
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

An integer linear programming model for efficient scheduling of UGV tasks in precision agriculture under human
supervision / FOTIO TIOTSOP, Lohic; Servetti, Antonio; Masala, Enrico. - In: COMPUTERS & OPERATIONS
RESEARCH. - ISSN 0305-0548. - STAMPA. - 114:(2020). [10.1016/j.cor.2019.104826]

Original

An integer linear programming model for efficient scheduling of UGV tasks in precision agriculture under
human supervision

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.cor.2019.104826

Terms of use:

Publisher copyright

© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.cor.2019.104826

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2764434 since: 2020-07-15T22:08:40Z

Elsevier

An Integer Linear Programming Model for Efficient
Scheduling of UGV Tasks in Precision Agriculture

under Human Supervision

Lohic Fotio Tiotsop, Antonio Servetti, Enrico Masala

Control and Computer Engineering Department
Politecnico di Torino

Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Abstract

In precision agriculture more and more robots are being used to perform tasks

that may include some farming activities, such as pruning, inspection or spray-

ing, assigned to the robot as a result of a previous analysis activity or au-

tonomously identified by the machine itself. In this sensitive scenario, reporting

difficult situations to a decision maker, e.g., a human operator or some sophis-

ticated software tools that cannot be integrated with the robot, could be useful

to perform the correct action that the machine has to execute. Unfortunately,

this key aspect is still neglected in current literature that focuses, instead, on

fully automated operations by robots. Moreover, it is necessary to consider that

in rural areas it often happens that successful data communication can only be

achieved in certain locations in the field. In this context, we aim to address all

the previous shortcomings by formulating a more comprehensive optimization

problem, which also models the necessity to report to a central location and get

instructions on the task to be done before proceeding to perform each action.

After presenting two alternative analytical formulations of the problem, i.e. an

integer linear programming model (ILP) and a mixed integer linear program-

ming model, we propose a branch and bound algorithm that is guaranteed to

find the global minimum cost solution in terms of navigation time. Simulation

Email address: lohic.fotiotiotsop@polito.it, antonio.servetti@polito.it,

enrico.masala@polito.it (Lohic Fotio Tiotsop, Antonio Servetti, Enrico Masala)

Preprint submitted to Elsevier October 9, 2019

results show that our proposed algorithm performs about 20 to 30 times faster

with respect to commercial linear programming solvers using any of the two

analytical models proposed. Moreover, we also propose further improvements

to reduce computational time while maintaining solution optimality. Finally,

some insight into the development of future heuristics is given by analyzing the

speed of convergence towards the optimal solution.

Keywords: data acquisition, farming activities, UGV navigation, integer

linear programming, service robotics

1. Introduction1

The amount of robots employed in agriculture applications is constantly in-2

creasing. Two types of robots are typically used: unmanned ground vehicles3

(UGV) and unmanned aerial vehicles (UAV) [1]. Examples are rovers that nav-4

igate the cultivation to perform specific agriculture tasks, e.g., inspection or5

physical operations such as collecting samples, pruning, spraying [2]. UAVs,6

instead, are mainly used for imagery tasks, i.e., to take pictures for later pro-7

cessing in order to understand the status and requirements of different parts8

of the cultivation [3, 4]. Collaboration between UAVs and UGVs is also being9

actively explored [5, 6].10

Despite some operations can be done autonomously by the robots, sometimes11

communication with a central location is needed, so that a human operator or12

an algorithm, more sophisticated compared to the one that can run on the13

robot, can be used in the loop to take decisions and act accordingly in a spe-14

cific terrain position. In fact, a recent survey about the usage of agricultural15

robots [7] pointed out the lack of models considering such aspect in the current16

literature, while at the same time highlighting its necessity to correctly model17

actual problems.18

Note that this work relies on an agricultural scenario to present the models19

just because it seems to be one of the most challenging real applications, but20

it can also cover other real situations, such as the one described in the follow-21

2

ing. In case of industrial operations being performed by robots with human22

supervision, there could be A (A typically large) jobs located in different places23

to be performed by a robot and a supervisor operator may just have a rough24

knowledge of what is the exact job to be done at each location. There are also B25

locations where the robots can collect what is needed to perform a job. The pro-26

posed models can be used to schedule the A jobs minimizing the time required27

to complete them. At any job location the robot first performs an inspection,28

then moves to a point of type B, if necessary, by sending in the meanwhile a29

report to the supervisor operator that decides what to do and what is needed30

to perform the job and informs the robots that then act accordingly. Another31

example is repair companies: they may rely on the proposed models to sched-32

ule their logistic operations. The customer locations would represent points of33

interests and the company warehouses are the points to be visited to perform34

repairs at the point of interests. More precisely, when an operator leaves the35

main warehouse in the morning, at each customer location he/she either fixes36

the problem (if the description was exhaustive) or collects information about37

the problem and what is needed, then visits a company warehouse in order38

to pick up all he needs and go back later to the customer location to fix the39

problem. More in general, our models can be used for efficiently planning oper-40

ations requiring data acquisition, data elaboration or transmission, and finally41

an action.42

In this work we focus on the specific agriculture scenario considering and43

modelling the constraint imposed by communicating with a decision maker,44

e.g., a human operator, before performing physical actions. Considering the45

optimization problem, we assume to have a rough preliminary knowledge about46

the terrain and how a UGV can move in the area. In other words, obstacle47

positions and possible navigation paths are known. This can be obtained by48

previous knowledge or by means of a survey, e.g., made using a UAV or other49

similar technologies. During the survey, points of interests (POIs) are also50

identified, i.e., areas to be visited by the UGV in order to gather information,51

decide what to do and act accordingly. Since the decision of the action to52

3

perform in each POI might be difficult to take only relying on the on-board53

processing capabilities or simply might require human judgment not available54

through algorithms, we assume that after the UGV has gathered information55

by moving to the POI and taking, e.g., a picture, it must communicate with56

a central location to get an answer about the farming action to perform. The57

UGV must then perform the action returning to the POI, if necessary.58

However, it is well know that communications, including wireless, in rural59

areas might be difficult [8], mainly due to two reasons. The first reason is,60

sometimes, the presence of massive physical constraints, such as hills, rocks,61

subsidence [9]. The second reason is the typically scarce coverage of 3G/4G62

cellular technology, since there is small incentive for network operators to pro-63

vide good quality coverage of such areas due to, e.g., the low people density. As64

a consequence, depending on the physical position, either no communication is65

possible or only wireless communications are available but with locally-deployed66

infrastructure such as Wi-Fi access points or similar systems, potentially tuned67

to communicate over longer distance compared to the usual home devices. In68

our scenario, we assume that we roughly know that in certain places on the69

terrain communication is possible, whereas in others this is not possible at all.70

Such information could come as a result of a previous survey, or considering the71

relative position of the devices, the terrain topography and similar features.72

Our goal is to provide an efficient algorithm to solve the navigation problem73

of the UGV on the terrain while minimizing the time needed to perform all the74

tasks in the previously determined POIs, considering that before performing a75

task in a POI it has to i) visit the POI and collect some data about its state,76

ii) visit a location where those data can be transmitted and instructions on77

the task to be done are received, iii) go to the POI and perform the action.78

Obviously the UGV does not have to perform the three steps sequentially for79

each POI, but it can visit multiple POIs before moving to a place where it80

can communicate, and then it can go back to each one of them, in any order,81

to execute the received instructions. Minimizing the time taken by the UGV is82

economically advantageous for many reasons. For instance, if the UGV is rented,83

4

it can operate in more places therefore serving more than one customer, thus84

the company renting it can maximize its earnings. Conversely, if the UGV needs85

to be bought, a lower number of them is needed to perform all the activities86

in the timeframe required by the specific agriculture scenario so that the UGV87

could potentially be employed for other activities.88

This paper significantly extends our preliminary work [10]. In particular,89

we present an improved version of our proposed branch and bound algorithm90

which relies on the computation of a lower bound to reduce the execution time.91

Moreover, an additional mixed ILP model employing dummy vertices is pre-92

sented for comparison purposes. Finally, this paper includes an extensive set93

of performance results on several different graph instances, i.e. fifty instances94

for each level of complexity, both using the two ILP models and the proposed95

algorithm.96

The paper is organized as follows. Section 2 reviews related work in the97

field, whereas Section 3 explains how to represent the graph which is the basic98

input data for our algorithm. Then, the optimization problem is analytically99

formulated in Section 4 as two ILP problems, using two different approaches, to100

study its characteristics. In Section 5 a specific algorithm for the problem is de-101

signed and implemented in the form of a branch and bound algorithm, and some102

efficient pruning and lower bounding strategies are proposed. Section 6 shows103

some practical experimental results on realistic graphs, followed by conclusions104

in Section 7.105

2. Related work106

Sensing technologies are more and more used in agricultural applications to107

perform crop monitoring [11, 12]. For instance, imaging sensors in the visible108

spectrum [13] or at other wavelengths [14] are often used. Image data can then109

be elaborated to detect cultivation type, e.g., vineyard [15], or to detect single110

plants and potential anomalies [16]. A more comprehensive overview of such111

technologies can be found in [17].112

5

Potential issues can be identified and transformed into a set of POIs so that,113

on the basis of the cultivation map, a UGV can move in such positions in order114

to perform a more detailed analysis, e.g., taking closer pictures or perform local115

measures with sensors, to later perform some specific physical action [18, 19].116

For the purpose of solving the UGV movement problem, the cultivation field117

can be abstracted in the form of a graph with nodes (i.e., the POIs) connected118

by edges whose weight represent the cost, in terms of time, needed to move from119

one point to the other.120

Graph visiting problems have been well investigated from the theoretical121

point of view. The travelling salesman problem (TSP) or more in general the122

vehicle routing problem (VRP) and some variants have been intensively studied123

in literature [20, 21, 22, 23, 24, 25]. In short, they consider a set of vehicles124

that can transport goods and a graph whose nodes represent a set of customers,125

each one characterized by a given demand. Each edge represents the cost that126

should be sustained to move from a customer to another. The VRP aims at127

determining which customers should be served by any vehicle and the schedule128

of the operations of any vehicle in order to minimize the total cost satisfying129

the capacity constraint of each vehicle and the demand of each customer. In130

case of a single vehicle, the problem is reduced to the TSP.131

Reducing field work time in agriculture by optimally scheduling agricultural132

tasks is often assimilated in the literature to graph visiting problem. In [26,133

27, 28] the authors explain how the VRP can be used to gain efficiency in field134

logistics. In particular in [26] the numerical experiments show that it is possible135

to save up to 32% of the time if the operations are guided by the solution of136

the proposed VRP instead of an intuitive approach. The TSP is used in [29] to137

schedule the farming activities in fields characterized by the presence of a large138

number of obstacles.139

While the goal of these works is to minimize the time needed to complete140

the assigned farming tasks, similarly to our navigation problem, nevertheless141

they are substantially different in the fact that they do not consider the com-142

munication aspect and thus the interaction with an external decision maker,143

6

e.g., a human operator or any other external tool, whose presence coordinates144

the operations and addresses critical situations.145

Some VRP variants are somehow more similar to our case, for instance the146

so called vehicle routing problem with intermediate stops (VRP-IS) [30]. An147

intermediate stop (IS) is a stop that occurs at a node whose visit is neces-148

sary to keep the vehicle operational or to perform any other action necessary149

to pursuit the main task assigned to the vehicle. ISs have been considered150

for replenishment [31], unloading of waste [32], refueling [33, 34], rest [35] and151

synchronization requirements [36]. Similarly to the VRP-IS, our problem con-152

siders, besides the POIs where physical actions are required, the points covered153

by wireless network where the UGV might stop to transfer the data collected154

until that point and get instructions about the correct actions to perform later155

at the POIs. In our problem the UGV is hence constrained to visit each POIs156

again once the data acquired during the first visit have been transmitted. This157

clearly introduces further constraints compared to the cited works.158

The more practical problem of computing the exact physical path corre-159

sponding to each edge in our graph is addressed in the robotics research field160

by works focusing on robot navigation problems. For instance, one of the most161

common problems is the so-called path-planning, in which a trajectory must be162

computed so that a robot can move to a certain target position while fulfilling163

certain constraints, i.e., avoiding obstacles and forbidden or dangerous condi-164

tions [37, 38, 39]. More complex constraints can be taken into account, e.g., the165

slope of the terrain, as in [40] that presents the case of a UGV that needs to166

visit all the rows in a vineyard.167

Once edge weights and node positions are known, our problem resembles168

(but it is not the same) the Steiner TSP (STSP) [41]. Given a graph, a cost for169

each edge of the graph and a subset of nodes that represent customers, the STSP170

aims at finding the minimum-cost tour that passes through each customer node.171

Edges may be traversed more than once, and nodes visited more than once, if172

necessary. Such a problem, despite being somehow similar to ours, presents an173

important difference. In that problem, all clients have to be visited at least174

7

once. In ours, we require to visit at least twice the POI nodes making sure that175

at least one of the visits at a given POI occurs after the transmission of the176

related information. This further increases the complexity, since time variables177

need to be introduced in order to manage the chronology of the tasks.178

3. Graph representation179

In our work we assume that a picture has been used to derive a graph that180

represents the field in which the UGV must operate. The task of creating a181

graph from a picture by detecting the different types of areas and how they are182

connected and which is the optimal movement path between different areas is183

a problem well addressed in literature (see [42, 43, 44, 45]). Therefore, here184

we assume that such a graph is available. In more details, in our scenario185

the graph includes nodes, which correspond to physical locations in the terrain.186

Such nodes are connected with edges whose weight represents the cost of moving187

from one node to the other. Obstacles and possible movement paths are already188

modeled in such weights.189

Concerning nodes, they can be classified into three types.190

• Type A: The nodes that we want to visit, in which a physical operation191

has to be performed by the robot.192

• Type B: The nodes in which we are sure that wireless communication193

can be established in order to both transmit the information collected194

at previous ‘A’ nodes and receive instructions about what to do in those195

nodes.196

• Type AB: The nodes with the characteristics of both ‘A’ and ‘B’. When197

visited, the physical operation can be immediately performed after data198

communication has taken place, since it is possible to immediately com-199

municate and receive instructions.200

Detecting ‘A’ nodes heavily depends on the specific task to do (e.g., detecting201

potential weeds, or places where plant pruning operations might be necessary).202

8

The same applies for ‘B’ nodes, in which wireless communication models, com-203

bined with the terrain geography can be used to determine the possible coverage,204

or maybe the information is simply available from a previous survey.205

4. Mathematical formulations206

In this section two alternative models of the problem are presented. Both207

models need to address the problem of modeling the movements of the UGV208

that needs to traverse nodes and edges an unknown number of times. The first209

formulation addresses the issue by means of an ordered set of displacements (i.e.,210

a movement from a node to another) that the UGV must follow to complete211

the required tasks. In this formulation the UGV can pass more than one time212

on the same node, whereas in the second model this condition is considered by213

means of dummy vertices (i.e., replica nodes to consider multiple visits).214

4.1. Displacement-based formulation (Model I)215

Let us define the following elements:216

• A: the set of nodes to visit (Type ‘A’ or ‘AB’)217

• B: the set of nodes where wireless communication can be established (Type218

‘B’ or ‘AB’)219

• V = A ∪ B set of all nodes220

• K: the set of displacements of the UGV221

• E : the set of edges connecting the different nodes222

• A,B,E and K respectively the cardinality of A,B,E and K223

• s the depot node or the central location224

• tij : the time required to cover the edge (i, j) ∈ E225

• xkij : a boolean variable equal to 1 if during its k-th displacement the UGV226

moves along the edge (i, j) ∈ E227

9

• yki : a boolean variable equal to 1 if during the k-th displacement the UGV228

transfers the data collected from the node i ∈ A229

The problem is formulated as follows

min
x,y

∑
k∈K

∑
(i,j)∈E

xkijtij (1)

st:230

∑
{j∈A∪B:(s,j)∈E}

x1sj =
∑

{i∈A∪B:(i,s)∈E}

xKis = 1, (2)

∑
(i,j)∈E

xkij = 1 ∀k ∈ K, (3)

∑
k∈K

yki = 1 ∀i ∈ A, (4)

∑
k∈K

∑
{i∈A∪B:(i,j)∈E}

xkij ≥

 2 ∀j ∈ A \ B,

1 ∀j ∈ A ∩ B,
(5)

xk−1ij ≤
∑

{i∈A∪B:(j,i)∈E}

xkji ∀(i, j) ∈ E ∀k ∈ (K \ {1}), (6)

yki ≤
∑

{j∈B:(i,j)∈E}

xkij ∀i ∈ A ∀k ∈ K, (7)

ykj ≤
∑

1≤t≤k

∑
{i∈A∪B:(i,j)∈E}

xtij ∀j ∈ A ∀k ∈ K, (8)

ykj ≤


∑

k+1≤t≤K

∑
{i∈A∪B:(i,j)∈E}

xtij ∀j ∈ A \ B ∀k ∈ K \ {K},

0 ∀j ∈ A \ B , k = K

(9)

xkij ∈ {0, 1} ∀(i, j) ∈ E ∀k ∈ K, (10)

yki ∈ {0, 1} ∀i ∈ A ∀k ∈ K, (11)

10

Eq. (1) requires the minimization of the total time required to perform all231

the operations, Eq. (2) imposes that the path of the UGV should start and232

end at the depot. The constraints in Eq. (3) ensure that each displacement233

of the UGV corresponds to one edge in the solution and Eq. (4) requires that234

the data collected from any node i ∈ A are transmitted once and only once.235

The constraints in Eq. (5) ensure that the UGV visits, i) at least twice, the236

nodes of interest in the set A \ B where it is not possible to communicate and237

ii) at least once, the other nodes of interest in the set A ∩ B. Eq. (6) are flow238

conservation constraints. The fact that the UGV might transfer from a node239

only if such node belongs to the set B is given by Eq. (7). Eq. (8) requires that240

the UGV transfers the information related to a given node in the set A only if241

such node has already been visited, Eq.(9) requires that, once the information242

corresponding to the visit of a node in the set A\B where communication is not243

possible has been transmitted, the UGV must visit the node again once more.244

Finally Eq. (10) and Eq. (11) ensures that the variables of the optimization245

problem have a binary value.246

One of the main reason of the complexity of the problem in Eq. (1)-(11) is247

that it includes the parameter K whose value is unknown a priori. K actually248

represents the number of displacements the UGV needs to perform before com-249

pleting the required tasks. This issue could be solved by assigning a very large250

value to K and allowing the UGV not to move to a new node to match the K251

value. Unfortunately, the number of binary variables in the problem increases252

with K, therefore the complexity of the problem easily increases. On the other253

hand, if the value of K is underestimated the problem might become infeasible or254

the model may lead to a feasible solution that is not the optimal one. Another255

alternative to tackle such difficulty could be the column generation approach256

(CGA) whose implementation requires to formulate a restrictive master prob-257

lem (RMP) associated with the problem in Eq. (1)-(11) and progressively add258

new columns and thus new variables to the RMP until the minimum number of259

variables necessary to get the optimal solution is reached. More details about260

the CGA can be found in [46, 47]. The main drawback of this approach is the261

11

difficulty of getting a RMP associated with a given integer linear programming262

problem that guarantees both the effectiveness and the efficiency of the CGA.263

The minimum value for K needed to obtain the optimal solution is strongly264

related to the topology of the underlying graph of the problem, nevertheless the265

following proposition holds:266

Proposition 4.1. Let L denote the number of edges that constitutes the short-267

est path between a pair of nodes in V having the largest number of edges and AB268

the cardinality of A∩B. If K ≥ L(3A− 2AB+ 1) then the solution provided by269

the model in Eq. (1)-(11) is the optimal one.270

Proof First, consider the case in which the graph is complete and thus L = 1.271

Denoting by Ni the total number of times the UGV visits and leaves a node272

i ∈ V before any solution is found, it follows that273 ∑
i∈V

Ni = 2K. (12)274

Since each node a ∈ A \ B has to be visited twice and that since the graph is275

complete, extra visits cannot occur in a, therefore276

Na = 4. (13)277

Furthermore, a node b ∈ B is visited to transmit the data collected at one or278

more nodes a ∈ A, hence279 ∑
b∈B

Nb ≤ 2A. (14)280

Using (13) and (14) and considering that the UGV needs to leave the depot s281

and return back there at the end of the tour (thus 2 more displacements are to282

be added to Ns):283

2K =
∑
i∈V

Ni =
∑

a∈A\B

Na +
∑
b∈B

Nb ≤ 4(A−AB) + 2A+ 2 = 6A− 4AB + 2284

Hence if K ≥ 3A− 2AB + 1 any feasible solution will be explored. In the more285

general case in which the graph is connected but not complete, extra visits to286

a given node than those needed for data collection, transmission or to perform287

12

some action are expected to occur. For instance the UGV might move from a B288

node to another B node to reach an A node. By definition of L, any operation289

requiring a single displacement, when the graph is complete, can be performed290

after at most L displacements of the UGV in case the graph is connected but291

not complete. Hence, all the feasible solutions will be examined if292

K ≥ L(3A− 2AB + 1). (15)293

294

4.2. Dummy-Vertices-Based formulation (Model II)295

In this section, we explore an alternative formulation of the problem. Fol-296

lowing the approach of [34] we use the so-called dummy vertices to take into297

account that vertices can be visited more than once. Let us define the following298

elements:299

• d the number of dummy replications of each vertex300

• Vd set of all vertices including the dummy vertices301

• Ed set of all edges including the dummy edges302

• Di = {i1, i2, . . . , id} set of the d dummy vertices associated with the vertex303

i ∈ V, e.g., s1 and sd are respectively the first and the last dummy vertex304

associated to the depot s305

• xij=1 if the arc (i, j) ∈ Ed is in the solution and 0 otherwise306

• τi the time at which the vertex i ∈ Vd is visited307

• yij =0 if τj /∈ [τi1τid] ∀i ∈ A \ B, j ∈ Bd308

• T = d
∑

(i,j)∈E tij309

The problem can then be alternatively formulated as follows:

min
x,y

∑
(i,j)∈Ed

xijtij (16)

13

st:310

∑
i∈Vd,(i,j)∈Ed

xij ≤ 1 ∀j ∈ Vd (17)

∑
j∈Vd,(i,j)∈Ed

xij −
∑

j∈Vd,(i,j)∈E,

xji = 0 ∀i ∈ Vd, i 6= s1, i 6= sd (18)

∑
i∈Vd,(i,j)∈Ed

xij ≥ 1 ∀j ∈ A ∩ B (19)

∑
j∈Vd,(j,i1)∈Ed

xji1 ≥ 1 ∀i ∈ A \ B (20)

∑
j∈Vd,(j,id)∈Ed

xjid ≥ 1 ∀i ∈ A \ B (21)

τik + T

1−
∑

j∈Vd,(j,i)∈Ed

xjik

 ≥ τi1 ∀i ∈ A \ B, k = 1, 2, . . . , d (22)

τik − T

1−
∑

j∈Vd,(j,i)∈Ed

xjik

 ≤ τid ∀i ∈ A \ B, k = 1, 2, . . . , d (23)

∑
j∈Bd

yij ≥ 1 ∀i ∈ A \ B (24)

∑
i∈Vd,(i,j)∈Ed

xij ≥ ykj ∀j ∈ Bd, k ∈ A \ B (25)

τi1 − T (1− yij) ≤ τj ≤ τid + T (1− yij) i ∈ A \ B, j ∈ Bd (26)

τi + tijxij − T (1− xij) ≤ τj (i, j) ∈ Ed (27)

∑
j∈Vd,(j,s1)∈Ed

xs1j = 1 (28)

14

∑
j∈Vd,(j,sd)∈Ed

xjsd = 1 (29)

τs1 − T

1−
∑

i∈Vd,(i,j)∈Ed

xij

 ≤ τj ≤ τsd + T

1−
∑

i∈Vd,,(i,j)∈Ed

xij


j ∈ Vd, j 6= s1, j 6= sd

(30)

xij ∈ {0, 1} (i, j) ∈ Ed (31)

yij ∈ {0, 1} i ∈ A \ B, j ∈ Bd (32)

τi ∈ [0,+∞) i ∈ Vd (33)

The model can be interpreted as follows. The minimization of the time311

required to complete the tour is expressed in (16). The constraints (17) state312

that any dummy node should be visited at most once. Constraints (18) establish313

flow conservation by requiring that the number of incoming arcs of each node314

(except the vertices s1 and sd) is equal to the outgoing ones. Constraints (19)315

enforce that each node of type AB is visited at least once. The constraints (20)-316

(23) handle the two visits needed in each node of type A where data transmission317

is not allowed. In fact ∀i ∈ A\B it is required that the associated dummy nodes318

i1 and id should be visited. Furthermore, the first and the last visit in i should319

occur using respectively i1 and id. Constraints (24)-(25) ensure that the data320

collected in each node i ∈ A\B are transmitted from some node j ∈ Bd before the321

last visit to node i occurs, while (26) models the relation between the variables322

yij , τj , τi1 , τid . Time constraints are expressed in (27). The constraints (28)-323

(29) enforce the connectivity between the starting location and the other nodes.324

Constraints (30) require that the tour starts and ends at the depot s. Finally,325

(31)-(33) determine the domain of the decision variables.326

15

5. Proposed solution327

To avoid an unreasonable increase in the number of decision variables, we328

propose to employ a graph visiting algorithm coupled with a branch and bound329

approach so that all possible solutions are explored while complexity is mini-330

mized. For the sake of convenience we remind the goal of the problem. Starting331

from the depot s, the UGV must visit every node a ∈ A, acquire some data,332

find a location b ∈ B where the data can be sent, receive instructions, go back333

to a, perform the required task and, at the end, return back to s spending the334

lowest possible amount of time.335

Let us denote by a1,a2,. . . , aA the A nodes to be visited. While the UGV is336

moving through the graph, the state of the UGV itself is completely defined by337

S = (n1, n2, . . . , nA, u, c)338

where u is the node the UGV is visiting, c is the total cost of the edges traversed339

so far and340

ni =



0 if the node ai has not yet been visited

1 if the node ai has been visited

2 if the data associated with node ai has been transmitted

3 if the task required for the node ai has been performed

341

Definition 5.1. The state S = (n1, n2, . . . , nA, u, c) is said to be a feasible so-342

lution of the problem if u = s and343

ni = 3 ∀i ∈ {1, 2, . . . , A}344

The state S = (n1, n2, . . . , nA, u, c) is branched taking into consideration all345

possible displacements of the UGV from the node u to any other node connected346

to u by one edge and this leads to the construction of the state tree as illustrated347

in Example 5.1.348

Example 5.1. Consider the network in Fig. 1 in which the node a1 ∈ A \ B,349

a2b2 ∈ A ∩ B, s ∈ B and b1 ∈ B. The network shows two nodes of interest350

16

sstart

a1

b1

a2b2

2

5

4

10

4

Figure 1: Network of the example 5.1

(0, 0, s, 0)

(1, 0, a1, 2)

(2, 0
, s, 4

)

(2, 0
, b1,

4)

(0, 0, b1, 5)

(1, 0
, a1,

9)

(0, 3
, a2b2

, 9)

(0, 3, a2b2, 10)

(0, 3
, s, 2

0)

(0, 3
, b1,

14)

Figure 2: State tree of the example 5.1

a1 and a2b2 and hence the generic state is given by (n1, n2, u, c) in which n1351

and n2 are associated with a1 and a2b2 (see Eq. (5)) In Fig. 2 we represent352

part of the tree of the states that are generated by the algorithm. The root of353

the tree is the state (0, 0, s, 0) corresponding to the initial location. From node354

s, if the UGV moves to the node a1, n1 takes value 1 and the new state will355

be (1, 0, a1, 2); if the UGV moves to node b1, the new state will be (0, 0, b1, 5).356

Finally, if the UGV moves to node a2b2, since communication is possible there,357

the UGV will send the corresponding information and then it will perform the358

required task. Hence n3 will assume value 3 and the state will be (0, 3, a2b2, 10).359

Such reasoning is applied recursively to all the newly generated states. Figure 2360

shows also the next expansion for the next level of the visit.361

The algorithm implements two main operations: branch and bound. The362

17

first one (branch) consists in expanding the state tree by generating new states363

from its leaves, as illustrated in Example 5.1, and the second one (bound) con-364

sists in reducing the state tree by means of a pruning procedure that terminates365

the visit on the leaves of the state tree that can not lead to the optimal solu-366

tion. The decision on what leaf can or can not lead to an optimal solution, i.e.367

pruning, is based on the following two rules:368

1. If the lower bound associated with any state among those to be expanded369

(the leaves) is greater than the cost of any already computed feasible370

solution, such state is closed, i.e., it is no more considered for branching.371

2. If any state among those to be branched differs from a state S already372

reached just for its cost, such state is closed if its cost is greater than the373

one of S.374

In order to derive a lower bound associated with a state S = (n1, n2, . . . , nA, u, c),375

first let us consider the set376

VS = {a ∈ A | na 6= 3}.377

At the state S, each node a ∈ VS \ B such that na = 0 is still to be visited378

at least twice and those with na = 1 or na = 2 should still be visited at least379

once. Thus, in (34), each node a ∈ VS \ B has still to be visited at least380

2−min(na, 2) times. Furthermore, each node b ∈ VS ∩ B still has to be visited381

at least once. The information acquired in each node a ∈ VS \ B has then382

to be transmitted by visiting some of the nodes b ∈ B and, finally, the UGV383

has to go back to the depot s. Since we are searching for a lower bound of384

the time needed to perform the aforementioned operations, we relax the flow385

conservation constraints, hence we assume that: i) the UGV visits and leaves386

each node j ∈ VS using the cheapest edge connected to it (mini∈V tij); ii) the387

transmissions occurs only once at some node b ∈ VS∩B if there is any, otherwise388

it occurs at the node b ∈ B that is reachable from any node that is still to be389

visited assuming to spend the smallest possible time (mini∈VS,j∈B tij); iii) the390

UGV will go back to the depot using the lowest amount of time needed to reach391

18

it from a node i ∈ VS (mini∈VS tis). Such relaxations clearly lead to a total time392

that is smaller than or equal to the time that is actually needed and hence any393

solution derived from the state S is lower bounded by394

LBS = c+

 ∑
a∈VS\B

(2−min(na, 1)) min
i∈V

tia

+

(∑
b∈VS∩B

min
i∈V

tib

)
+

(1−min(1, |VS ∩ B|)) ∗ min
i∈VS,j∈B

tij + min
i∈VS

tis.

(34)395

It is worth noting that the lower bound proposed in (34) is not particu-396

larly complex nor computationally expensive. Therefore it can be considered397

a reasonably simple example of how the proposed algorithm can be improved.398

Nevertheless, the use of such lower bound can systematically reduce the time399

needed to find an optimal solution, as shown in Section 6.400

Another example about how the proposed algorithm can be improved is to401

make available to the algorithm itself an initial feasible solution so that the402

lower bound can be effectively used right from the start. Such initial feasible403

solution is computed using a nearest neighbour algorithm that implements the404

steps in Algorithm 1.405

Algorithm 1 Compute Initial Feasible Solution

1: run the Bellman Ford algorithm to find the shortest path between each pair

of nodes (i, j), j ∈ V, i ∈ V and its total cost cij ;

2: T = A, C=0;

3: find the node â ∈ T such that csâ = mina∈A csa and set C = C + csâ

4: T = T \ {â}

5: if T 6= ∅, find the node b ∈ T such that câb = mini∈T câi; set C = C + câb,

let â = b, go back to step 4.

6: find the node i ∈ B such that câi = minj∈B câj ; set C = C + câi

7: C = 2C

8: return C

The underlying idea is the following: starting from the depot s, the UGV406

chooses and visits the closest type A node (i.e., the one reachable in the lowest407

19

possible amount of time); then, from that node, it selects the next node in the408

set of those to be visited using the same criteria; this process is repeated until409

all nodes of type A are visited. Then, a type B node is visited to transmit the410

acquired data. Finally, all the nodes are visited again following back the path411

used for data collection, i.e., the cost is doubled. Clearly, this is not the best412

solution, but it is a value that can be immediately compared with the computed413

lower bound also in the initial phases when a feasible solution would not be414

available otherwise.415

Also, another important factor to consider in order to make the algorithm416

faster is that while expanding the state tree, leaves can be considered in several417

different orders by means of a priority value. The simplest strategy to assign418

such a value is to use a monotonically decreasing value each time a new leaf419

is created. In such a way leaves are considered in creation order. Other more420

advances strategies are possible and they will be presented and investigated in421

Section 6.422

When branching a leaf S, it may happen that all the states generated from S423

are canceled when the two pruning rules are applied. In this case S is closed and424

no more considered. Note that closed states also include feasible solutions which425

clearly do not need to be further expanded. The expansion of the state tree and426

the pruning procedure are then iteratively applied until all the leaves of the427

state tree are closed. In order to formally present the algorithm we introduce428

the following definitions:429

• G the graph associated with the problem;430

• ST the state tree;431

• NU the number of nodes adjacent to node U in the graph G;432

• Lg the list of all new states generated when branching the leaf having433

highest priority;434

• Lp the list of all the states in Lg that are not pruned after the function435

Prune() has been called;436

20

• F the list containing the closed states;437

• {} the empty list438

• Pop(L) a function that takes as input a list of states and returns the state439

S with highest priority;440

• Branch(S,G) a function that takes as input a state S = (n1, n2, . . . , nA, U, C)441

and the graph, branches the received state and returns a list of NU states,442

one for each of the adjacent nodes to U (see Example 5.1);443

• Insert(Lp,ST) a function that inserts in the state tree the list of states444

received as input;445

• Prune(ST ,Lg) a function that takes as input the state tree ST and the446

list of newly generated states Lg then eventually prunes some states from447

ST and Lg according to the aforementioned pruning rules and returns the448

list of remaining states from Lg;449

• GetSolution(ST) a function that extracts from the state tree the branch450

that leads to the leaf state that is a feasible solution with the minimum451

cost.452

The algorithm consists of the steps defined in Algorithm 2.453

It is worth noting that the proposed algorithm solves the problem without454

making any assumption neither on the value of K nor on the number of dummy455

vertices associated with each node. The value of K can be simply computed at456

the end by just counting the number of displacements performed by the UGV.457

21

Algorithm 2 Compute Optimal Path

ST = {(0, 0, . . . , S, 0)}

F = {}

while ((S = Pop(ST \ F)) 6= {}) do

Lg = Branch(S,G)

Lp = Prune(ST ,Lg)

if (Lp == {}) then

F = F ∪ S

else

Insert(Lp,ST)

end if

end while

Sol = GetSolution(ST)

6. Numerical results and discussion458

The numerical experiments conducted in this section aim at comparing the459

complexity of solving the problems using both the integer and mixed integer460

linear programming problems represented respectively by Model I and Model II461

and our proposed algorithm.462

Two sample graphs are shown respectively in Fig. 3 and Fig. 4. A different463

labelling has been adopted for these graphs in order to make them more readable464

when superimposed on a map. Here we use symbols instead of letters:465

• the squares represent nodes of type A466

• the diamonds represent nodes of type B467

• the stars represent nodes of type AB468

While Fig. 3 is a simple example drawn up from scratch, the graph in Fig. 4469

represents a more realistic case that has been obtained by mapping a vineyard470

of the Langhe area in Piedmont (Italy) on an undirected graph with 33 nodes471

and 39 edges representing the paths across the 9 rows of the vineyard.472

22

First, in order to quantify how the effectiveness and efficiency of Model I is473

affected by the value of K, we first find the lowest value of K that yields the474

optimal solution in Model I by running our branch and bound algorithm. Then,475

Model I is solved by means of the integer linear programming solver available in476

the CPLEX software [48] using different estimations of K including the previous477

one. We remind that the number K of displacements of the UGV required to478

perform all the tasks in the shortest possible time is dependent on the topology479

of the considered graph. Choosing K according to (15) guarantees to find the480

optimal solution. However, to explore the performance provided by commercial481

solvers such as CPLEX, we tested different K values. To better quantify the482

different amount of time required as a function of K, we propose to evaluate483

the following ratio:484

ρ =
TK
Topt

485

where TK and Topt are the times required by CPLEX to solve the problem using486

a certain value of K and the lowest K value that yields the optimal solution,487

respectively. Table 1 presents the results obtained for the graph in Fig. 3.488

The experiments have been performed using IBM ILOG CPLEX Optimization489

Studio 12.9.0.0 on a Dell PowerEdge T640 with an Intel Xeon 4114 2.2 GHz 64490

bit deca-core processor and 32 GB of DDR4 2400 MT/s memory. If K is less491

than 18, i.e., the lowest value that allows to compute the optimal solution, the492

CPLEX solver either finds a cost higher than the optimal one or no solution at493

all. When K = 18, the CPLEX solver finds the optimal solution, as expected.494

A rather small overestimation of K, e.g., K = 22 instead of K = 18, makes495

CPLEX about 7 times slower, and even worse for higher values.496

To present a more comprehensive set of results, we now focus our attention497

on the topology in Fig. 4 which is far more complex than the one in Fig. 3. Due498

to our interest in the agricultural application, this topology will be taken as499

the basis to randomly generate many different graphs with a variable number500

of nodes to visit and thus different complexity. In practice, starting from the501

full graph, some of its type A nodes are transformed into “transit” nodes in502

23

Figure 3: Sample graph drawn from scratch to mimic a possible field. Here the nodes represent:

POIs that need to be visited (squares), places where it is possible to communicate (diamonds),

or locations that are both (stars).

K TK (s) ρ Cost

underestimation 10 2.16 0.12 –

of the K value 12 3.88 0.22 –

15 6.17 0.36 100

K optimum value 18 17.33 1.00 94

overestimation 20 40.05 2.31 94

of the K value 22 120.01 6.92 94

> 25 > 1000 > 57.70 94

Table 1: Time (TK) taken by the CPLEX solver for the graph in Fig. 3 for different K values

in Model I.

which the UGV must not perform any operation (they are neither of type A or503

B or AB). Also, in all experiments, the time required to cover an edge (tij) is504

directly proportional to the length of the edge itself.505

More precisely, Table 2 and 3 report the time taken by CPLEX to find506

the optimal solution using Model I and Model II, for different combinations of507

number of labelled nodes N (hence the sum of A, B and AB nodes) and position508

of such nodes. When CPLEX exceeded the given time limit of two hours, we509

report a percentage in brackets (instead of the duration of the computation)510

that represents how much the best solution found by the model exceeds the511

24

Figure 4: Undirected graph that represents the available paths for the UGV on a real vineyard.

Nodes are marked as described in Fig. 3 and represent the type A,B,AB nodes with the

addition of some “transit” nodes marked as empty circles.

optimal solution. Also, note that all the values shown in the tables have been512

obtained in the best possible conditions, i.e., when the value of K leading to513

the optimal solution is known (for Model I) and when the number of dummy514

vertices to use is known (for Model II).515

The results in Table 2 and Table 3 show that Model II performs better than516

Model I almost all the times. For Model I the execution time is quite large and517

can exceed the given time limit also for relatively small graph instances. Both518

models, when interrupted after two hours of computation, are able to provide519

an intermediate best solution that in some cases is very close to the optimal520

one, but that tends to derive more and more for complex graph instances. Our521

proposal, instead, is always able to compute a solution in the given time limit522

25

N #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

11 14.76 493.69 0.77 83.87 0.96 469.49 3.82 (7.30%) (3.11%) (1.02%)

12 2319.38 2.60 1647.31 4.35 1647.31 4.35 3.52 (7.30%) (0.00%) (2.18%)

13 7.61 40.61 4090.54 823.92 346.69 7.34 (7.47%) (4.57%) (0.54%) (0.00%)

14 4670.32 18.86 856.01 (7.59%) (0.61%) (1.56%) (8.47%)(14.97%) (3.39%) (5.26%)

15 1723.71 2057.74 4100.92 429.9 (0.00%) (0.00%) (0.00%)(14.33%)(30.49%) (5.72%)

16 2700.44 3920.32 (3.83%) (3.38%) (0.00%) (7.02%) (2.25%)(11.34%) (8.18%) (6.87%)

17 (34.07%)(3.33%)(14.74%)(38.41%) (6.06%)(35.94%)(37.23%)(27.65%)(39.01%)(53.03%)

18 (34.11%)(8.96%) (9.21%)(25.69%)(11.24%)(28.14%)(36.87%)(55.70%)(29.28%)(18.50%)

Table 2: Time (s) required to solve Model I with a time limit of two hours. For each number

of nodes N , ten problem instances (#1 ... #10) have been randomly generated. When the

time limit has been reached we report, in brackets, how much the best solution found by the

model exceeds the optimal one.

N #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

11 5.73 8.79 4.78 40.25 3.56 12.55 1.47 32.55 30.45 12.77

12 21.04 7.58 8.90 27.78 8.90 27.78 8.40 17.34 43.07 19.14

13 10.93 38.17 44.28 12.31 7.40 7.32 49.01 137.86 5.31 39.72

14 24.87 483.22 14.37 82.69 46.27 114.50 116.87 54.01 32.55 597.56

15 10.63 133.05 138.65 2570.43 234.08 770.36 97.99 217.67 532.98 1327.23

16 27.95 21.52 454.72 436.22 474.42 262.23 1757.05 1229.74 1237.98 (0.00%)

17 207.71 3261.04 626.26 1653.33 2485.79 (11.45%) (18.56%) (7.34%) (22.15%) (8.51%)

18 412.53 1058.85 2258.76 (11.02%) (9.62%) (12.41%) (10.20%) (12.41%) (9.47%) (22.74%)

Table 3: Time (s) required to solve Model II with a time limit of two hours. For each number

of nodes N, the same ten instances of Table 2 have been used. When the time limit has been

reached we report, in brackets, how much the best solution found by the model exceeds the

optimal one.

and, when the CPLEX Model II is able to find a solution, performs 20 to 30523

times faster than that.524

Regarding our proposed algorithm, four cases have been considered. They525

are named normal, reduced, advanced, and lower bound in the following. The526

normal approach corresponds to the algorithm that runs on the graph as built527

from the real sample vineyard shown in Fig. 4. In such a graph we have reported528

also some additional nodes (marked as circles in the figure) to represent the path529

of the UGV in the vineyard and not only the connections between the nodes530

of type A, B, AB. We define such nodes as “transit” nodes because in our531

26

algorithm, when such nodes are visited, the state remains unchanged except532

for the cost of the path that is updated consequently. Clearly, introducing new533

nodes into a graph increases the total number of nodes which has a direct impact534

on the problem’s complexity.535

Therefore, in order to minimize the complexity, the graph from Fig. 4 can be536

reduced by producing an equivalent “reduced” graph that has less nodes because537

all the nodes that are just transit nodes have been substituted by direct edges538

between the adjacent nodes, so that the same topology is maintained but the539

number of nodes is reduced. This is referred to as the reduced approach in the540

latter, which always runs on the “reduced” graph version.541

The advanced approach is similar to the reduced approach, i.e., it runs on542

the “reduced” graph, but the priority value described in Section 5 has been543

changed. The priority is set to the inverse of the cost of the state (named544

costonly in the following) thus the state tree is always expanded from the leaf545

state with the lower cost. Following the minimum cost path, and not a path546

given by the ordering of the nodes, the pruning function is more efficient and a547

larger number of states are discarded by the prune rules because the algorithm548

already found an equivalent state with a lower cost.549

Finally, the lower bound approach works as the advanced one but at each550

new state it computes a lower bound, as previously described in Section 5, to551

prune branches faster, hence to reduce execution time.552

Results are reported in Table 4 as the average on 50 different random graphs,553

for different numbers of nodes N . As it might be expected, the complexity scales554

exponentially with the number of nodes to be visited (i.e., transmitted and re-555

visited). However, the cost of finding the optimal solution is heavily reduced556

if the advanced approach is employed. In fact, in the reduced approach, every557

time a new node to be visited is added to the graph, the size of the state tree is558

increased by a factor of 4.40, while in the advanced approach only by a factor559

of 3.71. Here the ST size corresponds to the number of nodes in the state560

tree as defined in Section 5. This value equals the number of times the loop561

in Algorithm 2 is run, thus it is directly proportional to the average execution562

27

normal reduced advanced lower bound

N ST size time ST size time ST size time ST size time

11 52529 3.0 5879 0.5 1121 0.1 852 0.1

12 258049 15.2 34623 3.7 4275 0.5 3222 0.4

13 979446 60.4 158299 16.8 16957 1.9 12842 1.7

14 4018175 267.7 715881 76.2 65044 8.1 45478 6.3

15 14663488 1014.4 2789828 279.7 245102 30.1 164629 21.8

16 55298726 4135.3 12438650 1308.6 988588 128.0 625578 86.7

17 - - 57007645 5906.8 3631947 475.6 2866574 407.4

18 - - - - 10687414 1388.2 7998251 1127.1

Table 4: Complexity of the various approaches, in terms of number of nodes in the state tree

(ST size) and execution time (seconds). Each row reports the average on 50 different random

instances, for different numbers of nodes N .

time, also shown in Table 4. Additional time reductions are possible if lower563

bound techniques are used to prune states faster while exploring them, as done564

by the lower bound approach, or if an initial feasible solution is provided right at565

the start of the algorithm. While the lower bound consistently allows to reduce566

the computation time with all the instances, the initial solution does not always567

provide a significant gain because the priority used to visit the nodes is already568

based on a minimum cost criterion.569

To better visualize the data, we also plot the time (on a logarithmic scale) as570

a function of N in Figure 5. It is clear that the best approach is the lower bound571

one, which can consistently outperform the others, keeping approximately the572

same distance from the advanced one in terms of relative time reduction, which573

is about 20%. We did not test graphs with more than N = 18 because in574

that case also our algorithm would have rapidly exceeded the two hours time575

bound we used for the experiments. In fact, the exponential trend at which the576

computation time increases can be clearly deduced from Figure 5.577

Table 5 shows the individual times required by the best variant (lower bound)578

28

11 12 13 14 15 16 17 18

10−1

100

101

102

103103

N

T
im

e
(s

)

normal
reduced

advanced
lower bound

Figure 5: Time required by the different approaches of our proposed algorithm, as a function

of the number of nodes N .

of our proposed algorithm for each number of nodes N , on the same ten different579

randomly generated graphs as in Table 2 and 3. It is clear that our algorithm580

provides lower execution time. Moreover, it does not require to estimate any581

other parameter to be fed as input as it happens for Model I and Model II.582

Despite the execution time of the ILP formulations can, occasionally, be some-583

how close to the one of our algorithm, Table 5 clearly shows that our algorithm584

exhibits much more consistency across different problem instances, which is not585

the case for the ILP formulations. For example, the CPLEX solver using Model586

II happens to exceed the given two hours time bound starting from N = 16587

and at more than half of the times for the more complex graph instances. For588

the less complex instances we computed that, on average (over the 50 tested589

instances), our proposed algorithm is about 20 to 30 times faster as it can be590

seen also by comparing the results for the few instances presented in Table 3591

and 5.592

Note also that our algorithm has been implemented, to speed up develop-593

ment, in the python scripting language, which is not particularly optimized for594

speed. Therefore the shown time difference could potentially be improved by595

29

N #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

11 0.09 0.12 0.09 0.06 0.10 0.07 0.08 0.11 0.11 0.12

12 0.38 0.37 0.45 0.46 0.45 0.46 0.36 0.42 0.48 0.48

13 1.25 1.07 1.65 2.03 1.88 1.54 1.41 1.82 2.36 2.19

14 6.94 7.67 6.73 8.13 5.09 7.41 6.42 9.97 6.43 4.60

15 21.65 16.52 17.45 22.96 19.00 21.05 17.31 22.87 29.73 29.83

16 83.43 66.34 82.52 107.13 114.55 76.65 81.24 94.96 76.73 86.66

17 411.03 507.35 352.81 328.25 391.64 446.76 409.63 303.40 404.87 449.02

18 1057.29 1067.60 905.80 1374.41 1371.11 1432.13 872.12 1200.19 1232.31 1054.64

Table 5: Time (s) required to solve the problem using the best variant of the proposed

algorithm (with lower bounds). For each number of nodes N, the same ten instances of

Table 2 have been used.

rewriting our algorithm in native code.596

Note that in this work we always focused on finding the guaranteed opti-597

mal solution to the problem. In fact, also with the advanced and lower bound598

approaches, the optimality of the solution is preserved.599

In order to present a more comprehensive view of the algorithm, we also600

investigated how fast the algorithm converges towards the optimal solution.601

Therefore, knowing the cost value of the optimal solution, we plotted how far is602

the current solution at each step of the algorithm with respect to the optimal603

one. We compared two different priority functions, i.e., the costonly one which604

has just been described, and the mixed one where the priority is defined as605

follows606

πS =
1
3A

∑A
i=1 ni

c
(35)

where the state is S = (n1, n2, . . . , nA, u, c). The basic idea is that the numerator607

in (35) provides an estimation of how close a state is from a feasible solution. In608

fact, considering that ni can assume increasing values, from 0 (the initial state)609

to 3 (the final state), the higher the value of the sum, the more the visit is near610

to its completion. The 1
3A coefficient normalizes the numerator for the feasible611

30

0 0.2 0.4 0.6 0.8 1 1.2

·107

0

0.5

1

1.5

2

2.5

3

3.5

4

State tree size

D
el

ta
fr

om
th

e
o
p

ti
m

u
m

co
st

(%
)

mixed
costonly

Figure 6: Analysis of the optimality of the intermediate solutions found using two different

priority measures. The costonly measure terminates earlier with a small total state tree size,

but finds a feasible solution only at the very end of the execution. The mixed measure makes

the algorithm move faster towards a (suboptimal) feasible solution, but delays its completion.

solution to 1, since ni ranges from 0 to 3. If the next leaf to be branched is612

chosen according to (35), it is expected to reach a (somewhat “good”) feasible613

solution faster than in the case we use the costonly priority measure. That is614

because the priority value defined in (35) takes in consideration both how much615

of the visit has already been completed and how much it costs, thus it may tend616

to favour a path that completes faster the visit of the nodes, than just a path617

with the minimum cost.618

Figure 6 shows that, for the priority function in (35), with less than 1/10619

of the size of the fully grown state tree, the current solution differs from the620

optimal one only for less than 3.5%. This is an encouraging result to be explored621

in future work where more efficient heuristics could be investigated.622

7. Conclusions623

In this work we proposed an algorithm to solve the navigation problem of a624

UGV that aims to minimize the time needed to perform repeated acquisition,625

31

communication and action tasks on a predetermined set of positions. Starting626

from the graph, we proposed both a modeling approach based on integer linear627

programming, to be tackled through commercial solvers, and a branch and628

bound algorithm specifically designed for the problem. The algorithm has been629

explained in details by means of detailed pseudocode and examples. Results630

showed that the proposed algorithm is able to provide an improvement of 20 to631

30 times over commercial linear programming solvers when compared on many632

instances that can be solved to optimality in reasonable computational time.633

Tests have been conducted on both synthetically generated input data and data634

extracted from a real world case. Moreover, faster variants of the algorithm635

have also been proposed while solution optimality is maintained. While our636

proposals can help to speed up computation compared to the ILP approach,637

the complexity still increases exponentially with the number of nodes due to638

the nature of the problem. Therefore, future work will be devoted to investigate639

efficient heuristics able to find good solutions with acceptable response times,640

maybe even able to run on the robots themselves. As a first step in this direction,641

in this work we also investigated how fast the proposed algorithm converges to642

the optimal solution, providing an insight into how it is possible to extend this643

work by designing efficient heuristics.644

8. Acknowledgements645

This work has been supported in part by the Politecnico di Torino Interde-646

partmental Center for Service Robotics (PIC4SeR) https://pic4ser.polito.it.647

9. References648

References649

[1] C. Zecha, J. Link, W. Claupein, Mobile sensor platforms: Categorisation650

and research applications in precision farming, Journal of Sensors and Sen-651

sor Systems 2 (1) (2013) 51–72.652

32

[2] S. Bonadies, A. Lefcourt, S. A. Gadsden, A survey of unmanned ground653

vehicles with applications to agricultural and environmental sensing, in:654

Autonomous Air and Ground Sensing Systems for Agricultural Optimiza-655

tion and Phenotyping, Vol. 9866, International Society for Optics and Pho-656

tonics, 2016, p. 98660Q.657

[3] S. Candiago, F. Remondino, M. De Giglio, M. Dubbini, M. Gattelli, Eval-658

uating multispectral images and vegetation indices for precision farming659

applications from UAV images, Remote Sensing 7 (4) (2015) 4026–4047.660

[4] V. Lukas, J. Novák, L. Neudert, I. Svobodova, F. Rodriguez-Moreno,661

M. Edrees, J. Kren, The combination of UAV survey and landsat imagery662

for monitoring of crop vigor in precision agriculture, ISPRS-International663

Archives of the Photogrammetry, Remote Sensing and Spatial Information664

Sciences 41 (2016) 953–957.665

[5] Q. Vu, M. Raković, V. Delic, A. Ronzhin, Trends in development of UAV-666

UGV cooperation approaches in precision agriculture, in: A. Ronzhin,667

G. Rigoll, R. Meshcheryakov (Eds.), Interactive Collaborative Robotics,668

Springer International Publishing, Cham, 2018, pp. 213–221.669

[6] A. Vasudevan, D. A. Kumar, N. Bhuvaneswari, Precision farming using670

unmanned aerial and ground vehicles, in: Technological Innovations in ICT671

for Agriculture and Rural Development (TIAR), IEEE, 2016, pp. 146–150.672

[7] A. Bechar, C. Vigneault, Agricultural robots for field operations: Concepts673

and components, Biosystems Engineering 149 (2016) 94 – 111.674

[8] S. Nandi, S. Thota, A. Nag, S. Divyasukhananda, P. Goswami, A. Aravin-675

dakshan, R. Rodriguez, B. Mukherjee, Computing for rural empowerment:676

enabled by last-mile telecommunications, IEEE Communications Magazine677

54 (6) (2016) 102–109.678

[9] G. R. MacCartney, Jr., S. Sun, T. S. Rappaport, Y. Xing, H. Yan, J. Koka,679

R. Wang, D. Yu, Millimeter wave wireless communications: New results680

33

for rural connectivity, in: Proceedings of the 5th Workshop on All Things681

Cellular: Operations, Applications and Challenges, ATC ’16, ACM, New682

York, NY, USA, 2016, pp. 31–36.683

[10] L. Fotio Tiotsop, A. Servetti, E. Masala, Optimally scheduling complex684

logistics operations involving acquisition, elaboration and action tasks, in:685

Proceedings of the 5th International Forum on Research and Technologies686

for Society and Industry (RTSI), Florence, Italy, 2019, to be published.687

[11] A. Castellini, A. Farinelli, G. Minuto, D. Quaglia, I. Secco, F. Tinivella,688

EXPO-AGRI: Smart automatic greenhouse control, in: IEEE Biomedical689

Circuits and Systems Conference (BioCAS), 2017, pp. 1–4.690

[12] J. Dong, J. G. Burnham, B. Boots, G. Rains, F. Dellaert, 4D crop moni-691

toring: Spatio-temporal reconstruction for agriculture, in: 2017 IEEE In-692

ternational Conference on Robotics and Automation (ICRA), IEEE, 2017,693

pp. 3878–3885.694

[13] A. Chang, J. Jung, M. M. Maeda, J. Landivar, Crop height monitoring695

with digital imagery from unmanned aerial system (UAS), Computers and696

Electronics in Agriculture 141 (2017) 232–237.697

[14] S. Khanal, J. Fulton, S. Shearer, An overview of current and potential698

applications of thermal remote sensing in precision agriculture, Computers699

and Electronics in Agriculture 139 (2017) 22–32.700

[15] L. Comba, P. Gay, J. Primicerio, D. R. Aimonino, Vineyard detection from701

unmanned aerial systems images, Computers and Electronics in Agriculture702

114 (2015) 78–87.703

[16] J. Primicerio, G. Caruso, L. Comba, A. Crisci, P. Gay, S. Guidoni, L. Gen-704

esio, D. Ricauda Aimonino, F. P. Vaccari, Individual plant definition and705

missing plant characterization in vineyards from high-resolution UAV im-706

agery, European Journal of Remote Sensing 50 (1) (2017) 179–186.707

34

[17] A. Matese, S. F. Di Gennaro, Technology in precision viticulture: A state708

of the art review, International Journal of Wine Research 7 (2015) 69–81.709

[18] J. Das, G. Cross, C. Qu, A. Makineni, P. Tokekar, Y. Mulgaonkar, V. Ku-710

mar, Devices, systems, and methods for automated monitoring enabling711

precision agriculture, in: IEEE International Conference on Automation712

Science and Engineering (CASE), IEEE, 2015, pp. 462–469.713

[19] W. Pei, Y. Lan, L. Xiwen, Z. Zhiyan, Z. Wang, Y. Wang, Integrated sensor714

system for monitoring rice growth conditions based on unmanned ground715

vehicle system, International Journal of Agricultural and Biological Engi-716

neering 7 (2) (2014) 75.717

[20] Y. Marinakis, A. Migdalas, P. M. Pardalos, A new bilevel formulation for718

the vehicle routing problem and a solution method using a genetic algo-719

rithm, Journal of Global Optimization 38 (4) (2007) 555–580.720

[21] Z. Huang, Q. P. Zheng, E. Pasiliao, V. Boginski, T. Zhang, A cutting plane721

method for risk-constrained traveling salesman problem with random arc722

costs, Journal of Global Optimization (Sep 2018).723

[22] E. Fadda, R. Tadei, G. Perboli, L. F. Tiotsop, The multi-path traveling724

salesman problem with dependent random cost oscillations, in: Seventh725

Intl. Workshop on Freight Transportation and Logistics (ODYSSEUS),726

Cagliari, Italy, 2018, pp. 368–371.727

[23] G. Laporte, The vehicle routing problem: An overview of exact and ap-728

proximate algorithms, European Journal of Operational Research 59 (1992)729

345–358.730

[24] B. Eksioglu, A. Volkan. Vural, A. Reisman, The vehicle routing problem:731

A taxonomic review, Computers & Industrial Engineering 57 (2009) 1472–732

1483.733

35

[25] M. Salavati-Khoshghalb, M. Gendreau, O. Jabali, W. Rei, A hybrid re-734

course policy for the vehicle routing problem with stochastic demands,735

EURO Journal on Transportation and Logistics (2017) 1–30.736

[26] H. Seyyedhasani, J. S. Dvorak, Using the vehicle routing problem to reduce737

field completion times with multiple machines, Computers and Electronics738

in Agriculture 134 (2017) 142 – 150.739

[27] H. Seyyedhasani, J. S. Dvorak, Dynamic rerouting of a fleet of vehicles in740

agricultural operations through a dynamic multiple depot vehicle routing741

problem representation, Biosystems Engineering 171 (2018) 63 – 77.742

[28] D. Bochtis, C. Sørensen, The vehicle routing problem in field logistics: Part743

II, Biosystems Engineering 105 (2) (2010) 180 – 188.744

[29] K. Zhou, A. L. Jensen, C. Sørensen, P. Busato, D. Bothtis, Agricultural745

operations planning in fields with multiple obstacle areas, Computers and746

Electronics in Agriculture 109 (2014) 12 – 22.747

[30] M. Schiffer, M. Schneider, G. Walther, G. Laporte, Vehicle routing and748

location routing with intermediate stops: A review, Transportation Science749

53 (2) (2019) 319–343.750

[31] B. Crevier, J.-F. Cordeau, G. Laporte, The multi-depot vehicle routing751

problem with inter-depot routes, European Journal of Operational Re-752

search 176 (2) (2007) 756–773.753

[32] B.-I. Kim, S. Kim, S. Sahoo, Waste collection vehicle routing problem with754

time windows, Computers & Operations Research 33 (12) (2006) 3624–755

3642.756

[33] T. Bousonville, A. Hartmann, T. Melo, H. Kopfer, Vehicle routing and757

refueling: the impact of price variations on tour length, in: Logistikman-758

agement, University of Bamberg Press, 2011, pp. 83–101.759

36

[34] M. Schiffer, G. Walther, The electric location routing problem with time760

windows and partial recharging, European Journal of Operational Research761

260 (3) (2017) 995–1013.762

[35] P. Vansteenwegen, W. Souffriau, K. Sörensen, The travelling salesperson763

problem with hotel selection, Journal of the Operational Research Society764

63 (2012) 207–217.765

[36] M. Drexl, Synchronization in vehicle routing—a survey of VRPs with multi-766

ple synchronization constraints, Transportation Science 46 (3) (2012) 297–767

316.768

[37] A. Gasparetto, P. Boscariol, A. Lanzutti, R. Vidoni, Path planning and tra-769

jectory planning algorithms: A general overview, in: Motion and operation770

planning of robotic systems, Springer, 2015, pp. 3–27.771

[38] L. C. Basaca-Preciado, O. Y. Sergiyenko, J. C. Rodŕıguez-Quinonez,772

X. Garcia, V. V. Tyrsa, M. Rivas-Lopez, D. Hernandez-Balbuena, P. Mer-773

corelli, M. Podrygalo, A. Gurko, I. Tabakova, O. Starostenko, Optical 3D774

laser measurement system for navigation of autonomous mobile robot, Op-775

tics and Lasers in Engineering 54 (2014) 159–169.776

[39] K. Ferentinos, K. Arvanitis, N. Sigrimis, Heuristic optimization methods777

for motion planning of autonomous agricultural vehicles, Journal of Global778

Optimization 23 (2) (2002) 155–170.779

[40] O. Contente, N. Lau, F. Morgado, R. Morais, A path planning application780

for a mountain vineyard autonomous robot, in: Robot 2015: Second Iberian781

Robotics Conference, Springer, 2016, pp. 347–358.782

[41] H. Zhang, W. Tong, Y. Xu, G. Lin, The Steiner traveling salesman problem783

with online advanced edge blockages, Computers & Operations Research784

70 (2016) 26 – 38.785

[42] F. Nex, F. Remondino, UAV for 3D mapping applications: a review, Ap-786

plied geomatics 6 (1) (2014) 1–15.787

37

[43] J. Torres-Sánchez, J. M. Peña, A. I. de Castro, F. López-Granados, Multi-788

temporal mapping of the vegetation fraction in early-season wheat fields789

using images from UAV, Computers and Electronics in Agriculture 103790

(2014) 104–113.791

[44] G. Sona, D. Passoni, L. Pinto, D. Pagliari, D. Masseroni, B. Ortuani,792

A. Facchi, UAV multispectral survey to map soil and crop for precision793

farming applications, International Archives of the Photogrammetry, Re-794

mote Sensing and Spatial Information Sciences 41 (2016) 1023–1029.795

[45] J. Primicerio, G. Caruso, L. Comba, A. Crisci, P. Gay, S. Guidoni, L. Gen-796

esio, D. Ricauda Aimonino, F. P. Vaccari, Individual plant definition and797

missing plant characterization in vineyards from high-resolution UAV im-798

agery, European Journal of Remote Sensing 50 (1) (2017) 179–186.799

[46] W. E. Wilhelm, A technical review of column generation in integer pro-800

gramming, Optimization and Engineering 2 (2) (2001) 159–200.801

[47] Y. Zhao, T. Larsson, E. Rönnberg, P. M. Pardalos, The fixed charge trans-802

portation problem: a strong formulation based on lagrangian decomposi-803

tion and column generation, Journal of Global Optimization 72 (3) (2018)804

517–538.805

[48] IBM, CPLEX.806

URL https://www.ibm.com/products/ilog-cplex-optimization-studio807

38

https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio

	Introduction
	Related work
	Graph representation
	Mathematical formulations
	Displacement-based formulation (Model I)
	Dummy-Vertices-Based formulation (Model II)

	Proposed solution
	Numerical results and discussion
	Conclusions
	Acknowledgements
	References

