: Probability density function in normal form of the flux of particle temperature
increments at small separations, r 6 2η, at St = 0.5 (a-b), St = 1 (c-d) The plots on the
left (a-c) refer to the set of simulations S1, in which the thermal particle back-reaction
is included. The plots on the right (b-d) refer to the set of simulations S2, in which the
thermal particle back-reaction is neglected.

with respect to its variance. Furthermore, the PDF becomes more symmetric as Stθ
is increased. This is associated with the increasingly non-local thermal dynamics of the
particles, which allows the particle-pairs to traverse many scales of the flow with minimal
changes in their temperature difference.

8. Conclusions
Using direct numerical simulations, we have investigated the interaction between the

scalar temperature field and the temperature of inertial particles suspended in the fluid,
with one and two-way thermal coupling, in statistically stationary, isotropic turbulence.

We found that the shape of the probability density function (PDF) of the carrier
flow temperature gradients is not affected by the presence of the particles when two-
way thermal coupling is considered, and scales with its variance. On the other hand,
the variance of the fluid temperature gradients decreases with increasing Stθ, while St
plays a negligible role. The PDF of the rate of change of the particle temperature, whose
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variance is associated with the thermal dissipation due to the particles, does not scale in
a self-similar way with respect to its variance, and its kurtosis decreases with increasing
Stθ. The particle temperature PDFs and their moments exhibit qualitatively different
dependencies on St for the case with and without two-way thermal coupling.

To obtain further insight into the fluid-particle thermal coupling, we computed the
number density of particles conditioned on the magnitude of the local fluid temperature
gradient. In agreement with Bec et al. (2014), we observed that the particles cluster in
the fronts of the temperature field. We also computed quantities related to moments of
the particle heat flux conditioned on the magnitude of the local carrier flow temperature
gradient. These results showed how the particles tend to decrease the fluid temperature
gradients, and that it is associated with the statistical alignments of the particle velocity
and the local carrier flow temperature gradient field.

The two-point temperature statistics were then examined to understand the properties
of the temperature fluctuations across the scales of the flow. By computing the structure
functions, we observed that the fluctuations of the carrier flow temperature increments are
monotonically suppressed as Stθ increases in the two-way coupled regime. The structure
functions of the particle temperatures revealed the dominance of thermal caustics at the
small scales, wherein the particle temperature differences at small separations rapidly
increase as Stθ and St are increased. This allows particles to come into contact with very
large temperature differences, which has a number of important practical implications.
The scaling exponents of the inertial particle temperature structure functions in the
dissipation range revealed strongly multifractal behavior.

Finally, the flux of carrier flow temperature increments across the scales was found to
decrease monotonically with increasing Stθ. The PDFs of this flux are strongly negatively
skewed and have a negative mean value, indicating that the flux is predominately from the
large to the smallest scales of the flow. In the two-way coupled regime, the presence of the
inertial particles does not change the shape of the PDF. The PDF of the flux of particle
temperature increments in the dissipation range becomes more and more symmetric
as Stθ is increased, associated with the increasingly non-local thermal dynamics of the
particles.

The results presented have revealed a number of non-trivial effects and behavior of the
particle temperature statistics. In a future work it will be important to consider the role
of gravitation settling and coupling with water vapor fields, both of which are important
for the cloud droplet problem. Moreover, it will be interesting to include the two-way
momentum coupling and to consider the non-dilute regime.
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A. Influence of momentum coupling and elastic collisions
In this appendix we quantify the effects of two-way momentum coupling and elastic

collisions, which have been neglected in our simulations.

A.1. Momentum coupling
Concerning the momentum coupling, we have carried out few numerical simulations

in which both momentum and temperature coupling are taken to account. The results
show that the small scale statistics are only weakly affected by the momentum coupling.
The thermal dissipation rate at different Stokes and thermal Stokes numbers, with and
without momentum coupling, is shown in Figure 17(a), which shows that the impact of
two-way momentum coupling is quite small. As expected, the effect of the momentum
coupling is more evident for large Stokes numbers (St = 3), but even then the effect is
quite small. A small reduction of the thermal dissipation due to the particles is observed
since the large heat flux towards the particles is mainly a consequence of the concentration
of particles in the regions of large temperature gradients, yet we expect a smoothing of the
velocity field by momentum two-way coupling, which mitigates the particle preferential
concentration in the vicinity of the temperature fronts. The second order structure
functions of the carrier temperature field at St = 3 are shown in figure 17(b). Small
quantitative modifications of the fluid temperature occur due to the momentum coupling,
especially at large separation but, more importantly, the overall picture is not modified.
Moreover, it should be noted that the actual Stokes number is modified by the two-
way momentum coupling, since the fluid dissipation rate is no more equal to the energy
injection rate in equation (2.2), resulting in a longer Kolmogorov timescale. Data in
figure 17 are presented using the nominal Kolmogorov timescale obtained by using
overall dissipation rate, that is, the same scale of simulations without particle momentum
feedback. These results justify our neglect of two-way momentum coupling in the current
study as a first approximation.

A.2. Elastic collisions
According to the criterion by Elghobashi (1994), the upper limit of the volume fraction

for the validity of the two-way coupling is φ = 10−3. Above this threshold particle-particle
interactions become frequent. Since in our work φ = 4 × 10−4 and the Stokes number
can be of order one, we have re-run some of the simulations taking into account particle-
particle interactions assuming elastic collisions. Apart of collisions, any direct small-scale
hydrodynamic interaction (Onishi et al. 2013) is not taken into account.

The particle path is reconstructed at first order between time tn and tn+1 = tn +∆t,
where ∆t is the time step employed in the simulations. This yields the following second
order equation for the relative distance between the p-th and q-th particle,

‖(1− t̃) (xp(tn)− xq(tn)) + t̃ (xp(tn+1)− xq(tn+1)) ‖ = 2rp. (A.1)

where t̃ = (t − tn)/∆t. If a real solution t̃ ∈ [0, 1) exists, a collision is detected and the
colliding particles p and q are evolved according to the equations for elastic collisions
between rigid spheres. No heat exchange occurs during the instantaneous collision.
Numerically, the direct search for collisions would be impractical, since it would require
O(N2

P ) operations. In our simulations, the search for collisions is performed by grouping
the particles inside small boxes and searching inside each box (Onishi et al. 2013). The
spurious effect of the box boundaries is removed translating the boxes and repeating the
search.

The results show that, in the parameter range we are considering, the collisions only
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Figure 17: (a) Dissipation rate χf of the fluid temperature fluctuations, for different St as
a function of Stθ and (b) second order fluid temperature structure function, at St = Stθ =
3, with and without momentum coupling and elastic collisions. (c) Scaling exponents of
the particle temperature structure functions at small-separation, with and without elastic
collisions and momentum two-way coupling. Blue color indicates one-way momentum
coupling and two-way temperature coupling, black color indicates two-way momentum
and temperature coupling and red color indicates two-way momentum and temperature
coupling with elastic collisions between particles. (d) PDF of the temperature difference
between colliding particles. The Kolmogorov scale quantities are computed by using the
overall dissipation rate.

mildly affect the heat exchange between the carrier fluid and the particles. As shown in
Figure 17(a), the change in the thermal dissipation rate due to the carrier temperature
gradient is very moderate when elastic collisions are taken to account. The effect of
elastic collisions on the carrier flow temperature structure functions is negligible, as in
Figure 17(b). The effect of elastic collisions on the scaling exponents of the particle
temperature structure functions at small separation is shown Figure 17(c). The impact
of elastic collisions on those statistics at St = 1 is more noticeable but still moderate. The
temperature difference between colliding particles is shown in Figure 17(c), for St = 0.5,
1 and 3 and corresponding Stθ = 0.6, 1 and 3. Due to the intermittency of the carrier flow
temperature gradient and to the path-history effect, the relative temperature between
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colliding particles can be large with respect to the small-scale temperature increment
Tη. However, such large temperature rarely occur and the majority of the temperature
increments is concentrated in |∆T | < Tη, a behaviour similar to the one of relative
velocity distribution between colliding particles (Voßkuhle et al. 2014). The relative
temperature between colliding particles increases with the particle inertia, as expected.

B. Estimating the actual temperature field
The paper presented the statistics of the carrier temperature field T (x, t), which can

be resolved on the computational grid, within the limits of the point-particle model. In
that model, both the particle size and the region perturbed by the particle are assumed
to be much smaller than the Kolmogorov scale. The near-particle field changes are
excluded in the carrier resolved fluid temperature field, which is an approximation of the
actual temperature field far from particles. On the other hand, the actual temperature
field includes the near-particle field perturbations, which varies on scales smaller than
the Kolmogorov scale, down to the particle size, and it is such that the actual fluid
temperature matches the particle temperature at the particle surface (that is, there is no
thermal slip). The carrier temperature field can be understood as the actual temperature
field filtered at the computational grid resolution scale, that is comparable with the
Kolmogorov length scale and much larger than the particle size. Since large temperature
gradients can be expected in the perturbed regions, which are not explicitly accounted
for by the carrier temperature field, in this Appendix we analyze how the statistics of
the actual temperature field relate to the particle temperature and resolved temperature
field statistics.

B.1. Moments of the actual temperature gradient
Let us call T∗ the actual temperature field, which is given by the sum of the carrier

field T (x, t) (that is the one considered throughout the paper) and by the perturbations,
T̃p(x, t), induced by the particles. The carrier field has variations on a spatial and
temporal scale from the integral scale down to the Kolmogorov microscale, while the
perturbation variations are all concentrated around the particles, in a volume with a size
proportional to their radius rp. In the dilute regime we are considering, the perturbation
fields induced by each particle do not overlap. Also, the suspended particles are small
enough so that the Reynolds number of the relative motion with respect to the carrier
fluid is small. Therefore the enthalpy equation around each particle reduces to the Fourier
equation,

∂T∗
∂t

= κ∇2T∗, (B.1)

with the following boundary conditions,

‖x− xp‖ = rp ⇒ T∗ = θp
‖x− xp‖ → +∞ ⇒ T∗ → T.

(B.2)

Equation (B.1) gives the perturbed temperature field around the particle in a particle-
centered frame. Since particles have sub-Kolmogorov size, rp � η, and the Prandtl
number is unitary in our simulations, T can be considered uniform on the particle scale.
The timescale of heat diffusion τd is much shorter than the timescale of the fastest
fluctuations of the carrier temperature field T , which is of the order of the Kolmogorov
timescale τη and τd/τη ∼ (rp/η)

2 � 1. Therefore, the solution of equation (B.1) with
boundary conditions (B.2) around each particle can be approximated by its quasi-steady
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solution so that the actual temperature field is

T∗(x, t) = T (x, t) +

NP∑

p=1

(θp − T (xp, t))
rp

‖x− xp‖
(B.3)

and its gradient reads

∇T∗ =∇T −
NP∑

p=1

(θp − T (xp))
rp

‖x− xp‖3
(x− xp). (B.4)

Equation (B.4) is the basis to derive the point-particle closure of the the particle heat flux,
equation (2.3c) and, as we will show, it also allows to recover the single-point moments
of the actual temperature gradient, which is the superposition of the carrier temperature
gradient and the disturbance induced by the particles. Since the flow is statistically
homogeneous, we may replace statistical averages with spatial averages. Let us indicate
with Ω the overall domain, with Ωp the region occupied by the p-th particle and Ωf =
Ω−∪pΩp the region occupied by the fluid. The volume of the region occupied by the fluid
is |Ωf | = |Ω|(1−φ) where φ =

∑
p |Ωp|/|Ω| is the particle volume fraction. Since particles

are very small with respect to the scale of spatial variation of the carrier temperature
field, the disturbance induced by the particle is non-negligible only in a small region
surrounding the particle. Let us indicate the perturbed volume around each particle by
Ω̃p, a ball of radius αrp, where rp is the particle radius and α > 1 indicates to how
many radii far from the particle the disturbance on the temperature gradient becomes
negligible. A one-dimensional sketch of the point-particle model under consideration is in
figure 18(a). In the undisturbed fluid volume Ω̃f = Ω −∪pΩ̃p the particle perturbations
are negligible and the actual temperature is given only by the carrier temperature field.
On the other hand, in the perturbed region, the actual temperature is the sum of the
resolved and disturbance temperature. Therefore we have,

T∗(x, t) = T (x, t), x ∈ Ω̃f T∗(x, t) = T (x, t) + T̃p(x, t), x ∈ Ω̃p (B.5)

where T̃p = (θp − T (xp, t)) rp/‖x − xp‖ according to equation (B.3). The n-th order
moment of the actual temperature gradient may be then evaluated by spatial average,

〈‖∇T∗‖n〉 =
1

|Ω|

ˆ
Ω̃f

(
‖∇T‖2

)n/2 dx+
1

|Ω|
∑

p

ˆ
Ω̃p

(
‖∇T∗‖2

)n/2 dx. (B.6)

In the region perturbed by the particle, the gradient of the disturbance field is larger
than the gradient of the carrier field, since the disturbance decays fast in a region which
is tiny with respect to the Kolmogorov scale. Therefore, using ‖∇T‖ � ‖∇T̃p‖, the
temperature field can be Taylor-expanded in the perturbed regions, retaining terms up
to (‖∇T‖/‖∇T̃p‖)2,

‖∇T∗‖n ∼ ‖∇T̃p‖n

1 + n

∇T · ∇T̃p
‖∇T̃p‖2

+
n

2

‖∇T‖2

‖∇T̃p‖2
+
n(n− 2)

2

(
∇T · ∇T̃p

)2

‖∇T̃p‖4


 . (B.7)

The last term on the right hand side of equation (B.7) can be estimated by using the
Schwarz inequality to obtain

‖∇T∗‖n . ‖∇T̃p‖n + n∇T · ∇T̃p‖∇T̃p‖n−2 +
n(n− 1)

2
‖∇T‖2‖∇T̃p‖n−2. (B.8)
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Equation (B.8) provides a local upper bound for powers of the actual temperature
gradient in the perturbed region (while ∇T∗ = ∇T in the unperturbed region), which
allows to compute an upper bound for the moments of the actual temperature gradient.
Using equation (B.8) into (B.6) leads to

〈‖∇T∗‖n〉 .
1

|Ω|

ˆ
Ω̃f

‖∇T‖ndy +
1

|Ω|
∑

p

ˆ
Ω̃p

[
n∇T · ∇T̃p‖∇T̃p‖n−2+

+ ‖∇T̃p‖n +
n(n− 1)

2
‖∇T‖2‖∇T̃p‖n−2

]
dyp. (B.9)

The average of the product of the carrier field and the disturbance is negligible, since the
carrier field varies on scale η and can be considered constant on scale αrp � η, except
in small regions of the domain in which extreme field temperature gradients take place,ˆ

Ω̃p

∇T · ∇T̃p‖∇T̃p‖n−2dyp '

' (T (xp, t)− θp) |T (xp, t)− θp|n−2rn−1p ∇T (xp, t) ·
ˆ
Ω̃p

yp ‖yp‖1−2n dyp = 0, (B.10)

where yp = x − xp and the spherical symmetry of the perturbation has been used.
Computing the integrals involving T̃p in equation (B.9), an upper bound for the n-th
order moment of the actual fluid temperature gradient is obtained

〈‖∇T∗‖n〉 . (1− α3φ) 〈‖∇T‖n〉+ φ
3

2n− 3
(1− α3−2n)

〈∣∣∣∣
θp − T (xp, t)

rp

∣∣∣∣
n〉

+

+ φ
3n(n− 1)

4n− 14
(1− α7−2n)

〈
‖∇T (xp, t)‖2

∣∣∣∣
θp − T (xp, t)

rp

∣∣∣∣
n−2
〉
. (B.11)

Regarding the corrections due to α, equation (B.4) shows that the disturbance temper-
ature gradient decays within a few radii from the particle. We may assume α large but
still αrp � η because of the marked scale separation hypothesis between the particle size
and the Kolmogorov length scale, rp � η. By hypothesis α3φ � 1 and, therefore, also
α7−2nφ� 1 for n > 2.

The first term on the right hand side of equation (B.11) is the contribution of the
carrier flow, the other two terms are the contribution of the local perturbation due to
the particles. The inequality in equation (B.11) is only due to the last term, which has
been overestimated by the Schwarz inequality. The relative importance of the terms in
equation (B.11) is now estimated in order to obtain a direct estimation instead of an upper
bound for the moments of the actual temperature gradient. We exploit the fact that the
disturbance gradient is much larger and more intermittent than the resolved gradient,
therefore the second term in equation (B.11), which behaves as |(θp − T (xp, t))/rp|n,
is dominant with respect the third term in the same equation, that behaves only as
|(θp−T (xp, t))/rp|n−2. An estimation of the ratio between the order of magnitude of the
third and second terms on the right hand side of equation (B.11), that is,

Cn =
n(n− 1)(2n− 3)

4n− 14

1− α7−2n

1− α3−2n

〈
‖∇T (xp, t)‖2 |θp − T (xp, t)|n−2

〉

〈|θp − T (xp, t)|n〉
r2p, (B.12)

can be obtained neglecting the coupling between the resolved and perturbation gradient,
which is justified due to the wide scale separation of those two fields, and using the results
in Bec et al. (2014), where it is shown that the average dissipation rate evaluated at the
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particle position is not larger than two times the overall dissipation rate. Therefore, the
ratio between the order of magnitude of the third and second terms on the right hand
side of equation (B.11) can be estimated as

Cn .
6

Kn

χf
χp

∣∣∣∣
n(n− 1)(2n− 3)

4n− 14

∣∣∣∣max(1, α7−2n)φ, (B.13)

where

Kn =
〈|θp − T (xp, t)|n〉

〈|θp − T (xp, t)|n−2〉 〈|θp − T (xp, t)|2〉
(B.14)

and χf/χp depends on Stθ and weakly on St , as in figure 2(b). Since α3φ � 1, as
required by the two-way coupled point-particle model, and Kn is expected to be large
for n > 2 due to the high intermittency of the disturbance gradient (e.g. K4 = O(10)
from figure 3(f)), we expect that Cn � 1 for moderate n (e.g. n 6 4) and Stθ not too
small (so that χf/χp not very large). The estimation in equation (B.13) can be rewritten
using equations (B.12), (3.3) and (3.4) together with the definition of Kolmogorov scales,〈
‖∇T‖2

〉
= T 2

η /η
2, which gives

Cn .
2

Kn

∣∣∣∣
n(n− 1)(2n− 3)

4n− 14

∣∣∣∣max(1, α7−2n)
T 2
η

〈|θp − T (xp, t)|2〉

(
rp
η

)2

. (B.15)

Therefore Cn � 1 for small particles, moderate n and Stθ reasonably large (that is,
|θp − T (xp, t)|/Tη not very small). Both estimations, equations (B.13) and (B.15), show
that the second term on the right hand side of equation (B.11) is the leading term of the
contribution of the particle perturbation to the actual temperature gradient moments,
while third term on the right hand side of equation (B.11) is sub-leading, for moderate n
(e.g. n 6 4), φ� 1 and rp/η � 1, which are basic hypothesis of the point-particle model.
Therefore, the following simplified estimation for the moments of the actual temperature
field is obtained:

〈‖∇T∗‖n〉 ∼ 〈‖∇T‖n〉+
3φ

2n− 3

〈∣∣∣∣
θp − T (xp, t)

rp

∣∣∣∣
n〉

, n > 2. (B.16)

Equation (B.16) with n = 2 is the balance of thermal dissipation rate, that is equation
(3.2), derived in the paper from the carrier flow temperature field equation (2.1c), which
includes the particle thermal feedback. The only hypothesis necessary to obtain equation
(B.16) are those that are also assumed for the validity of the point-particle model, without
the need of any ad-hoc assumption. It is worth noting that the contribution of the
particle perturbation to the actual temperature gradient moments can become dominant
with respect to the carrier temperature field contribution. Indeed, the ratio between the
second and first term on right hand side of equation (B.16) can be roughly estimated
to be proportional to φ(η/rp)n, which shows that the particle perturbation contribution
dominates for large n, since in the point-particle model hypothesis φ � 1 but η/rp �
1. This is a signature of the intermittency introduced by the perturbation due to the
particles. The quantity

Rn =

( 〈‖∇T∗‖n〉
〈‖∇T‖n〉

)1/n

(B.17)

can be used to measure the overall contribution of the perturbed regions to the tempera-
ture gradient moments, and it is shown in Figure 18(b) as a function of the thermal Stokes
number, for n 6 4 and St = 1. As expected, for small particle thermal inertia Rn ∼ 1
and the difference between the actual temperature gradient distribution and the resolved
temperature gradient distribution increases with Stθ. The actual temperature gradient
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Figure 18: (a) Sketch of the particle model. The size of the particle and of the perturbed
region is out of proportion for sake of clarity. (b) Ratio between the n-th order moment
of the actual temperature gradient and the resolved carrier temperature gradient, Rn =

(〈‖∇T∗‖n〉 / 〈‖∇T‖n〉)1/n, as a function of the particle thermal inertia at St = 1.

∇T∗ is more intermittent than the carrier flow temperature gradient ∇T (which does
not include the particle disturbance) discussed in the paper. The high order moments
of the actual temperature gradient might be even larger than the prediction in equation
(B.16), since the weight of the term neglected in equation (B.11) is proportional to
the order of the moment, n. The enhanced fluid flow intermittency due to the suspended
particles is consistent with the results from particle-resolved direct numerical simulations
of turbulent flows laden with small fixed spheres (Vreman 2016).

B.2. Actual temperature field Probability Density Function
The PDF of the actual temperature field T∗ can be obtained from the PDF of the

carrier temperature field T and the PDF of the particle temperature through equation
(B.3). A simple estimation, which overestimates the difference between the PDFs of T
and T∗, can be obtained by assuming that T∗ is equal to the particle temperature θp
within Ω̃p,

T∗(x, t) = T (x, t), x ∈ Ω̃f T∗(x, t) ≈ θp, x ∈ Ω̃p. (B.18)

The PDF of the actual temperature field is given by,

ρT∗(T
′) = ρ

(
T ′ and x ∈ Ω̃f

)
+ ρ

(
T ′ and x ∈ ∪pΩ̃p

)
, (B.19)

and, through equation (B.18), it reduces to

ρT∗(T
′) = (1− α3φ)ρT (T

′) + α3φρθ(T
′)

= ρT (T
′) + α3φ (ρθ(T

′)− ρT (T ′)) . (B.20)

Since α3φ� 1 and the difference between the distribution of θp and T is moderate (see
Figures 5 and 6), the difference between the the carrier temperature distribution T and
the actual temperature distribution T∗ is negligible and ρT ∼ ρT∗ .
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B.3. Structure functions
The moments of the actual temperature gradient provide information about the

temperature structure functions at small separation. Indeed, ∆T∗(r) ∼∇T∗ ·r for r → 0
and the overall thermal dissipation rate χ, which is imposed by the forcing, is due to the
gradients of the actual fluid temperature field,

χ = κ
〈
‖∇T∗‖2

〉
. (B.21)

Therefore, invoking isotropy, the actual temperature field second order structure function
at small separation is

S2
T∗(r) ∼

〈
∂T∗
∂xi

∂T∗
∂xj

〉
rirj =

〈
‖∇T∗‖2

〉 r2
3

=
r2χ

3κ
, r → 0, (B.22)

while the second order structure function of the carrier temperature field is ∼ r2χf/(3κ)
at small separation. Small deviations from this limit may occur due to lack of isotropy in
the immediate vicinity of the particle. The structure function of the actual temperature
field at small separation is proportional to the overall thermal dissipation rate. This
again reflects the fact that physically all the dissipation rate derives from the actual
fluid temperature gradient, the thermal slip |θp − T (xp, t)| being only an artifact of the
point-particle model. In this work, the overall thermal dissipation rate χ is the same for
all the simulations, therefore the structure function of the actual temperature field at
small separation is the same for each St and Stθ. On the other hand at large separation,

S2
T∗(r) ∼ 2

〈
T 2
∗
〉
, r � `∗ (B.23)

where `∗ is the correlation length of the actual temperature field. Information about
the structure function can be then extrapolated by analyzing the single-point actual
temperature field statistics. For these one-point statistics, however, the modification due
to the particles is expected to be small, as in section B.2. In conclusion, the variation of
the fluid temperature structure function ST at small separation due to the near-particle
field changes is expected to be pronounced, while the effect of the near-particle field
on the fluid temperature structure functions at large separation is expected to be very
moderate in the dilute regime.
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