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Applying Data Warehousing to a Phase Il Clinical
Trial From the Fondazione lItaliana Linfomi
Ensures Superior Data Quality and Improved
Assessment of Clinical Outcomes

Gian Maria Zaccaria, PhD*; Simone Ferrero, MD'; Samanta Rosati, PhD?; Marco Ghislieri, MSc?; Elisa Genuardi, PhD?;

Andrea Evangelista, PhD3; Rebecca Sandrone, MSc?; Cristina Castagneri, MSc?; Daniela Barbero, PhD*; Mariella Lo Schirico, MD*;
Luca Arcaini, MD®; Anna Lia Molinari, MD®; Filippo Ballerini, MD”; Andres Ferreri, MD®; Paola Omede, PhD?*; Alberto Zamo, PhD?;
Gabriella Balestra, PhD?; Mario Boccadoro, MD?; Sergio Cortelazzo, MD®; and Marco Ladetto, MD*°

PURPOSE Data collection in clinical trials is becoming complex, with a huge number of variables that need to be
recorded, verified, and analyzed to effectively measure clinical outcomes. In this study, we used data warehouse
(DW) concepts to achieve this goal. A DW was developed to accommodate data from a large clinical trial,
including all the characteristics collected. We present the results related to baseline variables with the following
objectives: developing a data quality (DQ) control strategy and improving outcome analysis according to the
clinical trial primary end points.

METHODS Data were retrieved from the electronic case reporting forms (eCRFs) of the phase Ill, multicenter
MCLO0208 trial (ClinicalTrials.gov identifier: NCT02354313) of the Fondazione Italiana Linfomi for younger
patients with untreated mantle cell lymphoma (MCL). The DW was created with a relational database man-
agement system. Recommended DQ dimensions were observed to monitor the activity of each site to handle DQ
management during patient follow-up. The DQ management was applied to clinically relevant parameters that
predicted progression-free survival to assess its impact.

RESULTS The DW encompassed 16 tables, which included 226 variables for 300 patients and 199,500 items of
data. The tool allowed cross-comparison analysis and detected some incongruities in eCRFs, prompting queries
to clinical centers. This had an impact on clinical end points, as the DQ control strategy was able to improve the
prognostic stratification according to single parameters, such as tumor infiltration by flow cytometry, and even
using established prognosticators, such as the MCL International Prognostic Index.

CONCLUSION The DW is a powerful tool to organize results from large phase Il clinical trials and to effectively
improve DQ through the application of effective engineered tools.

JCO Clin Cancer Inform. © 2019 by American Society of Clinical Oncology

INTRODUCTION

The complexity of translational clinical trials has led to
increased amounts of collected data, which need to be
stored and properly managed. In this context, elec-
tronic tools are increasingly used for clinical data
collection.* However, the mere collection and storage
of data are insufficient to fulfill clinicians’ current need
to access all information contained in clinical trials,

longitudinal long-term data,® allowing high-level in-
tegration from different data sources.”® These char-
acteristics might make DWs a suitable tool for the data
management of clinical trials.’® A DW is a relational
model in which data are stored in tables that are
connected by means of relations. In each table, rows
represent the records or occurrences and columns refer
to attributes or variables.?

which often include unique sources of information for
a wide array of clinical and biologic correlates. A data
warehouse (DW) is a “subject-oriented, integrated,
time-variant, and nonvolatile collection of data in sup-
port of management’s decision making process.”%r12®)
Although the use of DWs in the business domain was
established several years ago, its application in health
care is still in its infancy.®>® In contrast to a database,
a DW is designed to support users in the analysis of

Given that the main aim of a DW is to support the
decision-making process,** the most critical aspect is
not simply data storing but rather to ensure the data
quality (DQ)—in terms of conformance, complete-
ness, correctness, plausibility, and consistency—is
adequate to produce meaningful information.**** This
is true for both clinical and molecular data.
Moreover, the periodic management of the DQ during
clinical trials might reduce the effects of different
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CONTEXT

Key Objective

To develop a data warehouse model to accommodate both clinical and biologic data from a phase Ill, open-label, multicenter
clinical trial on mantle cell ymphoma (MCL) aimed to improve data quality according to the clinical end points of the study.

Knowledge Generated

The implementation of data warehousing concepts allows us to systematically define a data quality (DQ) control strategy to
both facilitate clinical sponsors in handling the clinical trial management and to improve the centers’ accuracy in compiling
electronic case report forms. The DQ effectiveness affects clinical end points of the study as the prognostic stratification
according to single parameters, such as tumor infiltration by flow cytometry, and even using established prognosticators,
such as the MCL International Prognostic Index.

Relevance

Our findings demonstrate that data warehousing concepts provide a powerful tool to organize results from large phase Il
clinical trials and to effectively improve DQ through the application of engineered tools.

data-handling approaches on the obtained information.*®2°
To obtain high-quality data, several recommended DQ
dimensions might be studied to highlight missing, not
plausible, incorrect, or nonconcordant values in time and
across recruiting centers. Nevertheless, it is well known
that all these aspects might compromise the quality of
information retrieved from data as reported recently,?®
because data completeness is often the most com-
monly assessed dimension of DQ.

In clinical studies, the successful assessment of new
knowledge about a certain disease or treatment in different
clinical and biologic settings is also strongly linked to the
periodic measurement of performance.?* Therefore, the
objective monitoring of study productivity, DQ, and the
knowledge returned from data should be considered.
Hence, the aim of the study was to introduce a DW for the
data collection of a prospective, multicenter Fondazione
Italiana Linfomi (FIL) MCL0208 clinical trial. In addition, we
aimed to describe its potential role in monitoring accuracy
when compiling electronic case report forms (eCRFs) and
the centers’ compliance with the management of patients’
specimens. Our results highlight how a DW approach
improved the assessment of clinical outcomes in patients
with mantle cell lymphoma (MCL) and provided an accu-
rate definition of the prognostic index, such as the MCL
International Prognostic Index (MIPI),?? and biologic pa-
rameters, such as tissue tumor infiltration detected by flow
cytometry.

METHODS
Patients

The data used in this study were collected from a phase I,
multicenter, open-label, randomized, controlled clinical
trial primarily aiming to determine the efficacy and safety of
lenalidomide as maintenance therapy versus observation in
younger (< 65 years) patients affected by advanced-stage
MCL. Patients achieving at least a partial response after an
upfront treatment with rituximab were supplemented with

2 © 2019 by American Society of Clinical Oncology

high-dose immunochemotherapy and autologous stem-cell
transplantation  (FIL-MCL0208 trial; ClinicalTrials.gov
identifier: NCT02354313); the details of the treatment
schedule have already been presented elsewhere, together
with the clinical results.>® The manuscript presenting the
clinical outcome of the trial is in preparation. Overall, 300
patients were enrolled from May 2010 to August 2015 at 48
Italian and one Portuguese center.

Data presented in this manuscript are derived from the
final analysis, planned after the observation of 60 post-
randomization events of progression-free survival (PFS),
which occurred on March 3, 2018. The study was con-
ducted in accordance with the Declaration of Helsinki, and
all patients provided written informed consent for the
collection and research use of clinical and biologic data.
Because of its translational characterization, FIL-MCL0208
was an ideal candidate trial to test our methods. In par-
ticular, it involved several ancillary studies, for a global
number of data items of 199,500. To conduct ancillary
studies, the management of patient samples was co-
ordinated by the central secretariat of the FIL.

Database Description and DW Design

In the context of the clinical trial, several variables were
acquired. Data were retrieved from both the eCRFs com-
piled by the clinical centers and the data sets provided by
the centralized molecular biology laboratory. Patients’
characteristics were assessed at diagnosis (baseline) and at
different predefined time points during the study. Starting
from the analysis of the variables recorded in the eCRFs, we
built up a DW to collect all clinical and biologic data in an
organized structure. The DW was organized around a table
collecting the demographic information of all enrolled
patients, according to Inmon.? All other tables recording the
clinical data were linked to this one by means of proper
relationships. In every table, a key attribute was defined as
a unique value for each record. Hence, the linkage with the
central table was achieved by connecting the respective
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FIG 1. Structure of the data warehouse (DW) for the collection of data recorded in the electronic case reporting forms (eCRFs) and in the
data sources from laboratories during the clinical trial. The DW had a snowflake architecture. The subject table represented the center of the
DW design and was directly connected to other categories: Protocol Data, Laboratory Data, Pathologic Data, (continued on following page)
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key attribute via the unique attribute codeSubjects, which is
the patient’s identification (ID) defined by the trial sponsor.
Overall, each table was designed to collect variables related
to the same category. For example, the classic laboratory
variables were organized in the Laboratory_Data table. The
common data model (CDM) was implemented and pop-
ulated by Oracle MySQL, version 5.5.9, an open-source
relational database management system based on the
Structured Query Language for programming.

DQ Management Procedure

For the DQ analysis of baseline attributes, we considered
the extensive effort involved in data collection, and we
speculated that several incongruencies could compromise
the overall DQ. First, we identified the relevant variables
from the pool saved in the DW according to the clinical trial
end points.?*?* Hence, recommended DQ dimensions
were investigated across data®:

Atemporal completeness (C): related to the number of
missing values (MVs).

Atemporal plausibility (P): defined by “whether or not the
values or data points are believable when compared to
the expected representation of an accepted value range
distribution”*4®1%Y (eq, WBC filled in eCRFs as either
10°%L or 10°/L, Ki67 proliferation index*® and lactate
dehydrogenase [LDH] levels set as 0).

Atemporal concordance (CON): measures “the agreement
between elements”2°®4? (eg, bone marrow infiltration
[BMinf] detected by immunochemistry with Ann Arbor
[AA] staging®” , 4).

The DQ dimensions were assessed dividing the count of
expected values of fields considered relevant®* according to
each group set up in the DW minus the count of detected
incongruities, by the number of expected values. Moreover,
each dimension was studied across 49 active centers,
which were classified in large (= 10 patients enrolled),
medium (between 5 and 9 patients enrolled), and small
(, 5 patients enrolled). According to temporality di-
mension, since the study start (No_DQ time point), this
procedure of DQ was performed four times (DQ post-
milestones [PM], every 6 months: PM-1, PM-2, PM-3, and
PM-4), and the DW was regularly updated accordingly to
the changes in the data sources. A Student t test (paired,
two-tail, significance level: a = .05) was applied to each DQ
dimension calculated between No DQ and PM-4 time
points to assess whether the increase of the overall DQ was
significant across centers.

Second, we verified the validity of conformance, correct-
ness, granularity, and structuredness dimensions,?® re-
spectively. All pitfalls were systematically integrated in the
extraction, transformation, and loading (ETL) process by
means of an ad hoc automatic routine developed in the
Matlab environment (R2018a). A report containing a de-
tailed description of the identified inconsistencies was
generated for each center as queries, requesting an
amendment of the eCRF data after every milestone.

Survival Analysis

Repeated PFS analyses were performed after each DQ
milestone to assess the impact of DQ management. We
chose one universally recognized multiparametric param-
eter (ie, the MIPI), together with baseline flow cytometry,
a parameter that seemed to be associated with more
missing values, as it was not frequently reported in MCL
trials. The PFS was calculated from the date of enrollment
in the clinical study to the date of disease progression
(event), death from any cause (event), or last follow-up
(censoring).?® The PFS was estimated using the Kaplan-
Meier model and compared between groups using the log-
rank test (a =.05). The PFS curves were plotted both before
and after applying the DQ management procedure viathe R
package 3.4.1, as of 2017. The results of the log-rank test
are reported in terms of the P values obtained when
comparing the curves of two adjacent classes.

RESULTS
DW Structure

Figure 1 shows the structure of the DW for the collection of
datarecorded in the eCRFs during the clinical trial. The DW
consisted of 16 tables containing 226 features. In the figure,
tables presenting data related to the same category were
grouped together. The Demographic & Morphometric data
group (table subject) represented the center of the DW design
and was directly connected to additional categories. Hence,
the DW structure assumed a “snowflake™ architecture.”*

For those categories where data were collected both at the
baseline and at each restaging during the clinical follow-up,
two different approaches were used for the DW design.
First, if the same variables were acquired exactly the same
way at each time point, only one table was used for their
storage, containing an attribute related to the time point
(N_timepoint). This was the case for both laboratory data
and diag_procedures tables. Second, two tables were
implemented in the CDM for those patients for whom
different information needed to be registered at baseline

FIG 1. (Continued). Clinical Data, Imaging Data, and Minimal Residual Disease (MRD) Data tables. Three auxiliary tables were used
in the Imaging Data category to encode the supra-diaphragmatic, sub-diaphragmatic, and extranodal involvements. The MRD Data
category contained the information of both IgH and BCL1 biomarkers detected by both nested (qualitative) and real-time quantitative
polymerase chain reaction in bone marrow (BM) and peripheral blood (PB) at baseline (mrd_baseline table); the MRD analysis was
performed to monitor minimal residual disease on IgH and BCL1 markers from both BM and PB at each restaging (mrd_restaging
table) and after the leukapheresis procedure (mrd_lk table). DQ, data quality.

4 © 2019 by American Society of Clinical Oncology
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and restaging. In these situations, the N_timepoint attribute
was only added to the restaging table (clinical_data_
restaging and mrd_restaging tables).

The DQ table (brown in Fig 1) was integrated to the ETL
process in linkage to the center table. It collected each DQ
dimension assessed in time (dga_date attribute) according
to each relevant variable.

Relevant Patient Features

The collected features (fts) are shown in Table 1 (fully
detailed in Data Supplement). To increase signal-to-noise
rate for the FIL-MCLO208 context,?®> 42 baseline fts have
been considered relevant by clinicians for a total of 12,600
expected data: 1) 8 fts from the Demography_&_
Morphometric_data group retrieved from eCRFs: code-
Subjects, Center_ID, age, sex, weight (W), height (H), body
mass index (BMI), and body surface area (BSA); 2) 5 fts
from the Protocol_data group retrieved from eCRFs: pro-
gression, PFS, overall survival (OS), randomization in-
clusion (RND), and consequent arm of treatment (ARM); 3)
5 fts from the Clinical_data group retrieved from eCRFs: AA
stage, B symptoms®” (sym), bulky disease, Eastern Co-
operative Oncology Group performance status (ECOGps),
and MIPI; 4) 9 fts from the Laboratory_data group retrieved
from eCRFs: LDH and relative maximum (LDHMax),
WBC, absolute neutrophils count (ANC), lymphocytes (L),

hemoglobin (Hb), platelets (PLTs), B>-microglobulins
(B2M) and relative maximum (B2Max); 5) 7 fts from the
Pathology_data group: either blastoid or normal histology
(Hist), percentage of tumor infiltration level detected by flow
cytometry, both in bone marrow and peripheral blood
(FlowBM and FlowPB), Ki67, BMinf and relative quanti-
tative value in percentage (BMinfperc), and IgH germline
omology (IgH_Omo); 6) 4 fts from the MRD_data group:
IgH marker detected by both nested and real-time quan-
titative polymerase chain reaction (PCR) in bone marrow
and peripheral blood (Nested BMIgH, Nested_PBIgH,
gPCRBMIgH, gPCRPBIgH); 7) 4 fts from the Imaging_data
group retrieved from eCRFs: sub- and supra-diaphragmatic
nodal (SUB_dia and SUPRA_dia) and extranodal (EN) site
tumor involvement assessed by both computed tomogra-
phy and positron emission tomography.

DQ Monitoring

The benefits of performing DQ checks were assessed by the
quality of the knowledge that might be extracted from data.
The assessment allowed monitoring of the DQ dimensions
for each clinical site active in the trial.

As listed in Table 2, overall 189,000 checks were provided
in time according to the DQ dimensions. Among these,
overall C increased from 91.09% (n 11,477) to
96.54% (n =12,164) from No_DQ to PM-4. Moreover, both

A

% of DQ Dimensions

Completeness: all centers

100

95

90

85

80

75 +

B

PM-4 PM-1  PM-2

Plausibility

No_DQ PM-1 PM-2

Completeness

PM-3 No_DQ

Plausibility: all centers

C

Concordance: all centers

M small
B Medium
M Large

PM-4 PM-1  PM-2 PM-3  PM-4

Concordance

PM-3 No_DQ

FIG 2. Results of the data quality (DQ) assessment applied after each milestone. (A-C) Radial graphs of (A) the completeness, (B) the plausibility, and
(C) the concordance indexes computed after each milestone for each center. (D) The same indexes represented by bar diagrams divided into small centers
(, 5 patients enrolled), medium centers (5-9 patients enrolled), and large centers (= 10 patients enrolled). PM, post milestones.
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overall P and CON increased 1.1% (n = 127) and 0.2% (n = 21)
from No_DQ to PM-4, respectively. According to each

group of data, for both Pathology data and MRD_data
categories, C increased in time from 75.1% (n = 1,578) to
82.2% (n = 1,893) and from 67.3% (n = 808) to 82.2%
(n = 986), respectively. Moreover, the P dimension im-
proved up to 94.2% (n = 2,543) for Laboratory_data group
at PM-4, whereas the CON dimension slightly increased in
1.1% (n = 24) for Clinical_data group from No_DQ to PM-4.
Figure 2 shows the values assumed across the sites: the
radial graphs described C (Fig 2A), P (Fig 2B), and CON
(Fig 2C) dimensions for the relevant fts retrieved from

eCREFs after each milestone. For instance, C increased from
59.4% (n = 104) to 96.6% (n = 169) from No_DQ to PM-4
for center 52. Furthermore, the P dimension increased for
center 49 from 82.8% (n = 24) to 93.1% (n = 27). The
three-dimensional bar chart depicted the averaged DQ
dimensions across the sites classified in small, medium,
and large enrollers. A statistically significant increase from
No-DQ to PM-4 was recorded for both medium (C: from
85.4% to 97.1%, P = .001; P: from 96.9% to 97.8%,
P =.047; COR: from 96.9% to 97.8%, P =.002) and large
centers (C: from 93.8% to 97.3%, P =.002; P: from 95.2%
to 97.8%, P = .011; COR: from 99.8% to 99.9%,
P = .0321), respectively.

A B
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© ©
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P P
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FIG 3. Outcome analysis after the data quality (DQ) application for data retrieved from the FIL-MCLO0208 clinical study. Progression-free survival (PFS) curves
calculated (A) at the beginning of the study (No_DQ timepoint, n = 277), and (B) after the last milestone (PM-4 time point, n = 300) for the three classes of Mantle
Cell Lymphoma International Prognostic Index (MIPI). The log-rank test results are reported in terms of the P values obtained comparing the curves of adjacent
classes: low (L-MIPI) versus intermediate classes (I-MIPI; P , .001), I-MIPI versus high classes (H-MIPI; P = .626) for A; L-MIPI versus I-MIPI (P , .001), I-MIP!I
versus H-MIPI (P =.113) for B. PFS discrimination was based on the infiltration of disease detected by flow cytometry from (C) the No_DQ time point (n = 120) to
(D) the PM-4 time point (n = 252). The log-rank test results are reported in terms of P values obtained comparing the curves of adjacent classes: , median versus
= median (P , .567) for C (median = 4.45%); , median versus = median (P , .012) for D (median = 6.55%). Significance level set at .05.
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Figure 3 shows the PFS plots drawn at the No_DQ time
point and after PM-4, stratified for both MIPI risk classes
(Fig 3A) and flowBM (Fig 3B). The results demonstrate that
applying the four steps of DQ management improved the
patients’ outcome discrimination. This is sustained by the
improvement in the P values, which, after the DQ man-
agement procedure (Table 2), are lower than their initial
values. In particular, in the MIPI classification, the number
of patients attributed to each risk class varies after the
application of the DQ management, together with an im-
provement in the total number of patients studied. The MIPI
risk category was reclassified for 23 patients not classified
at No_DQ, as follows: 12 were classified as low risk, eight as
intermediate risk, and three as high risk. Moreover, 10 IR
patients were reclassified as low risk, and 9 high-risk pa-
tients were downgraded. Furthermore, focusing on tumor
infiltration by flow cytometry at diagnosis, the DQ analysis
identified 133 MVs at No_DQ. These MVs were recovered at
PM-4. In this case, the P value became significant (from
.567 to .012) when assuming the median of the obser-
vations as the cutoff (Fig 3B).

DISCUSSION

In this study, a large collection of clinical and biologic data
from the FIL-MCL0208 open-label, randomized, phase IlI
clinical trial underwent engineering using DW technology.
Starting from the analysis of the variables retrieved from the
eCRFs, a model of the DW ensured a rational and easily
accessible frame for the collection of translational data.
This article presents the results related to baseline variables
with the objectives of developing a DQ control strategy and
improving outcome analysis according to the clinical trial
primary end points.

TABLE 3. Detailed Description of the Rules Used to Detect the Class of
Incompatible Values (IN) for the Data Quality Management Procedure

No.  Rule

1 BMInf . 0 AND AAStage , IV

2 EN . 0 AND AAStage , IV

3 AAStage , IV AND BMiInf - O ANDEN - O

4 AAStage , IV AND BMinf _ 0 AND (flowBM _ 15% OR flowPB - 15%)

5 AAStage , IV AND BMInf - 0 AND (QPCR_BM . 10°° OR qPCR_PB
- 107

6 AAStage , IV AND BMinf _ 0 AND (flowBM _ 15% OR flowPB - 15%)

AND (qPCR_BM . 107° OR gPCR_PB . 107°)

NOTE. Rule 1: a subject with a disease infiltration detected on a bone marrow
sample (BMInf) was incompatible with an Ann Arbor (AA) stage less than IV.?” Rule
2: a subject with a disease detected via computed tomography scan on extranodal
lymph node (EN) was incompatible with an AA stage less than IV.%” Rule 3: rule 1 +
rule 2. Rule 4: rule 1 + disease infiltration on either BM or peripheral blood (PB) at
baseline . 15% detected by flow cytometry (flow).>” Rule 5: rule 1 + disease
infiltration on either BM or PB at baseline . 107° detected via quantitative
polymerase chain reaction technique (qPCR).3” Rule 6: rule 4 + rule 5.

JCO Clinical Cancer Informatics

The interest in using DW techniques in clinical research is
growing.>83%32 The DW (Fig 1) allowed every single patient
to be associated with several records belonging to other
categories. This aspect was important to monitor data re-
dundancy. The data collection using a structured DW,
rather than a classic two-dimensional database, facilitated
the implementation of a set of controls for monitoring the
centers’ accuracy and the quality of data. As we detailed
previously, the MIPI risk classification accuracy at baseline
can assess the knowledge obtained with several techniques
of data processing.®* Here, we observed completeness,
plausibility, and concordance dimensions®*2® to better
understand any cause of DQ inconsistency. In particular,
according to completeness dimension, although an overall
decrease of missing data has been recorded, not all of the
issues queried to the sites have been recovered. This was
probably related to the weak accuracy by centers in
compiling eCRFs. Missing data are common in open-
labeled, multicenter clinical trials, and to systematically
map causes could be tricky. Thus, because of the in-
tegration of both clinical and molecular data frames, the
determination of the concordance dimension has been
automatically handled by investigator-driven rules (Table 3).
Moreover, both granularity and structuredness dimensions
were preserved for tables connected to subtables (eg,
study_interruption table). According to conformance and
correctness, the ETL prevented the occurrence of addi-
tional incongruencies.

The proposed procedure was observed by assessing the
PFS. Our results showed that, after four steps of DQ
management, there was better separation of the PFS
curves related to the risk of relapse of patients with MCL,
classified according to both MIPI (three groups) and the
tumor infiltration detected by flow cytometry (two groups).
The proposed procedure allowed us to query the MIPI
classification (Fig 3A) for 61 patients. This was principally
the result of a not-plausible data entry (ie, WBC values at
10%/L instead of 10°/L). Moreover, the PFS curves assessed
using the patients’ tumor infiltration data (Fig 3B) show
a dramatic decrease of MVs (from 180 to 48), and this led
to an improvement in stratification by the median of
observations.

Although there are recommended CDMs,** the decision to
create a new relational model has been made according to
the clinical trial sponsor: the scientific debate on stan-
dardization of the MRD assessment in onco-hematology
requires that sponsors handle a CDM strictly suited on this
domain, which includes several unmapped data. Hence,
the use of a standard CDM can be a limitation.>®> The
weaknesses of applying DW concepts include the need for
data integration using user-friendly eCRF platforms, which
are believed to easily apply DQ strategies.*® However, the
benefits of the DW might overcome any effort to migrate to
novel eCRF platforms during the data collection. Moreover,
because of a lack of funds, investigator-sponsored trials
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might suffer as a result of suboptimal data-monitoring
strategies. The post hoc application of a newly designed
relational DW tool amended the negative impact of
these issues, allowing a novel organization of clinical
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