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In crystalline solids, the acoustic phonon can be described either as a Goldstone or as a non-Abelian gauge bo-
son. However, the non-Abelianity of the related gauge group apparently makes the acoustic phonon a frequency-
gapped mode, in contradiction with the other description. In a different perspective overcoming this contradic-
tion, both acoustic and optical phonon – the latter never appearing following the other two approaches – emerge
respectively as the gapless Goldstone (phase) and the gapped Higgs (amplitude) fluctuation mode of an order
parameter arising from the spontaneous breaking of a global symmetry, without invoking the gauge principle.
In addition, the Higgs mechanism describes all the phonon-phonon interactions, including a possible perturba-
tion of the acoustic phonon’s frequency dispersion relation induced by the eventual optical phonon, a peculiar
behavior able to produce mini-gaps inside the phonon Brillouin zone.

Copyright line will be provided by the publisher

1 Introduction The spontaneous breakdown of a con-
tinuous symmetry implies the emergence of a massless
bosonic particle for each broken generator of the involved
symmetry group. This is the Nambu-Goldstone theorem1, 2

in a nutshell, forming the basis of the Standard Model
of the fundamental interactions. In addition, the Higgs
mechanism,3 described as a case of spontaneous symmetry
breaking (SSB), plays a prominent role in the Standard
Model, providing the mass for the gauge bosons of the
electroweak interactions and for the fermions.4

These concepts are seemingly far removed from
physics of conventional semiconductors and metals com-
monly employed in electronics and optoelectronics indus-
try. However, the Higgs mechanism, as described by P.
W. Higgs in 1964 for particle physics,3 is the relativistic
analog of the plasmon phenomenon described by P. W.
Anderson one year before in superconductivity,5 and the
existence of Anderson-Higgs modes in condensed mat-
ter physics – in superconductors, cold-atoms in periodic
lattices, in Bose-Einstein condensates, in antiferromag-
nets, in charge density waves6–8 etc. – seems pervasive.
However, beside plasmons phenomenology5 and related
plasmonics,9, 10 presently the Higgs mechanism has been
acknowledged in semiconductors physics only in somehow
exotic materials, like e.g. in topological insulators, Weyl

semimetals, cuprates,11–16 etc., although its role could be
much more diffuse even in standard semiconductors.

On the other hand, the Goldstone theorem is very gen-
eral and it holds also in the non-relativistic condensed state
of matter, where the massless bosons correspond to collec-
tive excitations with wavevector k and gapless frequency
dispersion relation ωk, that is ωk→0 → 0, where k = |k|.
As a few examples, spin waves in the Heisenberg model
are bosons arising when the ground state of the Heisenberg
Hamiltonian is magnetically ordered;17 collective density
excitations in superconductors arise from the spontaneous
breaking of the electronic phase rotational U(1) symme-
try.18, 19 Finally, as a more common example, in crystalline
solids, collective excitations associated to lattice vibration
modes are the acoustic phonons,20 and correspond to Gold-
stone modes emerging from the breaking of a continuous
spatial symmetry, the translational invariance, broken by
the presence of the crystal lattice.21, 22 It is said that all
these collective excitations originate from one of the so-
called emergence principles, in this case the Goldstone the-
orem, since they emerge from the very beginning.

Nevertheless, in condensed matter systems as well as
in high energy particle physics, interactions are mediated
by gauge bosons, appearing when local gauge invariance

Copyright line will be provided by the publisher



2 Marco Vallone:

with respect to a given symmetry group is requested for
the system’s Lagrangian density.23

In a seemingly similar way, it has been shown24 that by
gauging the spatial translational group T (3) in crystal lat-
tice, three gauge bosons appear to provide the local gauge
invariance for the Lagrangian under the action of T (3).
They can be identified with the three acoustic phonons and,
as a major feature of this approach, the elastic properties
of solids and the acoustic phonon’s dynamical equations
can be described in close analogy with General Relativity
field equations. In fact, it turns out that the acoustic phonon
travels in the crystal acting as a wavelike perturbation of
the lattice, similarly to the graviton in vacuum, that travels
as a wavelike perturbation of a locally flat differentiable
manifold, both obeying very similar field equations.25–30

Acoustic phonons arise in this case not as Goldstone, but
as gauge bosons.

A major concern regards whether the two descriptions
could possibly be in contradiction and to what extent.
Ref. [24] describes in detail the linear limit of the acous-
tic phonon’s gauge theory, where the two descriptions
appear in agreement, in particular providing in the long
wavelength limit (k → 0) the same gapless frequency dis-
persion law ωk = csk, where cs is the sound velocity in the
given medium. However, the cited work does not explore
in depth the consequences of the non-Abelianity of the
involved gauge group on the ensuing dispersion relation
ωk.

When more than one ion is present in the lattice
elementary cell, another kind of phonon – the optical
phonon20 – constitutes a further and independent vibration
mode. In polar semiconductors, the electron–longitudinal
optical (LO) phonon emission is the dominant intersub-
band scattering mechanism responsible for electrons ther-
malization. However, although LO-phonons are of crucial
importance in semiconductors transport theory and elec-
tron dynamics,31–35 in the gauge theory of crystal lattice’s
interactions they are left apart, not arising as gauge bosons.

In order to clarify these important points, in section 2
we give a short recap about the emergence of acoustic
phonon as Goldstone boson. In section 3, after an introduc-
tion about the issues behind gauging a spatial symmetry,
we go beyond the linear limit of the theory, finding that
the obtained dispersion relation may result gapped (that is,
ωk→0 6= 0), in sharp contrast with the gapless dispersion
relation characteristic of Goldstone bosons.

In section 4 we present a different and more general
approach, showing that both acoustic and optical phonons
may arise from a SSB which sets out an order parameter
φ. It follows that the Higgs mechanism plays an impor-
tant role: the amplitude fluctuations of φ are Higgs modes,
for which a mass-like term appears in the Lagrangian, that
makes the mode gapped, and we identify them with the
optical phonons. Conversely, the phase fluctuations of φ
(Goldstone modes) are the acoustic phonons, here revis-
ited in a much more general way that also sheds light on the

seeming contradiction arisen when interpreting the acous-
tic phonon either as Goldstone or as gauge boson. Finally,
in section 6 main ideas and findings are summarized.

In this work Aα and Bβ are contravariant and co-
variant four-vectors, ∂µ is the partial derivative ∂/∂xµ,
where standard Greek indices α, β, µ, ... = 0, ...3 are in-
dices of space-time coordinates on a four-dimensional dif-
ferentiable manifold with metric gµν and connection Γαµν ,
latin indices (i, j, k, ... = 1, 2, 3) mark spatial components,
whereas Greek indices with an “hat” µ̂, ν̂, ... = 0, ...3 are
used for indices of local four-dimensional frames (vier-
beins or tetrad indices) on a flat Lorentzian space-time
with Minkowski metric ηµ̂ν̂ = diag(+1,−1,−1,−1). The
Einstein’s summation over repeated index is always under-
stood, and not-italicized “i” is the imaginary unit.

2 Goldstone theorem and acoustic phonons
Apart from superconductivity and exotic materials, things
are quite complicated even in the well-known world of
solid-state crystals. Let us consider the Lagrangian density

L = iψ†k∂tψk −
1

2m∗
∇ψ†k · ∇ψk (1)

describing the dynamics of a non-relativistic Pauli elec-
tron with wavefunction ψk(t, r) and effective mass m∗,
free to move in the crystal and obeying the Bloch theo-
rem.20 L is symmetric (i.e. invariant) under global, contin-
uous transformations described by the Galilei group G36, 37

(the corresponding relativistic formulation of L is Lorentz-
invariant). If H is the group of time-translations, the gen-
erators of the quotient group G/H are the momentum p
(translations), the angular momentum J (rotations), and
the boosts K. Concerning the group of spatial translations
T (3) in the ordinary space (one of the subgroups ofG/H),
the elements of the infinitesimal form of T (3) are the op-
erators UT = 1 − ik · δR, where δR is an infinitesimal
displacement of the crystal ions in space around a Bra-
vais lattice20 translation vector R. UT may be written as
UT = 1− εjpj , where εj are real parameters, and the mo-
mentum components pj = −ih̄∂j are the three generators
of T (3), whose Lie algebra is described by [pi, pj ] = 0.
Similar considerations could be made for the other two
subgroups.

The underlying crystal lattice can be described38 as a
potential −V (φ) to be inserted into L and eventually de-
pending from several fields φ = {φj}. If φ0 is a the value
of φ that minimizes V (φ), the system’s ground state (the
system’s true vacuum) is the state for which φ = φ0. We
can expand the potential V around its minimum, obtaining
at the second order

V (φ) = V (φ0) +
1

2
(φ− φ0)

k
(φ− φ0)

j
Mkj , (2)

where

Mkj =

(
∂2V

∂φk∂φj

)
φ0

(3)
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is a symmetric matrix that in the Lagrangian plays the
role of a mass term, whose eigenvalues give the eventual
masses of the fields {φj}.

The crystal lattice breaks both translational and ro-
tational invariance making the system’s ground state not
symmetric, and this can happen even if the Lagrangian
is symmetric. To be more clear, if we again consider the
translations, the fields φj transform under the action of UT
as φj → φj + α(φ)pj , where α(φ) is an infinitesimal pa-
rameter. Nevertheless, the symmetry of the Lagrangian can
remain exact, provided

V (φj) = V (φj + α(φ)pj). (4)

Taylor expanding the Eq. (4), the same condition can be
written as

α(φ)
∂V (φ)

∂φj
= 0, (5)

and differentiating the Eq. (5) with respect to φk around the
potential minimum φ0, we obtain(

∂α(φ)

∂φk
∂V

∂φj

)
φ0

+ α(φ0)

(
∂2V

∂φk∂φj

)
φ0

= 0. (6)

The first term vanishes, since φ0 is a minimum of V . Re-
garding the second term, it can be zero if α(φ0) = 0, but
this would be a trivial case: the symmetry would be exact,
V (φ) would be merely an arbitrary constant, it would not
be necessary to introduce a field φ, and the crystal lattice
simply would not exist. Instead, if α(φ0) 6= 0, it must be(

∂2V

∂φk∂φj

)
φ0

= Mkj = 0, (7)

stating that the field is massless. In summary, the crystal
lattice makes a massless field φj to arise, the Goldstone
excitation associated to pj . In the end, we expect three
Goldstone bosons, one for each broken translations’ gener-
ators, and the ground state’s symmetry is said to be sponta-
neously broken. It is possible to see that apart from p, also
J and K are broken generators (i.e. the system’s ground
state is not symmetric under the corresponding transforma-
tions they generate), but it has been shown that they do not
give rise to Goldstone bosons.30, 39 Furthermore, it should
be remarked that at this level nothing can be said about
phonon-phonon interactions.

For uniformity, it is also possible to introduce a pseudo-
relativistic notation, describing the acoustic phonons
emerged by the Goldstone theorem as sound-like four-
momenta pµ states in a locally flat manifold M with
metric gµν . The tangent space to any point ofM is a four-
dimensional manifold TM with the same local pseudo-
Minkowski metric expression ηµ̂,ν̂ as in special relativity,
and known as acoustic or sound metric.24, 40, 41 Space-time
coordinates on M are expressed as xµ = (cst, r), and
the world “pseudo” means that the relevant velocity is the

sound speed cs in the considered medium (that of course
is not a limit velocity).

Following this convenient formalism, instead of T (3)
we can consider the translations group T (4) with elements

UT = 1− εµpµ (8)

on the space-time M, where the parameters εµ are point
dependent. The four T (4) generators are pµ = −ih̄∂µ,
and the crystal lattice breaks the three spatial components
p1...3, but not p0. Since pµpµ = 0 (they are sound-like
four-momenta inM), a wave-like solution for them yields
the gapless dispersion relation ωk = csk, valid for small k,
that makes the Goldstone bosons massless quasi-particles,
as required.42, 43 The periodic structure of the lattice itself
is known to produce Brillouin-zone folding and the appear-
ance of gaps in the phonon spectrum, i.e., phonon stop
bands, for wave vectors satisfying the Bragg condition.20

It must be stressed that the present approach does not ad-
dress this aspect of the problem, since at this level the lat-
tice is treated as a continuum, an approximation valid for
wavevectors k � π/a, where a is the lattice constant.

3 Challenges in gauging spatial symmetry The
existence of Goldstone bosons is closely related to the
gauge theories of interactions. The possibility to choose
freely a local parameter without changing the physics of a
system was declared in 1929 by H. Weyl as a general prin-
ciple,23 known as local gauge invariance. It turns out that
each time a Lagrangian density L(ψk) is requested to be
invariant under the action of an element UG of a Lie group
G of local transformationsψk → UGψk, one or more com-
pensating fields arise, mediating an interaction (see the de-
scription for the classic case of electromagnetism e.g. in
Ref. [4], for which the compensating – or gauge – field is
the vector potential Aµ that mediates the electromagnetic
interaction, and the involved gauge group is the Lie group
U(1), whose elements induce phase rotations on ψk).

In somehow similar way, it is tempting to describe
acoustic phonons as gauge fields,24 like in electromag-
netism or, more generally, in Yang-Mills theories,44, 45 con-
sidering the local (coordinate-dependent) form of UT , that
is UT = 1 − εj(r)pj . Although UT is unitary, the La-
grangian L in the Eq. (1) is manifestly not invariant under
the action of UT on ψk because of the spatial derivatives in
the expression of the generators. However, the naive path-
way to request the Lagrangian L to be invariant under lo-
cal spatial translations promoting T (4) to the role of gauge
group is not trivial. Considering its importance, before go-
ing further it is worth clarifying why gauging a spatial
translation is so different from gauging e.g. a wavefunc-
tion’s phase transformation. In the gauge theory of elec-
tromagnetism, since the involved symmetry transformation
is a phase rotation, it is said that an internal symmetry is
gauged, because the transformation does not involve space-
time coordinates. In addition, all this has a simple geomet-
rical meaning: with reference to Figure 1, given three dif-
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4 Marco Vallone:

ferentiable manifoldsM (the base space), L(P ) (the fiber)
and E (the total space), and a Lie group G (the structure
group), a fiber bundle is defined as a topological structure
(π : E → M, L,G) where, for each point P ∈ M a fiber
L(P ) is associated to P , such that a neighborhood VP of P
is mapped in E according to π−1(VP ), and that π−1(VP )
is homeomorphic to the Cartesian product VP × L. The
fiber bundle is defined in conjunction with a groupGwhich
acts as a transformation group on the fiber, representing the
different ways the fiber can be viewed as equivalent. The
covariant derivative Dµ is a connection on E allowing to
parallel transport46, 47 a vector in E . We may also visualize
the n-dimensional manifoldM as a n-surface, with an in-
ternal space L associated to each point P ∈M with given
topological structure. Specifically, in electromagnetismM
is the ordinary four-dimensional space-time of the special
relativity, a phase transformation on ψk is a “vertical” auto-
morphism of the bundle and a diffeomorphism of L, such
that the fiber above each point in M is unchanged (Fig-
ure 2(a)). In fact, since only the phase is changing, the point
in the total space E does move, but just “vertically” along
L(P ). This is the gauge freedom carried by the fiber bundle
within its fibers.

By contrast, trying to gauge a space-time transforma-
tion group like T (4), it is quite clear that translations in
M induced by T (4) are “horizontal” diffeomorphisms of
M, since a translation by definition changes the point P in
the base space, involving spatial coordinates. For this rea-
son, an invariance under the action of T (4) is said to be an
external symmetry. In this context, it is not easy to iden-
tify a fiber as an internal space L for which E = M× L
locally holds, preventing a straighforward definition of a
fiber bundle (π : E →M, L, T (4)) (Figure 2(b)).

3.1 Gauge theory of spatial translations Gaug-
ing T (4) in the pseudo-Lorentzian, locally flat manifold,
equipped with the acoustic metric and possibly suitable
to describe acoustic phonon dynamics, propagation and
interactions, is mathematically not too different from the
gauging of T (4) on the standard Lorentzian manifold of

Figure 1 Scheme of a fiber bundle, a map (π : E →
M, L,G), with the base spaceM and the fiberL, on which
the associated groupG acts. A trajectory γ inM is mapped
to γ ′ in the total space E .

the General Relativity.48 Nevertheless, the latter revealed
a hard goal to obtain.26, 29 Everything in this field started
from the pionieering work by R. Utiyama49 in 1956, a good
starting point, but not entirely convincing, especially be-
cause Utiyama did not address the central problem: trans-
lations are a diffeomorphism in M, and not in a fiber, as
a gauge theory would require, a problem not solved nei-
ther by subsequent works by T. Kibble50 and D. Sciama.51

Following the usual Yang-Mills formalism, they defined
the covariant derivative as Dν̂ = ∂ν̂ + Wν̂ , where Wν̂ is
a gauge (compensating) field that, written in terms of its
components Rµν̂ , reads

Wν̂ = Rµν̂pµ. (9)

Employing Eq. (9), Dν̂ was written as

Dν̂ = hµν̂∂µ (10)

where
hµν̂ = δµν̂ − ih̄Rµν̂ . (11)

The field hµν̂ defines a set of four orthonormal vectors
hµν̂∂µ, the tetrad or vierbein, provided the covariant index
ν̂ is a local Lorentz index. The correct understanding of
hµν̂ was given by Y. M. Cho,52 who developed a gauge
theory of translations with a Yang-Mills–type Lagrangian,
where the gauge potentials were correctly interpreted as
translational connections (in particular, they are the non-
trivial part of the vierbein fields hµν̂ ), and not as general
coordinate transformations on the base manifold (as e.g.
in Utiyama49), that would have been not correct. D. and
G. Grensing25 came to similar conclusions, obtaining the
gauging of the Poincaré group in a form that allowed to
express General Relativity as a gauge theory of this sym-
metry group. More recently, the Yang-Mills theory of the
affine group (the semidirect product of translations T (4)
and general linear transformations GL(4, R)) was formu-
lated,53, 54 where tetrads have been identified with nonlin-
ear translational connections, for which the given hµν̂∂µ ex-
pression is a simplified yet correct version of the general
formulation.

Figure 2 (a) The usual picture of a gauge theory for an
internal symmetry: a gauge transformation in E moves the
point π−1(P ) to π−1(P )′, preserving the point P onM.
(b) Translations are defined on the base manifoldM itself,
where the gauge transformation changes the point P to P ′.
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These concepts were not developed for solid-state
physics, but rather to describe gravity, now correctly
formulated as a Yang–Mills theory with T (4) as gauge
group. Nevertheless, very interestingly the same formula-
tion holds and can be exploited to develop a Yang-Mills
theory of elasticity in solid crystals. In fact, Eqs. (9), (10)
and (11) also hold when considering, instead of the stan-
dard space-time, the crystal lattice’s manifold M with
metric gµν , and with its pseudo-Minkowski tangent space
TM equipped with the sonic metric ηµ̂ν̂ . In this case, the
field componentsRµν̂ can be identified with the tensor com-
ponents of the crystal elasticity field, whereas in theory of
gravity they are related to the Ricci’s tensor.55 This allows
to formulate the physics of lattice vibrations in crystals
(acoustic phonons) in a way that results somehow similar
to the physics of gravitational waves in the ordinary space-
time, as described in part in Ref. [24] and developed more
in detail here in section 3.2.

3.2 Yang-Mills theory of acoustic phonons in
crystal The Lie group T (4) can be promoted to the role
of gauge group,24 defining a gauge-covariant derivative
Dµ̂ as a connection that makes L gauge invariant, and
consistent with the meaning expressed by Eq. (10). Fol-
lowing the proposed pseudo-relativistic formalism and
the standard gauge prescriptions, the infinitesimal dis-
placements of the crystal lattice induce local translations
ψk(xµ) → ψ′k(xµ) = UT (xµ)ψk(xµ) of the electronic
wavefunction, where all the ordinary derivatives must be
replaced by gauge-covariant derivatives Dν̂ = hµν̂∂µ. The
field Wν̂ must transform in turn according to

Wν̂ →W ′ν̂ = UTWν̂U
†
T − (∂ν̂UT )U†T , (12)

and Eq. (12) implies

(Dν̂ψk)
′

= UT (Dν̂ψk) , (13)

that makes the Lagrangian L gauge invariant under the lo-
cal action of T (4).

The translational symmetry manifests itself through
the occurrence of conserved currents jµ. In the present
case, the relevant gauge charges are the three gener-
ators pk =

∫
d3x jk(x) =

∫
d3xT0k(x) of the spa-

tial translations, whose corresponding currents are the
components of the symmetric energy-momentum tensor
T0k. Furthermore, the total energy (Hamiltonian) opera-
tor H =

∫
d3x c2s T00(x) is written in terms of p0, the

unbroken generator of translations in the time coordinate.
A major difference with respect to electromagnetism

is the fact that the elements of T (4) do not commute,
even if the group generators on a flat space-time commute,
[pµ̂, pν̂ ] = 0. In fact, if UT (x) and UT (y) are two elements
of T (4), it is

[UT (x), UT (y)] = −h̄2 [εµ(x)∂µε
ν(y)− εµ(y)∂µε

ν(x)] ∂ν ,
(14)

that in general is nonzero for x 6= y, making non-Abelian
the local form of the gauge group. The intrinsic difference

between the structure of the global and local versions of
T (4) can be stated more formally writing the currents al-
gebra

[jµ(x), jν(y)] = −ih̄ (∂µjν(y)− ∂νjµ(x)) δ3 (x− y) ,
(15)

where the commutator in general is nonzero for x 6= y.
Hence the generators’ algebra can be written as56

[pµ, pν ] = igfγµνpγ (16)

where fγµν are the structure constants for the currents’ Lie
algebra and g is the coupling constant of the theory. It is
fγµµ = 0, and fγµν = −fγνµ = 1 for µ 6= ν. In a flat
space-time TM of course it is [pµ̂, pν̂ ] = 0, but this is not
true on M. This is a central point of the theory, and the
algebra expressed by Eq. (16) makes non-Abelian the lo-
cal symmetry, and it is responsible for the phonon-phonon
interactions. On this basis, it also follows

[Wµ̂,Wν̂ ] = igfαβγR
β
µ̂R

γ
ν̂pα (17)

Making use of Eq. (10), the commutator [Dµ̂, Dν̂ ] can be
written in the alternative forms

[Dµ̂, Dν̂ ] = Gαµ̂ν̂pα = Gµ̂ν̂ (18)

where the field strength tensor Gµ̂ν̂ and its components
Gαµ̂ν̂ are given by

Gµ̂ν̂ = ∂µ̂Wν̂ − ∂ν̂Wµ̂ + [Wµ̂,Wν̂ ]

Gαµ̂ν̂ = ∂µ̂R
α
ν̂ − ∂ν̂Rαµ̂ + igfαβγR

β
µ̂R

γ
ν̂ . (19)

It is worth noting that Eqs. (19) resembles expressions typ-
ical of classical Yang-Mills theories, although it should
not be forgotten that the symmetry group rules an external
symmetry, and the gauge field Wµ̂ contains spatial partial
derivatives, since the infinitesimal group generators act as
differential operators.

The Lagrangian density for the free gauge field is

LR =
1

4
Gαµ̂ν̂G

µ̂ν̂
α , (20)

that explicitly reads

LR =
1

2

(
∂µ̂R

α
ν̂ ∂

µ̂Rν̂α − ∂µ̂Rαν̂ ∂ν̂Rµ̂α
)

+igfγδα Rµ̂γR
ν̂
δ (∂µ̂R

α
ν̂ )

−g
2

4
fσβγf

δε
σ R

β
µ̂R

γ
ν̂R

µ̂
δR

ν̂
ε (21)

and describes the dynamics of a field with cubic and quar-
tic (self-interacting) terms. Writing the Eulero-Lagrange
equation

∂µ̂
∂LR

∂ (∂µ̂Rν̂α)
=
∂LR
∂Rν̂α

(22)

and imposing the Lorenz gauge (that allows for great sim-
plification of all the expressions), the equation of motion

Copyright line will be provided by the publisher
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for the free field Rαν̂ results (defining λ = g2 and 2 =
∂µ̂∂

µ̂)
2Rαν̂ + λ fσβγf

δα
σ Rβµ̂R

γ
ν̂R

µ̂
δ = 0. (23)

This equation does not include any mass-term (it would be
a term linear in Rαν̂ ), but a cubic self-interacting term is
present, coming from the quartic term in the Lagrangian.

All the components are highly coupled and difficult to
manage. In order to understand the underlying physics, it
is particularly interesting to consider in better detail the
case of a simple one-dimensional atomic chain along x,
assuming – without loosing generality – that the perturba-
tion is along the longitudinal direction (longitudinal acous-
tic phonon), hence R0

0 = 0. From Eq. (16), that expresses
the group commutation rules, the motion equations for the
nonzero field components R̂ = R1

0 (the longitudinal acous-
tic phonon field) and Ŝ = R1

1 (the spatial strain field) de-
couple, yielding(

∂2t − c2s∂2x
)
R̂+ λc2s|R̂|2R̂ = 0 (24)(

∂2t − c2s∂2x
)
Ŝ = 0. (25)

Ŝ(x, t) describes the fluctuations of the crystal strain
field, that in higher dimensional domains are coupled to
phonons, which may get scattered by them. Regarding the
equation for the acoustic phonon R̂(x, t), the parameter
λ leads to a nonlinear oscillatory solution for R̂ with a
dispersion relation given by57, 58

ω2
k =

√
λc2s
2
ρ2R + c2sk

2 (26)

where ρR is an integration constant depending on the cell
characteristics. Eq. (24) can be derived by the Eulero-
Lagrange equation from a Lagrangian that is a simplified
form of Eq. (21),

LR =
1

2

(
ηµ̂ν̂∂µ̂R∂ν̂R−

1

2
λR4

)
, (27)

the well-known Lagrangian with φ4-potential, describing
a massless self-interacting scalar field.4 Before concluding
this section, we recap the path followed so far: the local
gauge invariance imposed for the electron’s Lagrangian in
Eq. (1) makes three gauge fields to arise, identified with
acoustic phonon modes, one longitudinal and two trans-
verse. Their Lagrangian is the Eq. (21), for which a sim-
plified, one-dimensional form is the Eq. (27), describing
phonon-phonon interactions through the nonlinear (quar-
tic) term proportional to λ.

It is also worth stressing that Eq. (26) describes a possi-
ble frequency gap

√
λc2s/2ρ

2
R at the long-wavelength side

of the spectrum. This gap, not described by the classi-
cal theory of acoustic phonons, is due to the fields’ self-
interaction term coming from the nonzero commutators

in Eq. (17) and Eq. (19), in turn originating from the cur-
rent algebra in Eq. (15) and Eq. (16). However, since the
coupling constant can be very small, the frequency (en-
ergy) gap may be a very tiny mini-gap, probably beyond
practical observability limit. Moreover, it is also worth re-
marking that the present gauge theory is a massless, non-
Abelian gauge theory, not a massive one. Apart from issues
in its renormalizability, a mass-term in Eq. (27) would be a
term proportional to R2, not existent in the present formu-
lation, beside the quartic term coming from the nonlineari-
ties. Nevertheless, the final result in the phonon dispersion
relation would be similar (a mini-gap in the spectrum), but
its very origin would be very different: a massive boson,
and not a self-interacting massless boson as in the present
case.

In summary, we may say that in solid crystals a Gold-
stone mode is a massless excitation, which very existence
is due to the broken, continuous translational symmetry
caused by the lattice, and its dynamics can be described in
the framework of a non-Abelian gauge theory. It is worth
considering that Eq. (26) reduces to the well known De-
bye form20 ωk = cs|k|, provided the nonlinear term in the
Lagrangian can be neglected. Nevertheless, a relevant and
quite unexpected result is that, in its general form, ωk re-
sults gapped (i.e. ωk 6= 0 in the limit k → 0) owing to
self-interactions, if the latter are relevant, even though the
gauge field is a massless boson.

As a side feature already noticed in Ref. [24], the com-
mutator [Dµ̂, Dν̂ ] satisfies a cyclic identity that can be writ-
ten as

DσGµ̂ν̂ +Dν̂Gσ̂µ̂ +Dµ̂Gν̂σ̂ = 0, (28)

an equation known as the Bianchi identity for the field
strenght tensor. The tensor Rνµ̂ plays the same role of the
Ricci tensor in General Relativity, obeying the same dy-
namic equations implied by Eq. (28), and describing the lo-
cal perturbation of the sonic metric ηµ̂ν̂ of the solid crystal
caused by the propagation of an acoustic phonon, in strict
analogy with the space-time Lorentz metric perturbation
induced by a gravitational wave propagating as described
in General Relativity.

4 Optical phonon: a Higgs mode In several bi-
nary compounds of interest in electronics, as e.g. GaAs,
InP, GaN and many others, the crystal can be considered
as composed of two interacting sublattices, one for each
atomic species. Textbook toy-models describe the relevant
physics considering a one-dimensional Bravais lattice with
two ions per primitive cell. When treated as a set of ele-
mentary classical oscillators, they show that two distinct
oscillation modes exist:20

a) the two atoms in the cell may oscillate at frequency
ωk around their equilibrium position with the same di-
rection and phase (Figure 3(a)), keeping unchanged their
relative displacement σ0. The perturbation is the acous-
tic mode, an elastic wave propagating in the lattice at the
sound velocity cs, and the corresponding collective ions
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Figure 3 Scheme of a diatomic one-dimensional chain
showing the in-phase (a) and out-of-phase (b) oscillating
modes. (c) The Mexican-hat potential V (φ), leading to the
excitation of the amplitude (or Higgs) and phase (or Gold-
stone) modes, σ and θ.

excitation is the acoustic phonon, whose dispersion rela-
tion has an expression that in the long wavelength limit can
be approximated as ωk = cs|k|, indicating that the acoustic
mode can be excited with arbitrarily small energy (there is
no gap in ωk);

b) conversely, the two atoms in the cell may oscillate
opposite to each other (Figure 3(b)), and their relative dis-
placement σ oscillates around an equilibrium position σ0
along a well-defined direction θ0 respect to a reference,
defining an oscillating cell’s dipole moment, if the solid is
ionic. This is the well known optical mode, and the associ-
ated collective excitation is the optical phonon, whose role
in semiconductors transport theory and electron dynamics
is of great importance. It is found that ωk→0 → ω0 6= 0: in
other words, the optical phonon dispersion ωk is gapped,
and the optical mode’s excitation costs a fixed nonzero en-
ergy h̄ω0 also for k → 0.

We have found that both acoustic and optical phonons
may be described as arising from a spontaneous breaking
of a global symmetry, and that they are respectively a Gold-
stone (phase) and a Higgs (amplitude) mode8, 59, 60 of an
order parameter oscillation. Beside its importance as a fur-
ther sign of a widespread presence of the amplitude mode
in condensed-matter systems with broken continuous sym-
metry, the present approach provides a unified formulation
of phonons, where the coupling between the acoustic and
the optical phonon modes arises in a natural way.

In order to show this important point, let us define the
displacement between the two atoms in the cell as a com-

plex field φ = (σ0 + σ) exp (iθ). We can describe the
dynamics of the collective oscillation modes by the La-
grangian of the field φ

Lφ =
1

2

(
∂µ̂φ∂

µ̂φ∗ − V (φ)
)
, (29)

where V (φ) is the interacting potential between the two
atoms in the cell. With the choice V (φ) = (1/4)λ|φ|4,
we would obtain the Eq. (27), able to describe acoustic
phonons. We could assume for V (φ) the form

V (φ) =
1

2

µ2c2s
h̄2
|φ|2 +

1

4
λ|φ|4, (30)

typical of the φ4 theories4 with a mass term proportional
to φ2 . However, if the two parameters µ2 (where µ has the
dimension of a mass) and λ are both positive, the expecta-
tion value of φ in the physical vacuum state is < φ >= 0
(the minimum of V (φ)). In this case the system is in a dis-
ordered phase, since there is not a preferred direction for
the atoms’ displacement oscillation. Furthermore, the sys-
tem’s vacuum energy is invariant under a U(1) transfor-
mation, since Lφ is invariant under a global U(1) trans-
formation of the field φ. Consequenty, this model cannot
describe optical phonons, for which θ = θ0 results a pre-
ferred direction for the system. In addition, the introduc-
tion of the mass term is arbitrary, beside making the the-
ory non-renormalizable. Furthermore, the theory would de-
scribe massive acoustic phonons, against all evidences.

Instead, observing that the optical phonon defines an
oscillating cell’s dipole moment, we may inspire us to fer-
romagnets, assuming that the global phonon field might
have a preferred direction, violating a symmetry of the La-
grangian. In this case, the related field theory has a con-
tinuous, hidden symmetry that is spontaneously broken
by a term in the Lagrangian that cannot be derived, but
only inserted in V (φ) in an ad hoc manner, as in the elec-
troweak theory.4, 38 To this end, we proceed in the standard
way according to the linear-sigma model.59, 60 If the crys-
tal formation makes µ2 negative, the potential V (φ) as-
sumes the well known “Mexican-hat” shape shown in Fig-
ure 3(c), and all the couples (σ, θ) on the circle with radius

|φ| =
√
−µ2c2s/(h̄

2λ) = σ0 are V (φ) minima. They iden-
tify degenerate vacuum states, all with the same energy,
and among them the system chooses the ordered state for
which < φ >= (σ0, θ0), that becomes the true vacuum
state of the system. The angle θ0 identifies the preferred di-
rection imposed by the cell structure and, without loosing
generality, we can set θ0 = 0 as reference x-axis. Hence,
the Lagrangian in Eq. (29) with the potential in Eq. (30)
and negative µ2 has a spontaneously broken symmetry.

The next important step is to write the Lagrangian Lφ
in terms of the fields σ and θ, small fluctuations of φ =
(σ0 + σ, θ) around the true vacuum φ0 = (σ0, 0):

Lφ = Lθ + Lσ + Lσ−θ, (31)
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where

Lθ =
1

2
∂µ̂θ ∂

µ̂θ − λθ4

4
(32)

Lσ =
1

2

(
∂µ̂σ ∂

µ̂σ − ω2
0

c2s
σ2

)
−

√
λω2

0

2c2s
σ3 − λσ4

4
(33)

Lσ−θ = −

√
λω2

0

2c2s
σθ2 − λ

2
θ2σ2 . (34)

Here, for later convenience, we have introduced the real
and positively defined parameter ω2

0 = −2µ2c4s/h̄
2, a fac-

tor playing the dynamical role of a mass-term. The La-
grangians Lθ and Lσ respectively describe the dynamics
of fields θ and σ. As expected and as it is typical for the
Higgs’ mechanism, θ is massless (Eq. (32) does not include
a term proportional to ω2

0), whereas in Eq. (33) a mass-term
with the correct sign is associated to the field σ. The La-
grangian Lσ−θ describes the σ−θ coupling terms and will
be treated in section 5.

It is remarkable that the vacuum state is no more U(1)
invariant (it is non-symmetric in θ), although Eq. (29) and
Eq. (31) describe the same system: we only changed no-
tations and chose a particular vacuum as system’s ground
state to expand the Lagrangian around. This is why we may
speak of a symmetry spontaneously broken: no external
agent provoked it and the symmetry of the system is still
preserved, although “hidden” by a particular choice for the
ground state.

Taking the limit λ → 0 and plugging Lφ into the
Eulero-Lagrange equations, we obtain the motion equation
for fields σ and θ for a one-dimensional diatomic chain
along spatial coordinate x as(

∂2

∂t2 − c
2
s
∂2

∂x2

)
θ(t, x) = 0 (35)(

∂2

∂t2 − c
2
s
∂2

∂x2 + ω2
0

)
σ(t, x) = 0 (36)

whose oscillatory solutions∝ ei(ωθ,σ(k)t−kx) yield the dis-
persion relations

ω2
θ = c2sk

2 (37)

ω2
σ = ω2

0 + c2sk
2. (38)

They describe respectively a gapless and a gapped mode of
the displacement field φ (and consequently a gapless and a
gapped mode of the ensuing cell’s dipole moment, if the
solid is ionic), resembling respectively the acoustic and the
optical phonon’s dispersion law.

From a more formal point of view, we can state that the
SSB has generated the real and positively defined mass-
like term ω2

0σ
2 for the amplitude or Higgs mode σ (the

optical phonon). From the present approach it is also clear
that the optical phonon is not a gauge field, since the oscil-
lation costs at least the energy h̄ω0, and it is not possible to
change ground state changing σ without spending energy.

In addition, still owing to the spontaneous breaking of a
continuous Lagrangian symmetry, a scalar field (here θ) ap-
pears and results massless, yielding the gapless dispersion

relation ω2
θ = c2sk

2. In this limit, it is possible to change
the ground state of θ without spending energy, just operat-
ing a gauge transformation along the valley of the Mexican
hat (see Figure 3(c)). It follows that the field θ is a pure
gauge field that we identify with the acoustic phonon, aris-
ing as the Goldstone mode associated to the breaking of a
continuous symmetry.

However, it must be stressed that the present approach
also describes in an unitary way several nonlinearities,
in particular the coupling between optical and acoustic
phonons, an argument addressed in section 5.

5 Nonlinearities and phonons-coupling An im-
portant outcome of the present SSB approach is the nat-
ural emergence of phonon-phonon interactions and self-
interactions, ensuing from the terms in λ in the expres-
sions of Eq. (31). The dynamics of θ alone, described by
Lθ in Eq. (32), is the same we obtained gauging the spatial
symmetry T (4) in the framework of non-Abelian gauge
theories (see Eq. (27)), revealing a deep link between the
two approaches. The term (λ/4)θ4 describes four-phonon
processes, like a scattering between two acoustic phonons
or a decay of one into three acoustic phonons (all them
are impossible in an Abelian theory, like e.g. the electro-
magnetism). The same argument also applies to optical
phonons, whose scattering is ruled by the corresponding
term (λ/4)σ4 in Eq. (33).

A further important point is the functional form of the
Lagrangian Lσ−θ, Eq. (34), neglected during the prelimi-
nary analysis. It consists of two terms, and it confirms a
possible coupling between acoustic and optical phonons, as
shown in Refs. [61, 62] for bulk GaAs, GaN, ZnO, MoS2,
and for BN monolayers. In Eq. (34), the term proportional
to σθ2 describes the decay of an optical phonon σ into
two acoustic phonons θ (or the reverse process), as out-
lined e.g. in Ref. [63] fitting the theory to silicon. In the
same equation, the term proportional to θ2σ2 describes a
scattering between two acoustic and two optical phonons,
a four-phonon scattering term whose role has been recently
recognized64 in boron arsenide to be responsible for a sub-
stantial reduction of its expected thermal conductivity.

At the lowest order in λ, Eq. (34) provides additional
terms in the coupled equations of motion for θ and σ, that
become(

∂2

∂t2 − c
2
s
∂2

∂x2 +
√

2λcsω0σ(t, x)
)
θ(t, x) = 0 (39)(

∂2

∂t2 − c
2
s
∂2

∂x2 + ω2
0

)
σ(t, x) = 0. (40)

The equation for σ(t, x) is the same Eq. (36): without
loosing generality, we can write its oscillatory solution as
σ(t, x) ∝ cos (ωσt− kx) and plug it in Eq. (39). Approx-
imating ωσ ≈ ω0, separating the variables as θ(t, x) =
θt(t)θx(x), and supposing θx(x) ∝ exp (ikx), the equa-
tion of motion for θt(t) is

d2θt(t)

dt2
+
(
c2sk

2
n + q ω0 cos (ω0t)

)
θt(t) = 0 (41)
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Figure 4 Dispersion relation for the acoustic phonon: the pure acoustic, unperturbed case q = 0, and the effect of the
interaction with optical phonons, for q = 2, 5, 10, where a mini-gap opens for ωθ ≈ 0.5ω0.

where q =
√

2λ. For simplicity, in the calculations it is
also possible to set cs = 1. The phonon wavevector takes
the discrete values kn = nπ/(Na), where n = 1, ...N ,
and N is the number of atoms in the chain. Eq. (41) can
be treated as a Mathieu’s equation,65–68 which describes
time-dependent harmonic oscillators perturbed by a peri-
odic load (the term in the cosine) representing the inter-
action with the optical phonon. For λ = 0 the eigenfre-
quencies are ωθ = cskn, recovering the standard acoustic
phonon dispersion law in the long wavelength limit.

In the general case q 6= 0, we treated the perturbation
induced on the cell by the optical oscillation as a bound-
ary value problem according to Ref. [69]. In short, Eq. (41)
was written as θ′′t + (bn + q ω0 cos (ω0t)) θt, where bn is

an unknown parameter, to be regarded as a discrete eigen-
value. Defining the domain as t ∈ [0, T ] and imposing as
boundary conditions θt(0) = 1, and θ′t(0) = θ′t(T ) = 0
(cosine-like solutions), the eigenvalues bn were found it-
eratively, starting from a guess solution θt = cos(nπt/T )
and a guess value bn. The convergence is fast, and the ob-
tained parameters bn can be regarded as the discrete eigen-
values ω2

θ associated to eigenfunctions θt.

In order to see how the optical-acoustic interaction
qualitatively works, since the energy of optical phonons is
usually higher than acoustics’, it makes sense to set ω0 =
cskN . It is interesting that for q 6= 0 the present formula-
tion predicts the existence of mini-gaps opening inside the
Brillouin zone, for ωθ ≈ 0.5ω0, as visible in Figure 4. This
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is a feature typical of Mathieu’s equation: a periodic mod-
ulation induces a Bragg-like condition that prevents the
phonon propagation. Similar behavior was predicted and
experimentally observed by Raman spectroscopy in super-
lattices:70–73 in both cases, there is a periodic modulation
(caused by the optical mode according to the present work,
or caused by the superlattice in the cited cases) that in-
duces a Bragg condition which prevents the phonon propa-
gation when its frequency is around half of the modulation
frequency. Furthermore, piezoelectrical coupling of optical
and acoustic phonon modes was found also in zinc-blende
GaAs quantum-well slabs61, 74 and theoretically calculated
for wurzites in the Lagrangian formalism in Ref. [75], con-
firming by different approaches the existence of the phe-
nomenology described in the present work.

6 Conclusions We investigated in depth the emer-
gence of acoustic phonons in crystalline solids, both as
Goldstone and as gauge bosons. The acoustic phonon was
previously acknowledged as the gauge boson appearing
when the electron’s Lagrangian in a crystalline solid is re-
quested to be locally invariant with respect to the group of
spatial translations, whose generators appear broken due to
the lattice itself.

However, the gauging of the translations group is not
trivial: in order to better explain the context, first we re-
viewed the differences between the gauging of spatial (ex-
ternal) and internal symmetries, as in Yang-Mills’ theories.
Then, exploiting the mathematical similarities between the
sonic (or acoustic) metric and the Lorentzian metric of
the ordinary space-time, we gauged the translations group
in solid crystals following the same tetrad (or vierbein)
formalism employed to express the General Relativity as
a gauge theory with space-time translations as structure
group. This allowed to compare the dynamical role of
the crystal elasticity tensor in solid state physics and the
Ricci’s tensor in General Relativity at a more formal and
rigorous level than before. The subsequent analysis showed
that, beyond the linear limit, the translations group’s non-
Abelianity may generate a gap in the frequency dispersion
relation of the acoustic phonon, as if a mass-like term were
present in its free field Lagrangian, although this is not the
case.

In order to better investigate the latter point, we con-
sidered a different scenario, driving attention to the prob-
lem of understanding the nature of the optical phonons
in standard solids. We showed that both the acoustic and
optical phonon emerge respectively as the gapless Gold-
stone (phase) and the gapped Higgs (amplitude) fluctua-
tion mode of an order parameter arising from the spon-
taneous breaking of a global symmetry, without invoking
the gauge principle. In greater detail, following the linear-
sigma model approach the Higgs’ mechanism is shown to
generate a massive amplitude (Higgs) mode that we iden-
tify with the optical phonon, with gapped frequency disper-
sion relation due to the mass-like term. At the same time,

the Higgs’ mechanism generates a massless phase (Gold-
stone) mode, the acoustic phonon. A frequency-gap only
appears in the strong nonlinear regime, and it is due to an
anharmonic term, the same that arises from the gauging of
the spatial translations group, an approach which did not
provide any description of the optical phonon, though.

Although the SSB is a well known phenomenon, it
turns out that it is able to describe not only novel aspects
of material science (like e.g. Cooper pair plasmon modes
in superconductors layered cuprates and thin films8, 76), but
also an old acquaintance of the solid state physics, as the
acoustic and optical phonons in crystals. In particular, the
Higgs mechanism describes all the phonon-phonon inter-
actions, including a possible perturbation on the acous-
tic phonon’s frequency dispersion relation induced by the
eventual optical phonon, a peculiar behavior not described
so far, at the best of author’s knowledge, able to produce
unexpected mini-gaps inside the Brillouin zone.
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