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Abstract

Shear and membrane locking phenomena are fundamental issues of shell “nite
element models. A family of re“ned shell elements for laminated structures has been
developed in the framework of Carrera Uni“ed Formulation, including hierarchical
elements based on higher-order Legendre polynomial expansions. These hierarchical
elements were reported to be relatively less prone to locking phenomena, yet an
exhaustive evaluation of them regarding the mitigation of shear and membrane
locking on laminated shells is still essential. In the present article, numerically e�cient
integration schemes for hierarchical elements, including also reduced and selective
integration procedures, are discussed and evaluated through single-elementp-version
“nite element models. Both shear and membrane locking are assessed quantitatively
through the estimation of strain energy components. The numerical results show that
the fully integrated hierarchical shell elements can overcome the shear and membrane
locking e�ectively when a su�ciently high polynomial degree is reached. Reduced and
selective integration schemes can help with the mitigation of locking on lower-order
hierarchical shell elements.
Keywords: Shell models, Hierarchical elements, Carrera Uni“ed Formulation, Shear
locking, Membrane locking

Introduction
Shell structures, especially composite laminated shells, have been widely used in mod-
ern engineering due to their high e�ciency in holding loads. A variety of shell theo-
ries have been proposed, including the Classical Lamination Theory (CLT) based on
Kirchho�…Love hypothesis [1…3], the First-Order Deformation Theory (FSDT) based on
the Mindlin…Reissner assumption [4,5], a series of Higher-Order Theories (HOT) [6…8],
and a variety of re“ned shell theories generated in the framework of Carrera Uni“ed For-
mulation (CUF) [9]. Re“ned shell theories have been implemented in the Finite Element
(FE) method and can provide solutions with great accuracy [10,11]. Towards implement-
ing numerically e�cient simulation methods for multi-layered structures, hierarchical
functions have been adopted in the construction of re“ned shell elements in the frame-
work of CUF [12]. Nevertheless, the e�ectiveness of hierarchical functions concerning the
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mitigation of shear and membrane locking on re“ned multi-layered shell “nite elements
remains to be quantitatively assessed.

The locking phenomena are caused by the greatly overestimated sti�ness of thin struc-
tures and will lead to a loss of convergence rate of the numerical solution. If no treatment
is introduced, the meshes of the shell FE models have to be immensely re“ned, which
makes the analysis numerically prohibitive. Shear locking, caused by the so-called •par-
asitic shearŽ in the bending of a thin shell, is a typical locking phenomenon [13]. Due to
the incompetence of the shell elements in capturing the bending deformation appropri-
ately, the strain energy is absorbed by the shear mode erroneously. As the shell structures
become thinner, the transverse shear energy approaches zero, physically. On the other
hand, membrane locking can be observed on shell elements when bending deformation is
incorrectly accompanied by the stretching of the mid-surface, and the membrane energy
overshadows the bending part [14,15].

Pioneering simple remedies to the locking phenomena are the reduced integration and
selectively reduced integration techniques [13,16]. Zienkiewicz et al. [13] pointed out
that by reducing the order of numerical integration, the sti�ness of displacement-based
“nite elements can be decreased. The main idea of selective integration is to reduce the
shear sti�ness, and the reduced quadrature is selectively used on the sti�ness component
related to transverse shear. This method is reported to be useful in bending problems yet
was found less e�ective compared with uniformly reduced integration on all the sti�ness
components for general shell problems [13]. This reduced integration approach brings
signi“cant improvement to the convergence rate. The equivalence of the reduced inte-
gration procedure with mixed formulation was demonstrated by Malkus and Hughes [16]
and Zienkiewicz and Nakazawa [17].

A drawback of the reduced integration technique is the introduction of •spurious modesŽ
due to the erroneously evaluated sti�ness matrix. A typical example is the •hour-glassŽ
mode of four-node bi-linear shell element with reduced integration. Zienkiewicz and
Taylor [18] commented that for general applications mixed elements are preferred than
reduced integration procedures. This numerical singularity problem can also be avoided
by using alternative techniques such as the Mixed Interpolation of Tensorial Components
(MITC) proposed by Bathe et al. [19…22]. In the MITC formulation, the shear locking can
be overcome by the additional independent interpolation functions for the transverse
shear strains. This approach is also referred to as the •assumed shear strain “eldŽ method
[23]. The link between MITC formulation and the Hellinger…Reissner mixed variation
principle was demonstrated by Bathe et al. [22]. The mathematical justi“cation of MITC
formulation was established through the Babuska…Brezzi conditions [24]. In the frame-
work of CUF, MITC has been successfully applied to build locking-free re“ned elements
with variable kinematics for multi-layered plates by Carrera et al. [25…27] and for shell
structures by Cinefra and Valvano [11] and Carrera et al. [26]. An extension of MITC
technique to beam elements was also addressed by Carrera et al. [28]. Very recent devel-
opments of four-node MITC elements were presented by Ko et al. [29,30].

Indeed, shear locking e�ects are more pronounced on low-order elements [31]. The loss
of convergence can be alleviated by adopting higher order elements [32,33], such as higher-
order hierarchical elements [34,35]. A combination of hierarchical elements and mixed
interpolation method was proposed and applied to isotropic plates based on Reissner…
Mindlin assumption by Scapolla and Della Croce [36,37]. An application of hierarchi-
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Fig. 1 Notation of a shell model for laminated structures

cal elements using Naghdi shell model on isotropic structures was reported by Chinosi
et al. [38]. The selective and reduced integration schemes on hierarchical elements were
primarily discussed by Della Croce and Scapolla [39]. Carrera et al. [12] reported a com-
parison between shell elements with MITC and plain hierarchical shape functions in the
analysis of laminated structures.

The numerical e�ciency of the hierarchical elements has been reported by many
researchers [34,35,40,41]. In the framework of CUF, this type of hierarchical functions
has been used on re“ned beam [42], plate [43], and shell [12] “nite element models for
multi-layered structures. Via re“ned hierarchical 2D elements, the FE models can be
mathematically enriched on both the kinematic and shape function levels, leading to an
adaptable re“nement FE approach with optimal numerical e�ciency. This article aims
to present the evaluation of hierarchical elements concerning the mitigation of shear
and membrane locking phenomena in the analysis of multi-layered shells. In the follow-
ing sections, we “rst introduce the multi-layered shell models and CUF brie”y. Then,
an energy decomposition method is presented for re“ned shell models based on CUF.
Thirdly, numerically e�cient full, reduced, and selective integration schemes are dis-
cussed. Finally, the mitigation of shear locking and membrane locking is demonstrate
through two numerical examples, respectively. The numerical evaluations are compared
against available analytical solutions in the literature.

ReÞned shell Þnite element formulation
Preliminaries of multi-layered shell model

Figure 1 shows a typical laminated shell structure with curvatures. This geometry can
be described in the orthogonal curvilinear reference system (� , � , z), in which � and
� indicate the two in-plane directions andz the through-thickness direction which is
usually measured with reference to the middle surface. The in“nitesimal in-plane areadS
and volumedV can be written as:

dS = H� H� d� d� = H� H� d� , (1)

dV = H� H� Hz d� d� dz. (2)
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whered� is the in“nitesimal in-plane area on the middle surface, andH� , H� andHz are:

H� = A(1 + z/ R� ), H� = B(1 + z/ R� ), Hz = 1. (3)

in which R� andR� are the principal radii of the middle surface,A andB the coe�cients
of the “rst fundamental form of � . The present work considers only shells with constant
curvatures, for whichA = B = 1. For more details about shell formulations, the reader is
referred to [44,45].

The strains and stresses de“ned in the curvilinear reference system are:

� = { � �� , � �� , � zz, � � z, � � z, � �� }T (4)

� = { � �� , � �� , � zz, � � z, � � z, � �� }T (5)

The strains� can be obtained through the geometrical relations:

� = bu (6)

whereinu = { u, v, w}T is the displacement vector, andb the di�erential operators matrix,
whose explicit expression reads:

b =

�

�
�
�
�
�
�
�
�
�
�

� �
H�

0 1
H� R�

0 � �
H�

1
H� R�

0 0 � z

� z Š 1
H� R�

0 � �
H�

0 � z Š 1
H� R�

� �
H�

� �
H�

� �
H�

0

�

�
�
�
�
�
�
�
�
�
�

(7)

The stresses can be attained from the constitutive equations as follows:

� = C� (8)

in which C is the material coe�cients matrix which is obtained by transforming the
original form C0 from the material coordinate system (1,2,3) to the global system (� , � , z).
The orthotropic material coe�cients are characterized by nine independent coe�cients,
namely Young•s moduli, shear moduli, and Poisson ratios [7].

Carrera Uni“ed Formulation (CUF) for re“ned 2D models

Through Carrera Uni“ed Formulation (CUF), the displacement “eld of a shell structure
can be assumed as:

u(� , � , z) = F� (z)u� (� , � ) (9)

whereu� (� , � ) are the in-plane displacement vectors, and functionsF� (z) are related to
the theories of structures (TOS). SinceF� (z) depends only on the thickness coordinates,
they are also referred to as thickness functions. By increasing the polynomial order of
these thickness functions, the shell kinematic models can be re“ned. Both Equivalent-
Single-Layer (ESL) and Layer-Wise (LW) models can be accounted for in this framework,
as elaborated by Carrera et al. [46]. The FSDT [47] can be treated as a particular case of the
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HOT models adopting Taylor expansions (TE). In the LW model framework, Lagrangian
polynomial expansions (LE) can be used to formulate kinematics with only translational
degrees of freedom. More discussions about these two types of re“ned kinematic models
can be found in the work of Carrera et al. [46]. By using LE, the interfacial continuity
of transverse stresses can be approximately achieved when the thickness functions are
adequately re“ned, as demonstrated by Carrera et al. [26].

When the FE discretization is introduced, the in-plane displacements of a shell structure
are approximated through the shape functionsNi (� , � ) through:

u� (� , � ) = Ni (� , � )ui� (10)

in which ui� are nodal unknown variables. The above expression leads to FE formulation
in the framework of CUF:

u(� , � , z) = F� (z)Ni (� , � )ui�

	 u(� , � , z) = Fs(z)Nj (� , � )	 ujs
(11)

where 	 indicates the virtual variation. The above expression is compact through the
use of repeated indexes. By applying the Principle of Virtual Displacements (PVD), the
general expressions of the sti�ness matrix and load vector of the FE model, namely the
Fundamental Neuclei(FNs), can be obtained. The explicit expressions of the FNs are given
in [12]. As expounded by Carrera et al. [46], the CUF-type FE formulation is independent
of the kinematic assumptions adopted and is a general framework for the development of
re“ned FE models. For more details about the derivation of shell FE formulations in the
framework of CUF, the reader is referred to the work of Carrera et al. [46].

Decomposition of strain energy in re“ned shell models

For a general laminated shell structure, the strain energy can be decomposed into four
parts as follows:

Epn =
1
2

�

V
(
 �� � �� + 
 �� � �� ) dV (12)

Eps =
1
2

�

V

 �� � �� dV (13)

Ezs =
1
2

�

V
(
 � z � � z + 
 � z � � z)dV (14)

Ezz =
1
2

�

V

 zz � zz dV (15)

whereEpn represents the in-plane normal energy,Eps the in-plane shear energy,Ezs the
transverse shear energy, andEzz the thickness stretch energy. The transverse shear energy
allows us to evaluate the shear locking e�ects in shell elements. The introduction of the
thickness stretch energy makes it convenient to assess the performance of the adopted
structural theory. Note that the above decomposition applies to arbitrarily laminated shell
structures.

To calculate the strain energy components, their corresponding sti�ness matrices are
necessary. These matrices can be obtained through standard FE procedure in the frame-
work of CUF. Taking the transverse shear energyEzsas an example, by recalling the PVD,
one has:

	 Ezs =
�

V
(	
 � z� � z + 	
 � z� � z)dV = 	 ujs · kzs

ij � s · ui� (16)
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wherein kzs
ij � s is the FNs for the transverse shear sti�ness matrix of the element. By sub-

stituting the displacement approximations (Eq.11) into the geometrical relations (Eq.6),
and considering the constitutive equations (Eq.8), one obtains:

	
	
 � z

	
 � z




= bzs · 	 u =

�
� z Š 1

H� R�
0 � �

H�

0 � z Š 1
H� R�

� �
H�

�

· NjFs	 ujs (17)

	
� � z

� � z




= Czs · � =

�
C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

�

· (b NiF� ui� ) (18)

thus the FNs for the transverse shear sti�ness matrixkzs
it � s can be obtained as:

kzs
ij � s =

�

V
(bT

zsNjFs) Czs (b NiF� ) dV (19)

Through the assembly ofkzs
ij � s according to the standard procedure of FE formulation

in CUF framework, the transverse shear sti�ness matrixK zs can be obtained. When the
displacement solutions are obtained, the transverse shear strain energy can be calculated
through:

Ezs =
1
2

�

V
(
 � z � � z + 
 � z � � z)dV =

1
2

uT · K zs · u (20)

The in-plane normal sti�ness matrixK pn, in-plane shear sti�ness matrixK ps, and out-
of-plane normal sti�ness matrixK zzcan be achieved accordingly by means of the following
FNs:

kpn
ij � s =

�

V
(bT

pnNjFs) Cpn (b NiF� ) dV (21)

kps
ij � s =

�

V
(bT

psNjFs) Cps (b NiF� ) dV (22)

kzz
ij � s =

�

V
(bT

zzNjFs) Czz (b NiF� ) dV (23)

whereinbpn, bps, andbzz are the sub-matrices of the di�erential operators matrixb as in
Eq.7, and their explicit expressions are:

bpn =

�
� �
H�

0 1
H� R�

0 � �
H�

1
H� R�

�

(24)

bps =



� �
H�

� �
H�

0
�

(25)

bzz =


0 0 � z

�
(26)

and their corresponding material coe�cients matrices (sub-matrices of the material coef-
“cients matrix C) are as follows:

Cpn =

�
C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

�

(27)

Cps =


C61 C62 C63 C64 C65 C66

�
(28)

Czz =


C31 C32 C33 C34 C35 C36

�
(29)

In the end, the complete sti�ness FNs can be obtained as the summation of these terms
as:

kij � s = kpn
ij � s + kps

ij � s + kzs
ij � s + kzz

ij � s (30)
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If the multi-layered shell has symmetric lamination properties, the neutral surface of
bending will coincide with the geometrical middle surface, and the in-plane normal strain
energy, as in Eq.12, can be further decomposed into membrane energyEmemband bending
energyEbend conveniently through:

Ememb =
1
2

�

V
(
 0

�� � �� + 
 0
�� � �� ) dV (31)

Ebend =
1
2

�

V
[(
 �� Š 
 0

�� ) � �� + (
 �� Š 
 0
�� ) � �� ] dV (32)

wherein
 0
�� and
 0

�� are the normal strains due to the mid-surface straining, and they can
be attained by means of:

	

 0

��


 0
��




= bpn · u =

�
� �
H�

0 1
H� R�

0 � �
H�

1
H� R�

�

· NjFs(0) ujs (33)

By following the procedure described before,kmemb
ij � s , the FNs for the membrane sti�ness

matrix K memb, can be derived. The bending energy can be then obtained through:

Ebend = Epn Š Ememb (34)

This separation of membrane and bending energy components provides the conve-
nience to evaluate the existence of membrane locking and better understand the structural
responses. It should be noted thatEpn and Eps are both in-plane strain energy compo-
nents, however since in laminated plates and shells the calculationEpsdoes not dependent
on a speci“c neutral surface as the membrane and bending energy components do, it is
considered apart in the present article.

Integration schemes for hierarchical elements
This section addresses the e�cient integration schemes of 2D hierarchical elements with
full, reduced, and selectively reduced integration. According to Szabó et al. [35,41], the
hierarchical shape functions for 2D elements can be classi“ed intonodal modes, edge
modes, andsurface modes, which can be expressed in a uni“ed manner as:

Ni (� , � ) = 
 m(� )
 n(� ) (� , � ) � [Š1,1] (35)

in which the basis polynomials
 m(� ) and
 n(� ) are decided by their corresponding mode
and the polynomial degree, as it is illustrated in Fig.2.

In the FNs of sti�ness matrix as given by Li et al. [12], the contribution of the shape
functions to the sti�ness matrix accounts for the following integrals:

� NiNj � � , � NiNj,� � � , � NiNj,� � � ,

� Ni,� Nj � � , � Ni,� Nj � � , � Ni,� Nj,� � � ,

� Ni,� Nj,� � � , � Ni,� Nj,� � � , � Ni,� Nj,� � � .

(36)

where� · · · � � represents
�

� · · · d� d� . Among these terms, for giveni andj combination,
the polynomials with the highest order isNi · Nj . Consider the product ofNi andNj :

Ni (� , � ) · Nj (� , � ) = 
 m(� )
 n(� ) · 
 r (� )
 s(� ) = 
 m(� )
 r (� ) · 
 n(� )
 s(� ) (37)

Thus in the � and � directions, the highest polynomial orders arem + r and n + s,
respectively. For simplicity, in the present work, the same set of Gauss points are used to
calculate the above integrals of givenNi andNj .
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Fig. 2 Hierarchical 2D shape functions [35]

Full integration scheme

In Gauss…Legendre quadrature,n Gauss points guarantee the exact integration of a poly-
nomial of order 2n Š 1. For the exact integration of� NiNj � � , the least number of Gauss
points used in the� direction, NGX, should be:

NGX =

�
�

�
(m + r)/ 2 + 1, if m + r = 2N;

(m + r + 1)/ 2, if m + r = 2N + 1.
(38)

whereinN is an arbitrary positive integer. The above expression also applies to the calcu-
lation of number of Gauss points in the� direction, NGY, for an exact integration.

For classical Lagrangian elements, since all the shape functions have the same poly-
nomial order in both � and � directions, the scheme of Gauss points can be uniformly
decided. Di�erently, for hierarchical elements, the required number of Gauss points varies
according to di�erent combinations of shape functions. Also, in practice, for givenNi and
Nj , the same set of Gauss integration points can be used for the nine integrals in Eq.36,
which is determined by the highest polynomial order given byNi · Nj . Figure3 presents
two examples of the Gauss points distribution when full integration is used on hierarchical
elements. Figure3a shows the numerical calculation of� N13 · N14� � needs 3× 3 Gauss
points. � N13 · N15� � requires 5× 2 Gauss points for its full integration, as illustrated in
Fig.3b.

Reduced integration scheme

The reduced integration technique on the hierarchical elements can be used in the fol-
lowing manners: applying the reduced integration to polynomials with the highest order
among allNi · Nj combinations, and using full integration for all the lower-order polyno-
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(a)

(b)

Fig. 3 Gauss points used for the full integration of hierarchical shell elements. •FULLŽ represents the
adoption of the full integration approach

mials. In the hierarchical element with polynomial degreep, as shown in Fig.2 , Ni · Nj

with the highest orders is a combination of the edge modes:

Ni · Nj =

�
�

�

 p(� )
 1(� ) · 
 p(� )
 1(� ), in � direction;


 1(� )
 p(� ) · 
 1(� )
 p(� ), in � direction.
(39)

where the highest order of the polynomials to be integrated is 2p, and p Gauss points
are needed for the reduced integration. The product polynomials to be integrated in the
other direction are of the second order and are fully integrated by using two Gauss points.
Meanwhile, all the lower-order terms should be exactly integrated.

The hierarchical element withp = 4 can be taken as an example. The polynomials to
be integrated with the highest order in the� direction areN13 · N13, N13 · N15, N15 · N13,
and N15 · N15. Those with the highest order in the� direction are N14 · N14, N14 · N16,
N16 · N14, andN16 · N16. When the reduced integration scheme is adopted, 4× 2 Gauss
points should be used for the “rst group of polynomials (see Fig.4a), and a 2× 4 mesh of
Gauss points for the second set (see Fig.4b). For this fourth-order hierarchical element,
the integration schemes that should be used for di�erent blocks have been indicated in
Fig.5. Note that each block represented by a square is a sub-matrixK ij .

Selectively reduced integration scheme

In the selectively reduced integration method, the low-order integration is only applied to
those terms related to the transverse shear sti�ness. This technique is aimed to reduce the
transverse shear sti�ness to alleviate the shear locking phenomenon. These components
can be determined by considering the FNs of the transverse shear sti�ness matrix in Eq.19.
Also, the sub-matrices of the sti�ness matrixK ij that should be selectively integrated
follow the same rule as the reduced integration technique as discussed in the •Reduced
integration schemeŽ section.
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(b)

(a)

Fig. 4 Gauss points used for the reduced integration of hierarchical shell elements withp = 4. •RXŽ and •RYŽ
indicate reduced integration in the� and� directions, respectively

Fig. 5 Reduced integration scheme for an hierarchical element withp = 4. •RXŽ: reduced integration in the
� direction; •RYŽ: reduced integration in the� direction; •FULLŽ: full integration in both directions

Properties of the sti�ness matrix of hierarchical elements with reduced and selective

integration

When reduced and selective integration techniques are used on low-order Lagrangian
elements, spurious modes may occur. In this section, the eigenvalues of hierarchical ele-
ments with reduced and selective integration are calculated respectively to examine the
properties of their sti�ness matrices.

The adopted FE models consist of only one element. This square element has the in-
plane geometry of 1× 1 and contains only one layer with thicknessh = 1. The used
isotropic material hasE = 109 and � = 0.3. The kinematic model (TOS) chosen is LE1
(LW model with Lagrangian “rst-order polynomials). A plate model without curvatures
is used which is adequate for the examination of the shape function properties.
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(a) (b) (c)

Fig. 6 Eigenvalues of hierarchical elements with reduced integration (REDI) and selective integration (SELI)

Figure6 reports the eigenvalues of the sti�ness matrices of hierarchical elements (p =
1,2,3) with reduced and selective integration. Note that hierarchical elements withp = 1
are equivalent to standard Q4 (four-node quadrilateral Lagrangian) element. Figure6a
shows that whenp = 1, both reduced and selective integration schemes lead to more than
six zero eigenvalues numerically, which means the elements are not robust. From Fig.6b,
it can be observed that for polynomial degreep = 2, the reduced integration leads to
two spurious modes (which is equal to the number of thickness functions used), and the
element with selective integration has exactly six rigid-body modes. When the polynomial
degree is further increased top = 3, the spurious modes are eliminated on the elements
with reduced integration, see Fig.6c. The results demonstrate that, it can be guaranteed
that there is zero spurious mode for the reduced integrated hierarchical elements when
p � 3, and no spurious mode exists for selective integration whenp � 2.

Results and discussion
This section presents two numerical examples on laminated shells considering a wide
range of aspect ratio. Single-element FE models are used withp-version re“nements. It is
obvious that an element with only linear shape functions is not adequate for the modeling,
thus the re“nement of the shape functions starts fromp = 2. The polynomial degree is
increased till the chosen convergence threshold is reached. Two kinds of TOS are used
in the numerical modeling, namely the FSDT and LE4 (LW model with fourth-order
Lagrange polynomials in each layer, see Carrera et al. [46]). These two theories are com-
pared through elements with full integration. Then, with LE4 theory, di�erent integration
techniques on the hierarchical elements are compared, including full integration (FULL),
reduced integration (REDI), and selective integration (SELI). Besides the displacement
and stress evaluations, the strain energy components are also reported. The numerical
results are compared against available analytical reference solutions.

Three-layered cylindrical shells under distributed pressure

Three-layered cylindrical shells with symmetric lamination (0� / 90� / 0� ) are studied. The
analytical solutions were presented by Varadan and Bhaskar [48]. The three layers have
equal thicknessh/3. Radius-to-thickness ratiosR� / h ranging from 2 to 500 are inves-
tigated. The cylindrical shells are simply supported on the two ends and subjected to
transverse distributed pressure on the inner surface. The load distribution follows:
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Fig. 7 The three-layered simply supported cylindrical shells under inner distributed pressure

p(� , � ) = Š p0 sin
� �
L

cos
4�
R�

(40)

whereL is the cylinder length andR� the middle surface radius, andL = 4R� . Figure7a,
b illustrate the axial variation and the sectional pro“le of the pressure load, respectively.
The material coe�cients of the lamina are:EL = 25ET , GLT = 0.5ET , GTT = 0.2ET , and
� LT = � TT = 0.25, where the subscriptsL andT represent the longitudinal and transverse
directions of the “bers, respectively. By taking advantage of the symmetric features in the
cylinder axial direction and the cyclic conditions in the circumferential direction, 1/16 of
the structure is taken to build the FE model, as indicated by the shaded zone in Fig.7. The
displacement and stress results are non-dimensionalized through:
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10ELh3
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L
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2
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,
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h
2

�
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2

�
,
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Šh
4

�
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,
b
16

,
h
4

�
,

�̄ zz = Š
1
p0

� zz

�
L
2

,0,
h
4

�
.

(41)

The 1/16 FE models contain only one element, and the numerical accuracy is improved
by increasing the polynomial degree gradually when the relative di�erence compared to
the one-order-lower case is less than 1% regarding the de”ection and stresses as well
as the energy components. Considering the load distribution, this benchmark is quite
challenging for a single-element model. Table1 summarizes the converged solutions for
each radius-to-thickness ratio value. In general, as the shell structure gets thinner, a higher
polynomial degree is required to achieve the desired accuracy. The displacement and stress
evaluations obtained with LE4 kinematics agree well with the reference solutions given by
Varadan and Bhaskar [48]. The accuracy of the FE results of the thick shell (R� / h = 2) can
be further improved by re“ning the thickness functions (TOS), as reported by Li et al. [12].
FSDT leads to good estimation of displacement and in-plane stresses for the thinner shells
(R� / h = 50,100,500), but fails in other stresses. Also, unlike the LE4 kinematic model,
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(a) (b)

(c) (d)

(f)(e)

Fig. 8 Convergence regarding the normalized de”ection of FE models for the three-layered cylindrical shells
under distributed pressure, for various radius-to-thickness ratioR� / h

FSDT ignores the stretch e�ects in the thickness direction which may play an essential
role in thick shells, such as theR� / h = 2 andR� / h = 4 cases in this numerical example.

The convergence of the normalized de”ections for each aspect ratio is shown in Fig.8,
in which �w = w̄/ w̄ref and w̄ref is the reference de”ection solution. Figure9 reports
the convergence of the FE model regarding the strain energy error, which is calculated
by taking the converged solution employing LE4 kinematics with full integration as the
reference. It can be observed that for shells with di�erentR� / h values, convergence is
achieved at di�erent polynomial degrees. Generally, the thinner the shell structure is, the
higher polynomial order will be required. Compared to the full integration scheme, the
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(b)

(d)

(e) (f)

(c)

(a)

Fig. 9 Convergence regarding the strain energy of FE models for the three-layered cylindrical shells under
distributed pressure, for various radius-to-thickness ratioR� / h

reduced integration technique can help to increase the accuracy in the low-order cases, but
the eventual convergence is reached at the same time with full integration. Note that for
this single-element model, the detected spurious modes in reduced integrated elements
with p = 2 are not observed to be a signi“cant problem. Notably, the selectively reduced
integration improves the accuracy of the single-element FE model withp = 2 and leads to
results quite close to those obtained with full integration in the higher-order cases (p � 3).
When the numerical convergence is reached, all the three kinds of integration schemes
lead to results that agree well with the reference solutions.
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 10 Variation of strain energy components on the three-layered cylindrical shells under distributed
pressure with respect to the element polynomial degree, for various radius-to-thickness ratioR� / h
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(a) (b)

(d)(c)

(e)

Fig. 11 Energy components versus radius-to-thickness ratioR� / h on the three-layered cylindrical shells
under distributed pressure

Figure10shows the variation of the ratio of strain energy components with the increase
of the polynomial degree of the hierarchical element. Regarding Fig.10:

€ It can be found that for the transverse shear energy, the FSDT and LE4 models with
full integration have the same trend.

€ For R� / h = 2,4 and 10, the in-plane shear energy is less than 1%, which can be
neglected (see Fig.11c); as the radius-to-thickness ratio increases, theEps becomes
more signi“cant and is plotted for comparison in Fig.10.

€ The disagreement of FSDT and LE4 in Fig.10 is due to that the thickness stretch
e�ects are accounted in LE4 model but ignored by FSDT. When the thickness stretch
energy is negligible (less than 1% forR� / h = 50,100,500), the transverse shear energy
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Fig. 12 Three-layered cylindrical panel under simple supports on two ends

obtained with FSDT and LE4 is quite close, which demonstrates that the kinematic
assumptions do not a�ect the shear locking in thin shells.

€ The fully integrated lower-order hierarchical elements (p = 2,3,4) su�er from lock-
ing on the thinner shells (R� / h = 50,100,500), and this locking can be overcome by
increasing the polynomial degreep without using any locking-mitigation techniques.

€ When the reduced and selective integration schemes are employed, the shear locking
phenomenon on the elements withp = 2 can be greatly alleviated. However, these
techniques become less in”uential when the polynomial degree is further increased,
as shown in Fig.10d…f. Since the newly introduced shape functions lead to improved
accuracy, the higher the polynomial degree is, the less necessary the reduced inte-
grated polynomials will become. This e�ect is more evident for selective integration.

€ It should be pointed out that, models with these three integration schemes will con-
verge to comparable solutions when the polynomial order is su�ciently high.

€ Figure10 clearly demonstrates that shear locking is the dominant locking phe-
nomenon for this numerical example.

The variation of the energy components with the radius-to-thickness ratioR� / h is sum-
marized in Fig.11. This variation provides a comprehensive understanding of the struc-
tural responses when the shell thickness decreases. It can be observed that the membrane
energy ratio keeps increasing monotonically with the reduction of the shell thickness, and
the ratios of transverse shear energy and thickness stretch energy decrease and approach
zero when the shell is very thin (R� / h = 100,500). In general, the energy ratio of the
in-plane shear strains increases when the shell gets thinner. The bending energy is sig-
ni“cant for moderate-thin shells. To sum up, the transverse strain energy components
(transverse shear and thickness stretch) become less dominant with the decrease of the
shell thickness.
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Table 2 Displacement and energy evaluation of the three-layered cylindrical panel under
bending, obtained through hierarchical elements with p = 7

R� /h TOS Integration w̄ (%)… Ememb/ E (%) Ebend/ E (%) Eps/ E (%) Ezs/ E (%) Ezz/ E (%)

10 FSDT FULL 294.5 0.0 20.5 0.0 79.5 …

LE4 FULL 330.4 0.0 17.0 0.0 59.5 23.5

LE4 REDI 329.9 0.0 17.0 0.0 59.4 23.6

LE4 SELI 330.4 0.0 17.0 0.0 59.5 23.5

100 FSDT FULL 61.67 0.0 96.3 0.0 3.7 …

LE4 FULL 62.45 0.0 95.0 0.0 5.0 0.0

LE4 REDI 62.33 0.0 95.0 0.0 5.0 0.0

LE4 SELI 62.45 0.0 95.0 0.0 5.0 0.0

1000 FSDT FULL 59.57 0.0 100.0 0.0 0.0 …

LE4 FULL 59.58 0.0 99.9 0.0 0.1 0.0

LE4 REDI 59.48 0.0 99.9 0.0 0.1 0.0

LE4 SELI 59.58 0.0 99.9 0.0 0.1 0.0

5000 FSDT FULL 59.61 0.0 100.0 0.0 0.0 …

LE4 FULL 59.61 0.0 100.0 0.0 0.0 0.0

LE4 REDI 59.52 0.0 100.0 0.0 0.0 0.0

LE4 SELI 59.61 0.0 100.0 0.0 0.0 0.0

Simply supported cylindrical panel under bending

This numerical example consists of three-layered cylindrical panels that undergo bend-
ing, as shown in Fig.12. The cylindrical panels have radiusR� = 10, mid-surface arch
length b = R� · � / 20 in the � direction, and lengthL = 4.0 along the cylinder axis (�
direction). The radius-to-thickness ratios considered includeR� / h = 10,100,1000, and
10,000. The materials used are the same as in •Three-layered cylindrical shells under dis-
tributed pressureŽ section. The lamination sequence is (0� / 90� / 0� ), and the thicknesses
of the three layers areh

4, h
2, and h

4, separately. As illustrated in Fig.12b, the cylindrical
panels are simply supported on the two ends along the cylinder axis, and free on the other
two edges. The simple supports follow:

� = Š
b
2

,
b
2

: u = 0, w = 0. (42)

The structure is imposed to constant pressure loadp0 on the top surface. The vertical
displacementw is non-dimensionalized through the following parameters:

w̄ = Š
104ELh3

p0R4
�

w
�

L
2

,0,0
�

(43)

By making use of the symmetric features of the boundary conditions, a 1/4 FE model
with one rectangular hierarchical element is employed, as demonstrated in Fig.12a. The
one-element model is re“ned by increasing its polynomial degree of the hierarchical
shape functions until the relative di�erence of two neighboring orders is less than 0.5%
regarding the displacement evaluation ¯w. On the whole,p = 7 is su�cient to guarantee the
convergence. The displacement evaluation ¯w and strain components estimation obtained
through hierarchical elements withp = 7 are listed in Table2.

Figures13 and 14 summarize the convergence of the FE models with the increase of
the polynomial degree concerning the normalized displacement evaluation and error of
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(a) (b)

(d)(c)

Fig. 13 Convergence regarding the normalized de”ection of FE models for the simply supported cylindrical
panels under bending, for various radius-to-thickness ratioR� / h

(a) (b)

(d)(c)

Fig. 14 Convergence regarding the strain energy of FE models for the simply supported cylindrical panels
under bending, for various radius-to-thickness ratioR� / h










