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Abstract

Consider a vector (X,Y ) that describes the failure times of two non-independent components

of a system. Assuming that the first component has survived up to a given time t > 0, i.e.,

assuming X > t, one can define the corresponding residual lifetime under different assumptions

on the failure of the second component, having lifetime Y . In particular, one can observe that

the second component has not failed before a time s ≥ 0 (maybe different from t), thus the

conditioned residual lifetime X̃t = [X − t|X > t, Y > s] can be considered, or one can not

observe Y , and in this case the conditioned residual lifetime Xt = [X − t|X > t] has to be

studied. This note deals with conditions on the survival copula of (X,Y ) such that X̃t and Xt

are comparable according to the main reliability stochastic orders. Similar conditions, based

on the connecting copula of (X,Y ), are described also for the conditioned inactivity times

X̃t = [t−X|X ≤ t, Y ≤ s] and Xt = [t−X|X ≤ t].
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1 Introduction

Stochastic comparisons between univariate random lifetimes or residual lifetimes have been defined

and applied in a variety of contexts in the last decades (see, e.g., the monographs Müller and

Stoyan, 2002, Shaked and Shanthikumar, 2007, and Belzunce et al., 2015, for detailed properties

and applications of the main univariate stochastic orders). It is a remarkable fact that most of the

univariate stochastic orders considered in reliability literature are based on comparisons between

the marginal distributions of the involved lifetimes, without taking care of possible effects due to

dependence. However, when one considers a pair of components having non-independent lifetimes,

and observes that one of them survived up to a time t > 0, the knowledge about the failure of the

other component can strongly modify the distribution of the residual lifetime of the first. This fact

has been clearly pointed out, for example, in Belzunce et al. (2016), where different counterexamples

have been provided to show that the usual stochastic order between [X − t|X > t, Y > t] and

[Y − t|X > t, Y > t], for any t ≥ 0, does not imply, neither is implied by, the stochastic order

between [X − t|X > t] and [Y − t|Y > t].

Thus, given a vector (X,Y ) that describes the failure times of two non-independent components

of a system, clearly the distribution of the residual life Xt = [X − t|X > t] differs from that

of X̃t = [X − t|X > t, Y > s] when dependence exists among X and Y . In particular, it is

rather intuitive to assume that X̃t stochastically increases as the dependence among X and Y

increases according to some positive dependence notion (and, viceversa, decreases under negative

dependence). Also, heuristic arguments allow one to assume that X̃t is greater than Xt, according

to some stochastic order, under positive dependence among X and Y .

The aim of this note is to survey and formalize these intuitions, providing conditions on the

copula or on the survival copula of the vector (X,Y ), when it exists, such that X̃t and Xt defined as

above are stochastically comparable according to the main stochastic order considered in reliability

literature, i.e., the usual stochastic order, the likelihood ratio order, the hazard rate order, the

reversed hazard order and the mean residual life order. Similar results are provided also for the

inactivity times Xt = [t−X|X ≤ t] and X̃t = [t−X|X ≤ t, Y ≤ s]. It should be pointed out that,

while conditions for some of these comparisons are known or easy to prove, the same can not be

asserted for other orders, and interesting equivalences come out, as described along the paper.

The organization of this note is the following. In Section 2 we briefly recall some useful notions.

In Section 3 we provide conditions for stochastic orders between the residual lifetimes X̃t and Xt, as

well as conditions for stochastic orders between the inactivity times X̃t and Xt. A brief discussion

about the assumptions that should be satisfied by the copulas for the stochastic comparisons is

provided in Section 4. Finally, possible applications of the main results in risk theory are briefly

mentioned in Section 5.

Along this note the following notation is adopted. The terms “increasing” and “decreasing”

are used in place of “nondecreasing” and “nonincreasing”, respectively. For any random variable

or random vector X and an event A, the notation [X|A] describes the random variable whose

distribution is the conditional distribution of X given A. Given a univariate or bivariate distribution

function F , the corresponding univariate or bivariate survival function is denoted F . To simplify

notations, we will also assume that the involved lifetimes have support on the whole set R+, even
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if the stated results hold for lifetimes having finite supports.

2 Notations and useful notions

Let (X,Y ) be a pair of absolutely continuous random lifetimes having support on S2 = R+ ×
R+, having joint distribution function F (x, y) = P [X ≤ x, Y ≤ y] and corresponding marginal

distribution functions FX and FY . Assuming that X > t and Y > s for given t, s ≥ 0, we denote

Xt = [X − t|X > t] and X̃t = [X − t|X > t, Y > s].

On the contrary, assuming that X ≤ t and Y ≤ s for given t, s ≥ 0, we denote

Xt = [t−X|X ≤ t] and X̃t = [t−X|X ≤ t, Y ≤ s].

It is easy to verify that, for x ≥ 0,

FXt(x) =
F (x+ t, 0)

F (t, 0)
and F

X̃t
(x) =

F (x+ t, s)

F (t, s)
, (2.1)

while, for x ≤ t,

FXt(x) =
F (t− x,+∞)

F (t,+∞)
and F

X̃t(x) =
F (t− x, s)
F (t, s)

. (2.2)

As described in the next sections, conditions for stochastic comparisons among the above defined

residual lifetimes and inactivity times can be described in terms of the connecting copula of (X,Y ),

or in terms of the corresponding survival copula, whose definitions are recalled here. Let (X,Y ) be

a pair of random lifetimes as above.

• The function C : [0, 1]2 → [0, 1] such that, for all (x, y) ∈ S2,

F (x, y) = C(FX(x), FY (x))

is said to be the connecting copula of (X,Y ). In this case, it also holds

C(u, v) = F (F−1X (u), F−1Y (v)) for all u, v ∈ [0, 1].

• The function C : [0, 1]2 → [0, 1] such that, for all (x, y) ∈ S2,

F (x, y) = C(FX(x), F Y (y))

is said to be the survival copula of (X,Y ). In this case, it also holds

C(u, v) = F (F
−1
X (u), F

−1
Y (v)) for all u, v ∈ [0, 1].
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We observe that from a mathematical viewpoint, survival copulas and connecting copulas turn

out in any case to be copulas, and that they both describe the dependence structure of (X,Y ).

Also, it is well known that if the marginal distributions are continuous then the connecting copula

C and the survival copula C are unique. For this reason we will assume here, and everywhere

throughout the paper, continuity of the marginal distributions for the vector (X,Y ). We address

the readers to the monographs Nelsen (2006) and Durante and Sempi (2015) for further details.

Some of the most relevant stochastic orders of interest in reliability field, that will be used

throughout this paper to compare random lifetimes or inactivity times, are recalled now. For it, let

X1 and X2 be two absolutely continuous random variables having common support R+, distribution

functions F1 and F2 and density functions f1 and f2, respectively. We say that X1 is smaller than

X2

• in the usual stochastic order (denoted by X1 ≤ST X2) if F 1(t) ≤ F 2(t) for all t ∈ R+;

• in the hazard rate order (denoted by X1 ≤HR X2) if the ratio F 2(t)/F 1(t) is increasing in

t ∈ R+;

• in the reversed hazard rate order (denoted by X1 ≤RHR X2) if the ratio F2(t)/F1(t) is in-

creasing in t ∈ R+;

• in the likelihood ratio order (denoted by X1 ≤LR X2) if the ratio f2(t)/f1(t) is increasing in

t ∈ R+;

• in the mean residual life order (denoted by X1 ≤MRL X2) if E[X1−t|X1 > t] ≤ E[X2−t|X2 >

t] for all t ∈ R+, i.e., if the ratio
∫ +∞
t F 2(s)ds /

∫ +∞
t F 1(s)ds is increasing in t ∈ R+.

We address the reader to Shaked and Shanthikumar (2007) for a detailed description of these

stochastic orders and to Barlow and Proschan (1975) for a list of examples of applications in

reliability theory. Here, in particular, we just point out that:

• X1 ≤HR X2 if, and only if, [X1 − t|X1 > t] ≤ST [X2 − t|X2 > t] for all t ∈ R+,

• X1 ≤RHR X2 if, and only if, [t−X1|X1 ≤ t] ≥ST [t−X2|X2 ≤ t] for all t ∈ R+

• X1 ≤LR X2 if, and only if, [X|a ≤ X ≤ b] ≤ST [X2|a ≤ X2 ≤ b] for all a ≤ b, a, b ∈ R+.

Hence, the hazard rate order and the reversed hazard rate order are equivalent to compare residual

lifetimes and inactivity times of items, respectively, at any age t ≥ 0. Analogously, the likelihood

ratio order can be used to compare both residual lifetimes and inactivity times, while this is not the

case for the weaker usual stochastic order. Moreover, the following relationships are well known:

X1 ≤LR X2 ⇒ X1 ≤HR X2 ⇒ X1 ≤MRL X2

⇓ ⇓ ⇓
X1 ≤RHR X2 ⇒ X1 ≤ST X2 ⇒ E(X1) ≤ E(X2).
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Finally, we recall the definition of TP2 functions: a non-negative function g : R2 → R+ is said to

be Totally Positive of order 2 (TP2) if

g(x1, y1)g(x2, y2)− g(x1, y2)g(x2, y1) ≥ 0 for all x1 ≤ x2 and y1 ≤ y2.

For an exhaustive monograph on properties and applications of TP2 functions in probability and

statistics we refer the reader to Karlin (1968).

3 Stochastic comparisons of residual lifetimes

Let (X,Y ) be a vector of absolutely continuous random lifetimes having survival function

F (x, y) = exp(−x− y) +
sin(2π exp(−x)) sin(2π exp(−y))

8π2
, x, y ≥ 0. (3.1)

Note that, marginally, X and Y are exponentially distributed, and are connected by the survival

copula described in subsequent Example 4.3. It is not difficult to verify that, fixed s ≥ 0, the

corresponding residual lifetimes Xt e X̃t, whose survival functions are defined in (2.1), are not

always comparable according to the usual stochastic order. See, for example, Figure 1, which gives

the difference FXt(x)− F
X̃t

(x) for t = 0.03 and s = 0.06.

Figure 1: Plot of the difference FXt(x) − F
X̃t

(x) = F (x + t, 0)/F (t, 0) − F (x + t, s)/F (t, s) for F

defined as in (3.1), t = 0.03 and s = 0.06.

Thus, stochastic orders between Xt e X̃t are not always satisfied. Conditions on the survival

copula C of the vector (X,Y ) such that Xt and X̃t are stochastically ordered for all t, s ≥ 0

are described in this section. The first proposition, which is easy to prove, deals with the usual

stochastic order and the hazard rate order.

Proposition 3.1. Let (X,Y ) be a pair of absolutely continuous random lifetimes having survival

copula C. The following statements are equivalent.

(a) C(u,v)
u is decreasing in u for all v ∈ [0, 1];
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(b) Xt ≤HR X̃t for all t, s ∈ R+;

(c) Xt ≤ST X̃t for all t, s ∈ R+.

Proof. [(a)⇒ (b)]. Observe thatXt ≤HR X̃t for all t, s ∈ R+ if, and only if, the ratio FXt(x)/F
X̃t

(x)

is increasing in x, i.e., by (2.1), if and only if F (x+ t, s)/F (x+ t, 0) is increasing in x, that can be

restated as

F (t1, 0)F (t2, s) ≥ F (t1, s)F (t2, 0) ∀ 0 ≤ t1 ≤ t2 and s ≥ 0. (3.2)

Inequality (3.2) is the same as

C(FX(t1), F Y (0)) C(FX(t2), F Y (s)) ≥ C(FX(t1), F Y (s)) C(FX(t2), F Y (0)) (3.3)

for all 0 ≤ t1 ≤ t2 and s ≥ 0. Letting FX(t1) = z, FX(t2) = u and F Y (s) = v, and observed that

FX(t1) ≥ FX(t2), the inequality (3.3) can be rewritten as

C(z, 1)C(u, v) ≥ C(z, v)C(u, 1) for all u, v, z ∈ [0, 1] and u ≤ z,

which is the statement (a).

[(b) ⇒ (c)]. It follows from relationships among stochastic orders.

[(c) ⇒ (a)]. Observe that, by (2.1), the inequality Xt ≤ST X̃t holds for all t, s ∈ R+ if, and only if,

F (x+ t, 0)

F (t, 0)
≤ F (x+ t, s)

F (t, s)
∀x, t, s ≥ 0.

The latter is clearly equivalent to (3.2), i.e., to statement (a), as shown above.

Remark 3.1. Clearly, one has X̃t ≤HR Xt and X̃t ≤ST Xt for all t ∈ R+ if the monotonicity in

statement (a) of Proposition 3.1 is reversed.

Remark 3.2. It is interesting to note that, even if in general the usual stochastic order is strictly

weaker than the hazard rate order, they become equivalent in comparing X̃t and Xt.

It should be observed that the set of inequalities (3.2) holds if, and only if, [Y |X > t] is stochas-

tically increasing in t, i.e., if Y is right tail increasing in X (shortly, RTI(Y |X)). The RTI(Y |X)

notion is a well-know property describing positive dependence among random variables; see, for

example, Nelsen (2006), Chapter 5, or Colangelo et al. (2005) on its formal definition and applica-

tions in modeling dependence. The equivalence between RTI(Y |X) notion and a condition on the

copula of (X,Y ) similar to statement (a) in Proposition 3.1 is also pointed out in Nelsen, Theorem

5.2.5.

The next property provides conditions on the survival copula C for the likelihood ratio and the

reversed hazard orders between Xt and X̃t for all t, s ∈ R+.

Proposition 3.2. Let (X,Y ) be a pair of absolutely continuous random lifetimes having survival

copula C. The following statements are equivalent.

(a) ∂C(u,v)
∂u is decreasing in u for all v ∈ [0, 1];
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(b) Xt ≤LR X̃t for all t, s ∈ R+;

(c) Xt ≤RHR X̃t for all t, s ∈ R+.

Proof. [(a)⇔ (c)]. Assume that Xt ≤RHR X̃t holds for all t, s ∈ R+. Letting v = F Y (s), u = FX(t)

and z = FX(x+ t), and observing that z ≤ u, the following list of equivalences holds.

Xt ≤RHR X̃t ⇔ F
X̃t

(x)/FXt(x) is increasing in x,

⇔ 1− F (x+ t, s)/F (t, s)

1− F (x+ t, 0)/F (t, 0)
is increasing in x,

⇔ F (t, s)− F (x+ t, s)

F (t, 0)− F (x+ t, 0)
is increasing in x,

⇔ C(FX(t), F Y (s))− C(FX(x+ t), F Y (s))

FX(t)− FX(x+ t)
is increasing in x,

⇔ C(u, v)− C(z, v)

u− z
is decreasing in z, for z ≤ u

⇔ C(z, v) is concave in z for any fixed v ∈ [0, 1]

The assertion now follows observing that concavity of C(z, v) in z is equivalent to the monotonicity

of ∂C(u, v)/∂u.

[(a) ⇔ (b)]. Let us denote as wv(u) = ∂C(u, v)/∂u and let us observe that

∂F (x, s)

∂x
=
∂C(FX(x), F Y (s))

∂x
= wFY (s)(FX(x))(−fX(x)).

Therefore we can write

fXt(x) =
h0(x+ t)

F (t, 0)
=
w1(FX(x+ t))(−fX(x+ t))

F (t, 0)
,

and

f
X̃t

(x) =
h0(x+ t)

F (t, s)
=
wFY (s)(FX(x+ t))(−fX(x+ t))

F (t, s)
.

Thus, for fixed t,

Xt ≤LR X̃t ⇔ f
X̃t

(x)/fXt(x) is increasing in x for all t,

⇔
wFY (s)(FX(x+ t))(−fX(x+ t))

w1(FX(x+ t))(−fX(x+ t))

F (t, s)

F (t, 0)
is increasing in x for all t, s ≥ 0

⇔
wFY (s)(z)

w1(z)
is decreasing in z for all t, s ≥ 0,

⇔ wv(z)

w1(z)
is decreasing in z for any v ∈ [0, 1].

Having observed that w1(z) = ∂C(z, 1)/∂z = 1, the last condition is equivalent to statement (a).

[(b) ⇔ (c)]. It follows from previous equivalences.
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Remark 3.3. It is interesting to note that, even if in general the reversed hazard rate order is

strictly weaker than the likelihood ratio order, they become equivalent in comparing X̃t and Xt.

Remark 3.4. The monotonicity property stated in condition (a) of Proposition 3.2 is equivalent

to the notion of stochastic monotonicity: Y is said to be stochastically increasing in X (shortly

SI(Y |X)) if [Y |X = t] stochastically increases in t. As proved in Nelsen, 2007, SI(Y |X) holds if,

and only if, ∂C(u, v)/∂u is decreasing in u for all v ∈ [0, 1], where C is the connecting copula of

(X,Y ). In turns, the latter is equivalent to affirm that ∂C(u, v)/∂u decreases in u for all v ∈ [0, 1].

Using the same arguments as in the proof of Theorem 5.2.12 in Nelsen (2006), one can verify that

property (a) in Proposition 3.2 strictly implies property (a) in Proposition 3.1. This implication

also means that, in comparing X̃t and Xt, the reversed hazard order implies the hazard order, while

in general such two orders are not related each other.

The last proposition deals with comparison of X̃t and Xt in the mean residual life order.

Proposition 3.3. Let (X,Y ) be a pair of absolutely continuous random lifetimes having survival

copula C. Then Xt ≤MRL X̃t for all t, s ∈ R+ if the marginal distribution FX is concave and∫ z
0 C(u, v)du

z2
is decreasing in z for all v ∈ [0, 1] (3.4)

Proof. Observe that (3.4) is equivalent to∫ z
0 C(u, v)du∫ z
0 C(u, 1)du

is decreasing in z for all v ∈ [0, 1],

which in turn is equivalent to∫ 1
z C(1− u, 1)du∫ 1

z C(1− u, 1− v)du
is decreasing in z for all v ∈ [0, 1]. (3.5)

Let now (U, V ) be a random vector having marginal uniform distributions on [0, 1] and whose

survival function is F (U,V )(u, v) = C(1− u, 1− v), for (u, v) ∈ [0, 1]2. Then (3.5) is the same as

U ≤MRL [U |V > v] ∀ v ∈ [0, 1].

Observe now that, by assumptions, F−1X is increasing and convex. Thus, by Theorem 2.A.19 in

Shaked and Shanthikumar (2007), which states the closure of the mean residual life order with

respect to increasing and convex transformations, one has

F−1X

(
U
)
≤MRL F

−1
X

(
[U |V > v]

)
∀ v ∈ [0, 1],

which is equivalent to∫ +∞
x C(1− FX(r), 1)dr∫ +∞

x C(1− FX(r), 1− v)dr
decreases in x ≥ 0 for all v ∈ [0, 1]. (3.6)

Letting v = FY (s), from (3.6) follows that the ratio
∫ +∞
x F (r, 0)dr/

∫ +∞
x F (r, s)dr decreases in x

for all t, s ≥ 0, thus also∫ +∞
x+t F (r, 0)dr∫ +∞
x+t F (r, s)dr

· F (t, s)

F (t, 0)
=

∫ +∞
x FXt(r)dr∫ +∞
x F

X̃t
(r)dr

decreases in x ≥ 0 for all t, s ≥ 0.

The latter means Xt ≤MRL X̃t.
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It should be observed that the inequality Xt ≤MRL X̃t for all t immediately follows without

additional assumptions on the marginal distribution FX if the copula satisfies property (a) in

Proposition 3.1, since the mean residual order follows from the hazard rate order.

Examples of copulas for which the conditions described in the previous statements are satisfied

are described in the next section.

By using the same techniques as those in the previous proofs one can also prove the statement

that follows, which describes conditions for stochastic comparisons between the inactivity times

defined in (2.2). Being similar to the previous ones, the proof of Proposition 3.4 is omitted; we just

point out that, instead of the mean residual life order, the mean inactivity time order (≤MIT ) and

its closure under increasing concave transformations proved in Li and Xu (2006) are used to prove

point (d).

Proposition 3.4. Let (X,Y ) be a pair of absolutely continuous random lifetimes having connecting

copula C. Then

a) Xt ≤HR X̃t for all t ∈ R+ if, and only if, C is such that

C(u, v)

u
is decreasing in u for all v ∈ [0, 1].

b) Xt ≤RHR X̃t for all t ∈ R+ if, and only if, C is such that

∂C(u, v)

∂u
is decreasing in u for all v ∈ [0, 1],

c) Xt ≤LR X̃t for all t ∈ R+ if, and only if, C is such that

∂C(u, v)

∂u
is decreasing in u for all v ∈ [0, 1],

d) Xt ≤MRL X̃t for all t ∈ R+ if, and only if, the marginal distribution FX is convex on its

finite support and C is such that∫ z
0 C(u, v)du

z2
is decreasing in z for all v ∈ [0, 1]

Observe that conditions for the stochastic inequality Xt ≤ST X̃t to hold for all t, s ∈ R+ follow

from point (a) in Proposition 3.4. Also, it is interesting to observe that the conditions on the

dependence for the various orders are the same as those previous propositions, but expressed in

terms of the connecting copula instead of in terms of properties of the survival copula.

We conclude this section pointing out that all the statements above can be generalized to the

case of more than two dependent random lifetimes, since the assumptions on the copula deal with

its marginal behavior for any fixed value of the other components. For example, Proposition 3.1

can be easily generalized as follow.

Proposition 3.5. Let (X,Y1, . . . , Yn) be a vector of absolutely continuous random lifetimes having

survival copula C. The following statements are equivalent.
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(a) C(u,v1,...,vn)
u is decreasing in u for all vi ∈ [0, 1], i = 1, ..., n;

(b) [X − t|X > t] ≤HR [X − t|X > t, Y1 > s1, . . . , Yn > sn] for all t, s1, . . . , sn ∈ R+;

(c) [X − t|X > t] ≤ST [X − t|X > t, Y1 > s1, . . . , Yn > sn] for all t, s1, . . . , sn ∈ R+;.

4 Examples and counterexamples

This section is devoted to a brief discussion on the assumptions that should be satisfied by the

survival copula of (X,Y ) (or by its connecting copula) for existence of a stochastic comparison

among Xt and X̃t (or among Xt and X̃t) for all t, s ∈ R+. Given a generic copula C, the following

three properties have been considered in Section 3.

(a) ∂C(u, v) / ∂u is decreasing in u for all v ∈ [0, 1];

(b) C(u, v) / u is decreasing in u for all v ∈ [0, 1];

(c)
∫ z
0 C(u, v)du / z2 is decreasing in z for all v ∈ [0, 1].

It is easy to see that the relationships (a) ⇒ (b) ⇒ (c) are satisfied. The first one is proved in

Nelsen (2006), Section 5, while the second one easily follows from the Basic Composition Formula

for integrals of TP2 functions (see Karlin, 1968, Chapter 3). These relationships are strict (see

Nelsen, 2006, for the first one, and Example 4.3 for the last one). Moreover, it should be pointed

out that a sufficient condition for property (b) is that C(u, v) is TP2 in (u, v) ∈ [0, 1]2. Dealing

with survival copulas, the TP2 property of the survival copula of a vector (X,Y ) is a well-known

positive dependence property, sometime named right corner set increasing (shortly, RCSI(Y,X)),

which is in fact stronger than the RTI(Y |X) property (see, e.g., Nelsen, 2006, Corollary 5.2.16).

Also, it is easy to verify that property (c) is satisfied when
∫ z
0 C(u, v)du is TP2 in (z, v) ∈ [0, 1]2.

We provide here examples of copulas satisfying the conditions described above. The first deals

with the class of Archimedean copulas (or survival copulas). A bivariate copula is said to be

Archimedean if it can be written as

C(u, v) = φ
(
φ−1(u) + φ−1(v)

)
for all u, v ∈ [0, 1], (4.1)

for a suitable decreasing and convex function φ : [0,∞)→ [0, 1] such that φ(0) = 1 and with inverse

function φ−1. The inverse function φ−1 is usually called the generator of the Archimedean copula

C. As pointed out in Nelsen (2006), many standard copulas (such as the ones in Gumbel, Frank,

Clayton and Ali-Mikhail-Haq families) are special cases of this class. We also refer the reader to

Müller and Scarsini (2005) and references therein for details, properties and examples of application

of Archimedean copulas.

Example 4.1. Let C(u, v) be an Archimedean copula as defined in (4.1). Then property (a) is

satisfied if, and only if, the derivative −φ′(x) = − dφ(x)/dx exists and is log–convex. In fact, (a)

holds if, and only if, for any fixed v ∈ [0, 1] one has that

∂C(u, v)

∂u
=
φ′(φ−1(u) + y)

φ′(φ−1(u))
(4.2)
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decreases in u, where y = φ−1(u) ≥ 0. Thus, (a) is the same as to have that the ratio φ′(x+y)/φ′(x)

is increasing in x. The latter is equivalent to the log–convexity of −φ′.

For what concerns property (b), it has been proved in Bassan and Spizzichino (2005), Proposition

6.1, that this property holds if, and only if, the function φ is log–convex.

For property (c), it holds if, and only if, for any k ≥ 0 the function hk(u) = φ(φ−1(u) + k),

defined on [0, 1], satisfies

x hk(x) ≤ 2

∫ x

0
hk(u)du for all x ∈ [0, 1]. (4.3)

Archimedean copulas that satisfy all these conditions are, e.g., the Clayton copula, for which

φ(t) = (1 + t)−θ, θ ∈ [0,+∞), the Gumbel-Hougaard copula, for which φ(t) = e−t
1/θ
, θ ∈ [1,+∞),

and the Frank copula (for positive values of the parameter θ), for which φ(t) = − ln
(
1 + (e−θ −

1)e−t
)
/θ. An example of inverse generator φ which is not log-convex but satisfies condition (4.3)

is φ(t) = 1/(1 + t2) (as one can verify with straightforward but long analytical calculations)

Apart for Archimedean class, there exist many other families of copulas that satisfy the properties

(a) to (c). The following example deals with the well-known Farlie–Gumbel–Morgenstern (FGM)

family (see, e.g., Nelsen, 2006).

Example 4.2. Let C be an FGM copula, i.e., let C(u, v) = uv[1 + θ(1− u)(1− v)] for θ ∈ [−1, 1].

If the parameter θ is non-negative then C(u, v) satisfies condition (a) above (thus also (b) and (c)).

Validity of this assertion can be easily proved just observing that

∂C(u, v)

∂u
= v[1 + θ(1− v)(1− 2u)].

The following example shows that there exist copulas C for which property (b) does not hold

while property (c) is satisfied, thus also that one can find vectors (X,Y ) for which Xt ≤MRL X̃t

holds for all t, s ≥ 0 while the hazard rate and the usual stochastic orders do not hold. This

is actually the case of the example at the beginning of Section 3, for which the assumptions of

Proposition 3.3 are satisfied.

Example 4.3. Let C be a copula defined as in a Rodŕıguez-Lallena and Úbeda-Flores (2004), i.e.,

let

C(u, v) = uv + θf(u)g(v)

where θ ∈ [0, 1] and where f and g are two suitable absolutely continuous functions such that

f(0) = f(1) = g(0) = g(1) = 0. In particular, let g(u) = f(u) = sin(2πu)
2π . It can be verified

that such two functions satisfy all the conditions for C to be a copula (see Rodŕıguez-Lallena and

Úbeda-Flores, 2004, for details). In this particular case we have that C(u, v)/u does not decrease

in u. In fact,
C(u, v)

u
= v + θg(v)

f(u)

u

decreases if f(u)/u is decreasing. But this is not the case for f(u) = (sin(2πu))/(2π), as one can

easily verify.
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On the contrary, letting F (z) =
∫ z
0 f(u)du, the ratio∫ z

0 C(u, v)du

z2
=
z2v/2 + θF (z)g(v)

z2
=
v

2
+ θg(v)

F (z)

z2
=
v

2
+ θg(v)

1− cos(2πz)

2πz2

is actually decreasing in z ∈ [0, 1]

5 Applications in Risk Theory

Even if all the results discussed in previous sections are stated having in mind their possible

applications in reliability theory, it is worth to mention that they can be applied also in a variety

of other contexts. For example, in portfolio analysis and risk theory, where interaction among

asset’s values, or among risks, can not be ignored. For this reason, a number of co-risk measures

(i.e., dependence-adjusted versions of measures usually employed to assess isolate risks) have been

recently introduced and studied in the specialized literature; see, e.g., Mainik and Schaanning

(2014) and Sordo et al. (2018) and references therein. The general idea under the definitions of

these measures is to use the conditional distribution of a random value X, representing the risk of

a particular component or the value of a financial asset, given that another component Y is under

stress and assumes values greater than a fixed threshold.

Among other measures, an example is the Conditional Value-at-Risk (CoVaRα,β), which has

been defined to generalize the classical Value-at-Risk (VaRα) measure of risk in the multivariate

setting. Recall that, given a risk X, for a fixed α ∈ (0, 1) the Value-at-Risk at α is defined as

VaRα[X] = F−1X (α) = inf{x : FX(x) ≥ α}.

Given a vector of risks (X,Y ), let F[X|Y >s] denote the conditional distribution of X given that

Y > s. In order to take into account the effect on X of a possible stress on Y , the Conditional

Value-at-Risk has been defined as

CoVaRα,β[X|Y ] = VaRα[X|Y > VaRβ[Y ]] = F−1[X|Y >VaRβ [Y ]](α)

for every fixed α, β ∈ (0, 1) (see Mainik and Schaanning, 2014).

Observe that, given two random values X1 and X2, it holds X1 ≤ST X2 if, and only if, the

corresponding quantile functions are ordered, i.e., if F−1X1
(α) ≤ F−1X2

(α) for all α ∈ (0, 1). Thus,

by Proposition 3.1 and letting t = 0 and s = VaRβ[Y ], one immediately gets that if the survival

copula C of the vector of risks (X,Y ) satisfies condition (a) in that proposition, then

VaRα[X] ≤ CoVaRα,β[X|Y ]

for all α, β ∈ (0, 1), i.e., one can assert that the Value-at-risk of X is always an underestimation of

its Conditional Value-at-Risk (conditioned on Y ).

Another interesting co-risk measure is the Multivariate Tail Conditional Expectation (MTCEα,β)

recently defined in Landsman et al. (2018), which is a generalization of the classical Tail Conditional
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Expectation (TCEα): given the vector of risks (X,Y ), the tail conditional expectation at α of X is

TCEα[X] = E[X|X > Varα[X]],

while the multivariate tail conditional expectation at α and β of X given Y is defined as

MTCEα,β[X|Y ] = E[X|X > Varα[X], Y > Varβ[Y ]].

Note that the inequality

E[X|X > Varα[X]] ≤ E[X|X > Varα[X], Y > Varβ[Y ]] (5.1)

holds for all α, β ∈ (0, 1) if, and only if,

E[X|X > t] ≤ E[X|X > t, Y > s]

for all t, s ∈ R. Since the latter inequality follows by the mean residual life order between Xt

and X̃t as defined in previous sections, by Proposition 3.3 it follows that if the survival copula C

of the vector of risks (X,Y ) satisfies condition (a) in that proposition, then (5.1) holds, i.e., the

tail conditional expectation at α of a risk X is always an underestimation of its multivariate tail

conditional expectation at the same level α, for any β ∈ (0, 1).
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