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ABSTRACT A cost-effective implementation of Convolutional Neural Nets on the mobile edge of the
Internet-of-Things (IoT) requires smart optimizations to fit large models into memory-constrained cores.
Reduction methods that use a joint combination of filter pruning and weight quantization have proven
efficient in searching the compression that ensures minimum model size without accuracy loss. However,
there exist other optimal configurations that stem from the memory constraint. The objective of this work
is to make an assessment of such memory-bounded implementations and to show that most of them are
centred on specific parameter settings that are found difficult to be implemented on a low-power RISC.
Hence, the focus is on quantifying the distance to optimality of the closest implementations that instead
can be actually deployed on hardware. The analysis is powered by a two-stage framework that efficiently
explores the memory-accuracy space using a lightweight, hardware-conscious heuristic optimization. Results
are collected from three realistic IoT tasks (Image Classification on CIFAR-10, Keyword Spotting on the
Speech Commands Dataset, Facial Expression Recognition on Fer2013) run on RISC cores (Cortex-M by

ARM) with few hundreds KB of on-chip RAM.

INDEX TERMS Neural networks, Internet of Things, optimization methods, low power electronics.

I. INTRODUCTION AND MOTIVATIONS

Most IoT applications run Deep Convolutional Neural Net-
works (ConvNets hereafter) in the cloud, public or private
depending on the context. However, there is wide consensus
that the growth of a sustainable IoT ecosystem encompasses
the deployment of ConvNets on the mobile edge [1]. The
migration from cloud services is challenging and it first
requires a proper understanding of the hardware charac-
teristics of the hosting end-nodes. The focus of this work
is on low-cost IoT applications (e.g. that described in [2])
where form-factor and energy budget are the main concern.
In such cases, the software stack is developed over off-the-
shelf embedded platforms powered by tiny RISC cores. With
no lack of generality, we take as case study the microcon-
troller units (MCUs) of the Cortex-M family by ARM! shown
in Fig. 1. Low-power MCUs have few KB of on-chip RAM
(from 4 to 32kB for the MO, from 256 to 512kB for the
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FIGURE 1. Cortex-M family: Active power and on-chip RAM size.

M7 — depending on the chip-set). Off-chip memory supports
are usually not integrated and when available they affect
several metrics negatively, like latency, energy, integration
cost, endurance and reliability. The instruction set architec-
ture (ISA) comes with few integer options (16- and 8-bit)
and often no floating-point. Lastly, they lack parallelism to
accelerate vector operations. A small 2-lane Single Instruc-
tion Multiple Data (SIMD) unit is integrated into the M4 and
M7 only.
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With these hardware figures there is very little room to
deploy ConvNets of some practical use. In fact, even the
simplest network is made of multidimensional arrays (ten-
sors) of a size such as to prevent full on-chip storage and
real-time processing. A practical way to address the resource
bottleneck is to play at the algorithmic level using com-
pression methods that reduce the cardinality of the inner
tensors. Among the available solutions [3], filter pruning [4]
and weight quantization [5] have become standard. Both of
them are commonly applied at post-training with the aim
of removing redundant information, namely, those parts of
the ConvNet model which do not contribute, or that weakly
contribute, to the overall accuracy. Pruning implements a
selective dropping of weak parameters; quantization applies
a bit-width scaling on the arithmetic representation of the
parameters. The latest advances show that a joint combination
of the two achieves state-of-the-art [6]. The returned Con-
vNets show fewer weights to store, hence fewer operations
to run. These kinds of methods are usually accuracy-driven,
namely they seek for the optimal model setting that guaran-
tees the highest memory compression with the lowest accu-
racy loss, ideally zero. Model settings has a relative meaning
here: it is the largest selection of weak parameters for pruning,
the smallest bit-width of the arithmetic representation for
quantization, or the optimal pruning-to-quantization ratio for
joint methods.

The search for optimality gets challenging due to several
reasons. Just like for training, the lack of a closed-form solu-
tion to describe the dynamics of the learning flow makes the
optimization loop slow and uncertain. Furthermore, the con-
straints which rise from the hardware layer introduce an
additional level of complexity overlooked by the most of the
existing works. A problem formulation that does not consider
these aspects might result too weak, or unsuited, for real
life applications deployed on tiny RISC cores. Intuitively
enough, accuracy cannot be the only dimension to explore.
An optimization loop unconstrained in terms of memory
footprint may return models that still do not fit the target
core. Moreover, since quantization and pruning are lossy
methods, they get controlled by means of a user-defined
accuracy constraint. Since the cost function is unknown,
the selection of such accuracy constraint is blind. There might
be solutions close enough in accuracy, namely equivalent in
terms of quality, but very far in memory occupation. Also,
it is hard to prioritise pruning and quantization as they both
affect the same source of information and finding the right
balance is still an open issue. This suggests design space
exploration is more reliable than multi-objective optimiza-
tion. Obviously, the large number of hyper-parameters makes
exhaustive approaches impractical and it calls for for smart
heuristics instead. Not least, quantization below the 8-bit
mark (e.g. from 7- to 2-bit [6]) remains a theoretic study as it
asks for custom hardware components which are not available
in low-power cores, e.g. variable bit-width integer MAC units
and/or special memory architectures. Some low-power IoT
cores offer 4-bit instructions, e.g. the GAPS8 [7] powered by
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the PULP core [8], but up to now there are no ready-to-use IoT
solutions for arbitrary bit-width scaling. Specialized neural
cores, like the Imagination Series 2NX [9], offer multi-bit
resolutions, yet with a power budget of few Watts. Other
custom solutions, programmable [10] or hard-wired [11], are
a too costly design option for the IoT domain. A patch for
general cores is the use of specialized allocation strategies to
store multiple weights within the same word and then feed the
execution units in a proper manner. However, that may lead to
huge performance overhead due to extra operations required
to unpack/pack data from/to the memory banks [12]. Storing
data with irregular bit-widths is another source of inefficiency
as memory gets underutilized. In view of the above, it is
questionable whether accuracy-driven, unconstrained com-
pression methods can actually meet the needs of real-life
applications.

This paper aims to benchmark theoretical against practi-
cal ConvNet implementations. The overall outcome of the
assessment enables three main achievements. First, demon-
strate that the implementation of practical ConvNets is gov-
erned by the actual memory constraint, and not just the model
accuracy. Second, enumerate the optimal configurations in
the memory-accuracy space when the optimization is con-
ducted under very tight memory constraints. Third, quan-
tify the distance between optimal (theoretical) configurations
and the closest implementations that can be deployed on
low-power MCUs.

The analysis is conducted using a novel two-stage pipeline
driven by concurrent pruning and quantization: Prune-
and-Quantize (PaQ). The optimization is hardware-aware,
namely it integrates a smart selection of techniques tailored to
meet the hardware specifications. As a key feature, the frame-
work is built upon a lightweight memory-driven heuristic
through which is possible to explore the memory-accuracy
space efficiently. It also leverages a memory allocation model
for bare metal environments together with an arithmetic
emulator which do ensure accuracy and speed. Commercial
or open-source frameworks do not have these features. The
benchmarks are three realistic tasks that find application in
the IoT domain: Image Classification (IC) on CIFAR-10 [13],
Keyword Spotting (KWS) [14] and Facial Expression Recog-
nition (FER) [15]. The hardware test-benches consist of two
commercial boards powered by Cortex-M cores: NUCLEO-
F4127ZG (M4-256 kB), NUCLEO-F767Z1 (M7-512kB).

The remaining of the paper is organized as follows.
Section II reviews state-of-the-art compression methods
and describes the main motivations behind the optimiza-
tion choices made in this work. Section III presents the
hardware-aware compression framework adopted to collect
the experimental results, with particular emphasis on the
memory-driven PaQ heuristic. Section IV collects the main
results and it drives the readers towards a proper under-
standing of memory-bounded ConvNets and their deploy-
ment, in particular: (i) the actual hardware requirements
and how to judge the need of custom accelerators against
general-purpose cores; (ii) the efficacy of the proposed
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framework and its scalability. Finally, Section V concludes
the paper.

Il. BACKGROUND AND RELATED WORKS

In the early years of life, ConvNets were mainly optimized to
improve accuracy. This brought to an exponential increase in
size and complexity. With their massive use in cloud services,
latency and energy consumption soon grew as key metrics to
consider in order to guarantee scalability. Recently, the rise of
edge computing pushed memory and storage capacity in the
loop. During this fast evolution, several optimization methods
have been introduced and tested on different architectures;
a thorough overview is reported in [3]. However, the use
of tiny MCUs restricts the optimization choices to a few of
them only. This section gives a critical review of prior arts,
motivating the choices implemented in this work.

A. PRUNING

Pruning techniques assume that ConvNets are over-
parametrized, hence many parameters do not contribute to
the predictive capacity of the model; rather, they introduce
noise and therefore can be zeroed or removed. The pruning
can be applied at different levels of spatial granularity, from
weight-level to filter-level. The rule of thumb is that the finer
the granularity, the better the accuracy-vs-compression trade-
off. From a hardware perspective, a fine grain may result
inefficient in general-purpose cores, while a coarse grain
is more hardware-friendly, as it preserves the regularity of
memory and resource allocation.

At the weight-level [16], the ConvNet is pruned in an
unstructured manner, that is, every single weight can be
removed, both from fully-connected layers and convolutional
layers. To keep a regular shape of the matrix convolutions,
weights are simply zeroed. This does not help to reduce the
memory footprint directly, yet it increases the overall sparsity,
i.e. the ratio between zero and non-zero parameters, which
in turn enables compression methods based on sparse data
representations [16]. To notice that the network may lose its
regular structure and many optimizations for dense matrices
can no longer be applied, e.g. matrix tiling [17]. Sparse repre-
sentations get more efficient when supported by proper hard-
ware. Examples for integrated accelerators are in the Texas
Instruments TDAX processor [18] family or in the custom
ASIC described in [19]. Unfortunately, low power budgets
prevent the use of such components on MCUs. An equivalent
software implementation based on compressed sparse row
storage formats could be adopted, but the latency overhead
due to extra operations is mitigated only when sparsity is
pushed above a certain threshold [17].

At a middle level of granularity, weights are pruned as
bunches of size such that the utilization (i.e. parallelism) of
the SIMD unit is maximized [17]. Cores without a parallel
SIMD unit do not benefit much from this approach incurring
the same limitations of weight-level schemes.

At a filter-level [4], pruning works in a structured
manner, namely following the topology of the ConvNet.
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Neurons (in the fully-connected layers) or convolutional fil-
ters (in the convolutional layers) are entirely dropped reduc-
ing both memory footprint and number of operations. Due to
its regularity, it is the most suited strategy for RISC cores hav-
ing an SRAM memory controlled with a standard indexing
mechanism. For such specific reason, this work adopts filter
pruning. One potential drawback is the risk of a higher accu-
racy drop because the information is drained out at a much
faster pace (with respect to weight-pruning). However, short
re-training stages allow recovering most of the information
lost.

Different metrics have been proposed to drive the filter
selection during the pruning process: (i) the £,-norm of the
kernel weights, (i) some statistics on the feature map’s activa-
tion, like mean or standard deviation, (iii) the mutual informa-
tion between activations and predictions, (iv) a combination
of them. Yet, there is no consensus on the best option. The
comparison study presented in [20] empirically demonstrates
that the ¢;-norm proposed in [4] is a good compromise
between accuracy and convergence time. Therefore, even if
other metrics may improve the pruning confidence, this work
relies on a revised version of the £; scheme of [4] (Sec. III).

B. QUANTIZATION

While training is generally performed using single-precision
floating-point (FP), a discrete integer representation is usu-
ally enough for inference. The aim of quantization is pre-
cisely that of alleviating the ConvNets complexity using a
fixed-point (FX) representation for both weights and activa-
tions. Moving from FP to FX is not just an option, but it is
mandatory for MCUs without a FP unit.

Pioneering works demonstrated that a FP ConvNet model
can be squeezed to 16-bit and 8-bit FX [5] still preserving
its expressive power. Later, extreme methods have been pro-
posed to further decrease the model precision to ternary [21]
or binary [22] weights, yet incurring large accuracy drops.
The reduction of the bit-width allows a linear compression
of the memory footprint, but mostly, it improves the memory
bandwidth as multiple operands can be written/read within a
single access. Obviously, this feature holds if quantization is
run in compliance with the memory architecture. Moreover,
since low-power cores provide few FX options, e.g. 8- and
16-bit for the Cortex-M cores, intermediate widths are not
supported. For instance, a 32-bit SRAM line can host four 8-
bit weights that can be easily fed to the execution units, while
the use of 9-bit weights incurs in memory under-utilization
and it requires specialized unpacking routines that affect
latency [12]. ConvNet accelerators with arbitrary bit-width
arithmetic, e.g. [9]-[11] (FPGA-based), are options. How-
ever, they dissipate more power than the MCUs targeted in
this work (> 300 mW vs tens of mW).

The literature presents plenty of schemes and techniques
for accuracy-driven quantization. The following text gives a
synthetic taxonomy which highlights the key aspects related
to this work. Quantization is defined as fixed if equally
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applied to all the layers, or variable when it uses different
representations between layers [23].

The conversion scheme can be linear or non-linear. The
linear scheme [5] makes use of a uniform distance between
all the quantized weights. This is a trivial solution, yet the
most suitable for generic hardware architectures due to its
simplicity. The quantization range can be considered sym-
metric, if centred around zero, or asymmetric if shifted by a
given offset. The choice is mainly driven by the shape of the
weights distribution, but in general asymmetric quantization
might result more accurate; on the other hand, it encompasses
additional processing stages [24]. Furthermore, it is possible
to quantize the weights using a binary radix-point scaling,
or an arbitrary linear scaling. The former is implemented
with simple bit-shift operations, the latter might result more
accurate but it requires additional operations and hence more
latency [24]. The non-linear approach makes use of custom
conversion functions which map the full precision param-
eters onto irregularly interleaved ranges. It achieves higher
accuracy than linear approaches as the irregular shape of the
original distribution can be fitted with higher precision. The
most popular examples are the log-domain [25] and cluster-
ing [16] approaches. These non-linear schemes are built using
hash functions commonly implemented by custom hardware
to improve performance [25] or, alternatively, by software
routines that affect latency.

From this qualitative analysis it is thereby clear that, just
as for pruning, there is a trade-off between flexibility and
complexity: sophisticated schemes (i.e. linear with asymmet-
ric/arbitrary scaling or non-linear) achieve higher accuracy
as they can best fit to the original ConvNet shape, lightweight
schemes (i.e. linear with binary/symmetric scaling) maximize
the performance when small instruction set and limited hard-
ware resources are available. The deployment of ConvNets on
MCUs follows the simple rule lighter is better, hence the sec-
ond class of methods is more suited. This motivates the choice
made in this work: per-layer linear quantization scheme based
on a power-of-two scaling with a fixed bit-width for all the
layers (Sec. III).

C. PRUNING AND QUANTIZATION

Pruning and quantization work on distinct parts the ConvNet
model: the number of parameters, the arithmetic precision
of such parameters. They are orthogonal and can be jointly
applied to achieve higher compression. There are multiple
pairs of pruning rate and bit-width which ensure the same
memory footprint, yet with a substantial difference in terms of
accuracy. The challenge is to find the optimal solution among
those available in the huge combinatorial search space. The
authors of [6] showed that Bayesian optimization is an effec-
tive strategy. Even if they do not consider hardware con-
straints, it is fair to assume their method can be extended to
a more hardware-friendly version. The contribution of our
work differs, as the goal is not just to identify the most
accurate compression, but rather to assess the distance to
optimality of real-case hardware scenarios where memory
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becomes the primary concern. In that sense, the choice of the
best optimizer practically fades, while stretching the coverage
towards a more exhaustive search is important. Obviously,
a brute-force search is unpractical due to the cardinality of
the problem, hence smart heuristics are mandatory.

D. NEURAL ARCHITECTURE SEARCH

Neural Architecture Search (NAS) [26] is an emerging
approach in which pruning and quantization get embedded
into a global search where also the topological parameters
of the ConvNet, e.g. number of layers, number of filters,
connections between layers, etc., take part to the objective
function,

Even though preliminary results show very promising,
the exploration requires hundreds of GPUs and several days
of training [26]. In this regard, the technology is in its infancy.
The sentiment is that pruning and quantization are still valid
options for local searches on a specific ConvNet topology
(potentially obtained by NAS).

lIl. MEMORY-BOUNDED ConvNets

The memory footprint M. of a ConvNet is function of the
network parameters N, (weights and biases) and the bit-width
b used to represent the parameters. Given a target memory
M,, i.e. the actual on-chip memory that can be allocated?,
a memory-bounded ConvNet is a compressed version of the
original floating-point ConvNet s.t. M. < M; and the accu-
racy loss £ is minimized. For different values of M; there
exists a set P of pairs {N,, b} that match M,. Within P, a pair
{N,?pt, b°PY is said optimal if it minimizes £; a pair {N/, b’}
is said hardware-compliant if can be ported on a physical
device. b°P! can be of any integer value, while b’ must be
supported by a proper instruction set, i.e. b’ € {8, 16} for
our case study. An optimal pair is hardware-compliant if 5°P!
turns out to be 8- or 16-bit.

The assessment of the various solutions in the memory-
accuracy space requires an evaluation framework to (i) imple-
ment a memory-constrained combination of pruning (to
reduce N,) and quantization (to reduce b), and (if) emulate
and deploy the compressed ConvNets.

A. FRAMEWORK OVERVIEW

The proposed framework is shown in Fig. 2. The toolchain
is fed with a floating-point ConvNet (FP) trained within a
standard development environment (e.g. PyTorch, Tensor-
Flow) and it produces as output (7) the accuracy assessment of
the compressed ConvNets that match the memory constraint
(i.e. those with {N,,b} € P) and (ii) the .C description
of the compressed ConvNets that are hardware-compliant
({NIQ, b’} € P). The .C is assembled using a neural-kernel
library (the CMSIS-NN by ARM), then compiled and flashed
on the target device. The assessment of those compressed
ConvNets that do not fit the hardware (i.e. those with

2M; can be lower than the physical memory available on-chip as other
applications may run in background.
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FIGURE 2. Framework overview.

{Ny,b} € P, b # V') is run by means of an in-house
fixed-point emulator; the same emulator is used to drive the
fine-tuning stages (more details in Sec. III-D). The optimiza-
tion kernel is called Prune and Quantize (PaQ hereafter)
and it consists of two main stages: (i) quantization-aware
(Q-aware) pruning; (if) model quantization using a FX rep-
resentation of b bits (b-Quantization). Both stages receive
the parameter b as an internal constraint. As discussed in
Sec. I, all the layers of a ConvNet share the same bit-width.
This latter aspect has an impact on the compression speed,
that is, quantization removes information at a faster pace.
It is intuitive that removing a single filter on a layer is less
intrusive than reducing the bit-width of all the weights of
all the layers. A more interesting aspect is that there exists a
circular dependence between pruning and quantization which
frustrates the optimization. In fact, the value of b affects the
number of filters that can be removed.

A model file containing the memory allocation strategy
of the target architecture (RAMalloc) is used to estimate
the physical RAM consumed during inference. As long as
the HW-model and the neural-kernels library are available,
the proposed framework works for any commercial MCU.

B. MEMORY MODEL

The amount of on-chip RAM allocated during the
feed-forward pass depends on the implementation of the
neural-kernels, which in turn is tightly coupled with
the underlying hardware architecture. The following text
describes the memory allocation policy deployed in the
Cortex-M cores through the open-source CMSIS-NN
library [24]. The same model can be extended to other archi-
tectures and/or libraries. The description takes as reference
the convolution layers, which are the most expensive in terms
of memory utilization,? but the model does also include
fully-connected layers.

3State-of-the-art ConvNet designs rationed the number of fully connected
layers in order to reduce the memory accesses.
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Cortex-M MCUs are provided with a flash memory used
to permanently store the ConvNet weights. At run-time,
the same weights are block-loaded in a portion of the RAM
referred to the Weight Buffer (WB). Most of the remaining
RAM is taken by the Activation Buffer (AB), where par-
tial results are temporarily stored. Partial results denote the
input/output activations of each layer. Within a ConvNet, lay-
ers come with different topology, namely different number of
filters, each of a different size. Therefore, each layer requires
a different amount of memory, which is proportional to the
dimension of its input and output tensors. Since ConvNets
are executed layer-by-layer, AB is time-shared and its size
is defined by the largest layer. Finally, a region of RAM is
dedicated to temporary data structures internally used by the
convolutional routines. To provide an accurate assessment of
the memory requirements, the memory model includes their
contribution. More specifically, the CMSIS-NN implements
a tensor convolution as a matrix multiplication; this is done
by converting the multidimensional input to a 2D array. The
matrix, known as the Toeplitz matrix [27], is generated by the
im2col routine which stores the result in a dedicated region of
the RAM, the im2col buffer (I2CB). Similar to AB, the I2CB
is time-shared among layers and its size is defined by the
largest layer as well. In memory-constrained cores, a partial
im2col routine is commonly adopted. It expands a selected
portion of the input generating two columns of the Toeplitz
matrix at a time. This allows reducing I2CB at the cost of
some performance overhead.

The sum of the three buffers gives the overall RAM foot-
print, M. = WB+AB+12CB. Equation 1 gives the analytical
model for a ConvNet of L layers represented with a physical
bit-width b:

M. =b x |:N,, + max(l; + O;) + max (im2col,~)] D
ieL ieL

The first term (V) refers to the WB buffer. It reflects the total
number of parameters of the ConvNet. The number of weights
is the product between the number of filters, the number
of input channels and the size of kernels, while the number
of biases equals the number of filters. For fully connected
layers the number of weights is the product between the
input dimension and the output dimension, while that of
biases equals the dimension of the activation. The second
term (max(/; + O;)) refers to the AB buffer, with I; and O; the
size of the activations (input and output respectively) of the
layers. The last term (max (im2col;)) is for the I2CB buffer.
The im2col processes one filter at a time, hence the size for
a convolutional layer is the product of the three dimensions
of a filter (Height, Width, and Depth), multiplied by 2 (two
columns of the Toeplitz matrix); also in this case, the max
operator takes the largest contribution among all the layers.
As a side note, the contribution due to I2CB is usually pretty
small, while WB is the dominant contribution. However, for
ConvNets with a very compact topology, like those adopted
into embedded applications, AB is not negligible (from 15%
to 30% the overall RAM).
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C. Q-AWARE PRUNING

In PaQ, filters are removed until the target memory M; is met.
Since M, depends on the arithmetic precision, the pruning
stage should be aware of b in order to optimize the number
of pruned filters. The removal of a filter at the i-th layer
simultaneously affects several parameters of eq. 1: the car-
dinality of the i-th and i + 1-th convolutional layers (hence
WB), the cardinality of the output activations of the i-th layer
O; (hence AB), the memory taken by the im2col for the
(i + 1)-th layer (hence 12CB).

The iterative procedure of the Q-aware pruning is
described in the pseudo-code of Algorithm 1. At each iter-
ation, the least important filter from the least important
layer (lines 3-5) is dropped. As previously introduced in
Sec. II, the importance metric adopted to drive the filter
selection is the £;-norm of the weights. The £;-norm is a
good estimator to identify the components that affect less
the prediction accuracy of the ConvNet [4], yet ensuring
low complexity as it does not require the statistics on the
activations of the hidden layers. Overall, it ensures a good
trade-off between quality-of-results and complexity of the
optimization loop. The framework adapts to other criteria
however.

The loop iterates until the memory constraint M, is met
(line 2). The memory estimation is run using the memory
model introduced in the previous section (embedded into
the RAMalloc procedure). While the memory footprint is
estimated on the base of the physical bit-width b, the model is
not quantized yet at this stage. This gives to pruning a proper
awareness of quantization.

After pruning, the network may experience a significant
accuracy drop. The loss of information is however recov-
ered (totally or partially depending on the actual constraint)
by means of fine-tuning (line 7); the latter consists of a
re-training stage (50 epochs in our experimental set-up)
during which the weights are tuned using a standard error
back-propagation scheme.

D. B-QUANTIZATION

After the Q-aware pruning, the model undergoes the
actual quantization using a b-bit representation. As already
motivated in Sec. II, the choice fell upon the most
hardware-friendly quantization: (i) symmetric scheme,
(i) linear intervals [5], (iii) per-layer power-of-two scaling.
Adopting a per-layer radix-point scheme brings higher accu-
racy without performance overhead.

The accuracy drop induced by quantization can be recov-
ered (totally or partially depending on the actual constraints)
through a customized fine-tuning stage that implements an
incremental training procedure (iterated over 50 epochs in
our experiments). The latter has the following main char-
acteristics: the forward-propagation is run with fixed-point
emulation; during back-propagation weights are kept in a
floating-point format thus to allow small weight updates;
weights are quantized at the end of every epoch using stochas-
tic rounding.
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Algorithm 1: Q-Aware Pruning Algorithm

Input: ConvNet [FP-32], Target Memory M;,
Bit-width b
Output: Compressed ConvNet
1 M. = RAMalloc(ConvNet[FP-32], b)
2 while M. > M; do

3 Layer = Pick layer with lowest £1-norm

4 Filter = Pick filter of Layer with lowest ¢{-norm
5 Remove Filter

6 Update M,

7 Fine-Tuning
8 return Compressed ConvNet

To emulate fixed-point arithmetic on GP-GPUs, an in-
house emulator leverages the fake-quantization method intro-
duced in [28]. It consists of a software wrapper that converts
activations and weights (stored in fixed-point) to the 32-bit
floating-point; after being processed, results are converted
back to fixed-point.

E. PORTING AND EMULATION

Once compressed, the hardware-compliant ConvNets are
translated in C code using the neural network kernels opti-
mized for the target device. This work leverages the CMSIS-
NN [24] library developed by ARM. It is a collection of
optimized routines implementing the most common layers of
deep neural networks and targeting the Cortex-M architec-
ture. As already mentioned, the porting can be accomplished
only for those bit-widths and memory budgets that meet
the hardware constraints ({N[;, b'}). The framework provides
emulation also for the other bit-width and memory con-
straints in order to estimate the distance between optimal and
hardware-compliant solutions, which is one of the objectives
of this work. The emulator is the same used within the PaQ
flow.

IV. EXPERIMENTAL RESULTS

We used the proposed PaQ-based flow to explore the
memory-accuracy space. The analysis aims to assess the
optimality of hardware-compliant implementations and quan-
tify their distance (in terms of accuracy) from theoreti-
cal solutions. This section is organized as follows. First,
we introduce the ConvNets adopted as test-cases, together
with the datasets used for the training stage and the evalu-
ation. Second, we describe the hardware boards used as test-
bench. Third, we present the collected results and discuss
the key findings. Finally, we provide additional insights to
validate PaQ and justify the selected optimization strategies.
Table 1 summarizes the notations used throughout the text,
together with their definition.

A. BENCHMARKS, DATASETS AND TRAINING

The experimental setup consists of three different tasks:
Image Classification (IC), Keyword Spotting (KWS), Facial
Expression Recognition (FER). All of them find application
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TABLE 1. Table of abbreviations.

Notation | Description
M. Memory footprint of the ConvNet
M, Target memory
N, Number of network parameters (weights and biases)
b Bit-width (ranging from by, = 2 to by.x = 16, step one bit)
My Memory footprint of the ConvNet quantized with b-bit and w/o pruning
P Set of pairs { N, b} that matches M,
L Top-1 accuracy loss
Limax Top-1 accuracy loss boundary (= 0.5%)
T Pleateau area collecting the {N,,, b} pairs s.t. £ < Ly
P, Best-accuracy point
P, Pareto points in the memory-accuracy space (n € N)
PaQ-8 PaQ solutions with 8-bit
PaQ-16 | PaQ solutions with 16-bit
A Accuracy difference between optimal and hardware-compliant implementations

TABLE 2. Benchmark overview. Convolutional layer with shape (c, ¢, kp, kw), fully-connected layer with shape (c,,;) and max-pooling layer with shape
(kp, kw); kp and ky are the height and width of input planes in pixels, while c,,; refers the number of output channels.

Application IC KWS FER
Dataset CIFAR-10 [13] Speech Commands [14] FER2013 [15]
Input 3x32x32 1 x32x40 1 x 48 x 48
Conv (32,5,5) | Conv (64,20,8) Conv (32,3,3)
MaxPool (3,3) MaxPool (1,3) Conv (32,3,3)
Conv (32,5,5) | Conv (64,10,4) Conv (32,3,3)
= MaxPool (3,3) MaxPool (1,1) MaxPool (2,2)
% Conv (64,5,5) | FC (32) Conv (64,3,3)
o MaxPool (3,3) FC (128) Conv (64,3,3)
& FC (10) FC (12) Conv (64,3,3)
> MaxPool  (2,2)
g Conv (128,3,3)
O Conv (128,3,3)
Conv (128,3,3)
MaxPool (2,2)
FC @)
Top-1 Acc. H 82.80% 86.75% \ 66.48% \

in several domains, like robotics, human-machine interface,
and retail. Each task is powered by a different ConvNet
model which has been carefully selected among those that
can be realistically deployed on IoT devices. Tab. 2 reports
the topology of the models together with the top-1 classifica-
tion accuracy achieved using a floating-point representation
(w/o any further optimization). Results are consistent with
those available in the literature. Both training and testing are
run in PyTorch, version 0.4.1. The training is iterated over
150-epochs using the Adam algorithm [29] with the following
settings: learning rate le-3, linear decay 0.1 every 50-epochs,
batch size of 128 samples randomly picked from the training
set. Test set and training set are fully disjointed.

1) IMAGE CLASSIFICATION (IC)
It is the image recognition on the popular CIFAR-10 dataset.
There are 32 x 32 RGB images [13] evenly splitin 10 classes,
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each class with 50000 and 10000 samples for the training set
and test set respectively. Like in [24], the adopted ConvNet
is taken from the Caffe framework [32]. It consists of three
convolutional layers interleaved with max-pooling and one
fully-connected layer.

2) KEYWORD SPOTTING (KWS)

A well-known application in the field of speech recognition,
which is hard to deploy on low-power devices. However,
when the problem is simplified to simple command detection
(used as triggers), e.g. “Yes”, the task achieves an affordable
level of complexity.* The reference data set is the Speech
Commands Dataset [14]; it counts of 65k 1s-long audio
samples collected during the repetition of 30 different words
by thousands of different people. The goal is to recognize

4https :/Iwww.tensorflow.org/tutorials/sequences/audio_recognition
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TABLE 3. Development boards adopted as test-bench for the assessment.

Board Core RAM | Flash | Frequency
NUCLEO-F412ZG [30] | Cortex-M4 | 256 KB | 1MB | 100 MHz
NUCLEO-F767Z1 [31] | Cortex-M7 | 512KB | 2MB | 216 MHz

10 specific keywords, i.e. “Yes”, “No”, “Up”, “Down”,
“Left”, “Right”, “On”, “Off”, “Stop”, “Go”, out of the
30 available words. Samples that do not belong to the 10 cat-
egories are labeled as ‘“‘unknown”. An additional “‘silence”
class is made up of background noise samples (i.e. pink
noise, white noise, and human-made sounds). The training
set and test set collect 56196 and 7518 samples respec-
tively. The adopted ConvNet model is the cnn-trad-fpool3
described in [33]. It is made up of two convolutional layers,
two max-pooling layers, and three fully-connected layers.
The network is fed with the spectrogram of the recorded
signal which is obtained through the pre-processing pipeline
introduced in [33] (extraction of time X frequency = 32 x 40
inputs w/o any data augmentation).

3) FACIAL EXPRESSION RECOGNITION (FER)

It is about inferring the emotional state of people from their
facial expression. Quite popular in the field of visual rea-
soning, this task is very challenging as many face images
might convey multiple emotions. The reference data set
is the Fer2013 from the Kaggle competition [15]. It col-
lects 32297 48x48 grayscale facial images split into 7 cat-
egories: “Angry”, “Disgust”, “Fear”, “Happy”, “Sad”,
“Surprise”, “Neutral”. The training set counts of 28708
samples, while the remaining 3589 are kept as the test set.
The ConvNet model® shows nine convolutional layers evenly
spaced by three max-pooling layers and one fully-connected
layer.

B. HARDWARE SPECIFICATIONS AND TOOLS

As testbenchs we used two off-the-shelf boards powered with
Cortex-M cores by ARM. As shown in Tab. 3, the selected
devices cover different ranges of performance (Frequency)
and memory space (RAM). The deployment on the target
board is powered by the CMSIS-NN library v.5.4.0 provided
by ARM. The . C source file is compiled using the GNU Arm
Embedded tool-chain, version 6.3.1.

Within the PaQ flow, the classification accuracy is mea-
sured by means of the emulator mentioned in Sec. III-D. The
tool is tuned for the ARM Cortex-M integer unit. Experiments
were conducted on a GP-GPU workstation powered with a
Titan GTX-1080 Ti by NVIDIA. Extensive testing revealed
100% match with results collected on the NUCLEO boards.
The same emulator is used for the accuracy assessment of
those compressed ConvNets that cannot be flashed into the
ARM cores, whereas the hardware-compliant ConvNets are
evaluated on-board (see the flow depicted in Fig. 2). The

5Inspired by https://github.com/JostineHo/mememoji
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RAMalloc memory model is cross-validated with the results
provided by the gcc compiler (all the variables are statically
allocated) and those returned by tracking the memory usage
at run-time (feature available with the mbed-os operating
system,6 version 5.11.0).

C. ACROSS THE MEMORY-ACCURACY SPACE

The exploration is run for a discrete set of memory con-
straints, i.e. M; € [Mp ., Mppol, Dmin = 2, bmax =
16, step one bit; M, refers to the memory footprint of the
ConvNet quantized with b bits w/o any pruning (e.g. M»>
is the memory after a 2-bit quantization). For intermediate
memory constraints, i.e. M; € (Mp;, Mp,, ), the accuracy
is interpolated (more details in Sec. IV-D). The collected
results of the three applications are illustrated in Fig. 3(a),
3(b) and 3(c). The plots show the top-1 accuracy for every pair
{Np, b} € P. The yellow line highlights the implementations
where only the b-Quantization (label Q) applies, i.e. no filters
pruned. Since the Q-aware pruning skips the filter pruning
as soon as the M; is met, there might be memory-compliant
solutions which belong to this line, e.g. in Fig 3(a) the
2-bit quantization alone meets the memory constraint of
33 kB. The region above the yellow line (light transparency)
covers trivial implementations dominated by quantization,
i.e. those for which M; > M), while the exploration of the
region below is more interesting as it brings the following
considerations.

1) WEAKNESS OF ACCURACY-DRIVEN OPTIMIZATIONS
There is a plateau 7 (hatched area in the plot) where the accu-
racy gets very close to that of the original FP model, namely
pruning and quantization impact accuracy marginally. With-
out loss of generality, we assume that a pair {N,, b} belongs
to 7 if the accuracy drop with respect to the best-accuracy
point (P,, marked with the green cross in the plots and
reported in the first row of Tab. 4) is less or equal than 0.5%.
The existence of T is nothing new as ConvNets are often
redundant due to over-parametrization [16]. The area of T
may depend on the complexity of the task or the network
topology.

The accuracy-driven compression techniques proposed in
the literature, e.g. [6], search for an unique combination of
pruning and quantization which ensures the largest compres-
sion within a given accuracy 10ss Lmax. Assuming a realistic
constraint, e.g. Lmax = 0.5%, which is the same value used
to define 7, the solution they return can be identified in

f’https ://os.mbed.com/blog/entry/Tracking-memory-usage-with-Mbed-
Os/
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TABLE 4. Optimal vs. hardware-compliant implementations under different memory constraints M;: column Pareto reports the Pareto points P as for the
plots of Fig. 3; columns PaQ-8 and PaQ-16 refer to solutions obtained with the proposed PaQ flow using 8- and 16-bit respectively which are the red lines
in Fig. 3; column A collects the distance (the lower is better) between optimal and hardware-compliant implementations for both PaQ-8 and PaQ-16 in
terms of accuracy. Cells corresponding to those implementations with a top-1 accuracy «50% have not been filled.

M Pareto PaQ-8 PaQ-16

¢ Pl b [Top-1|b[Top-l| A b |Top-1| A
245 P, | 15| 83.10 | 8 | 82.85 | 0.25 16 | 82.86 | 0.24
115 Py 7 82.64 | 8 | 8244 | 0.20 16 | 77.31 5.33
98 P 7 81.99 | 8 | 81.40 | 0.59 16 | 72.52 9.47
IC 82 P; | 6 | 8149 | 8 | 80.79 | 0.70 | 16 | 65.21 | 16.28
66 Py, | 6 | 8042 | 8 | 78.85 1.57 16 | 54.85 | 25.57
49 Ps | 5| 7817 | 8 | 71.64 | 6.53 16 | 53.00 | 25.17
33 Ps 5 7185 | 8 | 54.68 | 17.17 | 16 | 50.00 | 21.85
494 P, | 13| 8.80 | 8 | 86.38 | 0.42 16 | 86.20 | 0.60
266 P, 8 86.32 | 8 | 86.32 | 0.00 | 16 | 83.80 | 2.52
228 Py 8 85.87 | 8 | 85.87 | 0.00 | 16 | 83.48 | 2.39
KWS 190 Py 7 8546 | 8 | 85.28 0.18 16 | 81.60 3.86
152 Py 8 84.52 | 8 | 84.52 | 0.00 16 | 73.11 | 11.41
114 Ps | 6 | 8351 | 8 | 83.00 | 0.51 16 | 70.42 | 13.09
76 FPs| 6 | 81.51 | 8 | 75.16 | 6.35 16 | 70.78 | 10.73
1062 || P, | 14 | 66.84 | 8 | 65.34 1.50 16 | 65.23 1.61
899 P | 12 ] 6645 | 8 | 65.34 1.11 16 | 65.59 | 0.86
572 Py | 11 | 6590 | 8 | 6548 | 0.42 16 | 63.47 | 243
FER 491 Py | 7 | 6553 | 8| 6475 | 0.78 16 | 5843 | 7.10
409 Py | 9 | 6517 | 8 | 64.61 0.56 | 16 | 5592 | 9.25

327 P 8 64.86 | 8 | 64.86 | 0.00 16 - -

246 Py 7 63.22 | 8 | 63.03 0.19 16 - -

164 P, | 5 | 5517 | 8 - - 16 - -

our formulation as {N,, b} € T s.t. M. is minimized. This
solution represents the lower right corner of the plateau 7,
denoted with P; (second row of each benchmark in Tab. 4).

An accuracy-driven, memory-unconstrained optimization
of this kind might return ConvNets that do not fit into the
physical memory. Let’s consider FER for instance, the opti-
mal implementation would take 899kB of RAM using
12-bits, a configuration which is simply too large for our
target devices. The focus of this work is on the region below
such theoretic optimum, a region we refer as the deep memory
space, and the proposed framework is specifically built to run
this exploration. One may argue that other meta-heuristics,
like Bayesian Optimization, can be guided towards this region
of interest by integrating the memory footprint in the cost
function. That is true in general, but those methods perform
better in optimization rather than fine exploration. Moreover,
the multi-objective function may result biased by the impor-
tance weights adopted.

2) MEMORY-ACCURACY PARETO CURVE

There is a Pareto curve in the deep memory space, the green
dotted line in the plots. As already discussed, P corresponds
to the pair {N,, b} inside 7 having the smallest memory
footprint. Instead, the remaining Pareto points lay outside 7
and represent those implementations that meet lower memory
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constraints at the cost of larger accuracy loss, £ > 0.5%.
The existence of these points is somehow intuitive, but a
quantitative analysis may reveal interesting trends. The exact
values of target memory M; and bit-width b are reported
in Tab. 4 together with the top-1 accuracy they achieve.
As the numbers suggest, for many configurations the obtained
accuracy gets very close to the best accuracy, yet ensuring
substantial memory reduction. For instance: KWS shows a
small accuracy drop of 1.34% (from 86.80% to 85.46%)
with 62% of memory compression (from 494 kB to 190 kB);
FER goes even better by showing 46% memory reduction
(from 1062kB to 572kB) within an accuracy loss < 1%
(from 66.84% to 65.90%). Similar conclusions can be
inferred from the comparison among the other Pareto points.

3) OPTIMALITY OF HARDWARE-COMPLIANT SOLUTIONS

A more interesting analysis concerns the distance (mea-
sured as difference in accuracy) between the implementa-
tions on the Pareto curve and the implementations which are
hardware-compliant, i.e. the pairs {N[;, b’} with b’ € [8, 16]
highlighted with the red dash-dotted curves in the plots (labels
PaQ-8 and PaQ-16 respectively). The top-1 accuracy for PaQ-
8 and PaQ-16 are given in Tab. 4, together with the distance
from the Pareto curve (column A). The results show that
PaQ-8 outperforms PaQ-16 (smaller A). There are only two
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FIGURE 4. Top-1 accuracy vs. memory footprint for KWS.

exceptions, i.e. IC at M; = 245kB and FER at M; = 899kB,
yet with a mere distance (0.25% in the worst case). The actual
reason is that under the same memory budget, the 8-bit model
has more remaining filters, hence the accuracy of 8-bit model
is higher than the corresponding 16-bit one. In other words,
the 8-bit models stop pruning earlier than 16-bit. This can
also be proved by looking at numbers collected in Tab. 4,
FER benchmark under a memory constraint M; = 327 kB: the
16-bit model is so highly pruned that the accuracy falls down
to impractical values, while the 8-bit model meets the mem-
ory constraint with less filters pruned and hence lower accu-
racy loss. The key insight is that a bit-width below the 8-bit
mark is needed only for very tight constraints. For instance,
KWS with memory constraint M; = 76 kB, where the PaQ-8
implementation shows A > 1%, or FER with memory con-
straint M; = 164 kB, where PaQ-8 cannot ensure reasonable
accuracy. The conclusion is that arbitrary bit-widths are really
needed in few specific cases and the adoption of specialized
architectures needs to be assessed carefully.

D. VALIDATION OF PaQ

1) EFFICACY OF THE PROPOSED MEMORY-DRIVEN
COMPRESSION

As described in Algorithm 1, the proposed version of filter
pruning is memory-driven, i.e. the optimization loop ends as
soon as the memory constraint is met. To motivate this stop-
ping criteria, we provide the analysis of a pruning strategy
where the constraint is given in a direct form, i.e. number
of filters to be pruned; once pruned, the models undergo a
quantization stage and then fine-tuning to recover accuracy.
Using the number of filters as a control knob, it is therefore
possible to span the entire memory range. Fig. 4 shows the
results for KWS; the plot collects the top-1 accuracy achieved
with 8- and 16-bit. The lines follow a pseudo-monotone trend:
the lower the memory, the lower the classification accuracy.
Negligible ripples are due to the noise introduced by fine-
tuning. This fully justifies our choice: to stop the search as
soon as the constraint M; is met gives the highest accuracy
for that specific M;. The same trend holds for every bit-width
used in our experiments (not shown in the figure for the sake
of readability). Furthermore, the linear interpolation adopted
to estimate the accuracy when M; € (My,, Mp,, ) is also
validated. Indeed, the plot shows that accuracy is a piece-wise
linear function of memory. The same considerations hold for
the other ConvNet benchmarks.
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FIGURE 5. Average inference time per sample of PaQ-8 solutions on KWS.

2) ON THE SCALABILITY OF THE PROPOSED
HARDWARE-DRIVEN OPTIMIZATION

The adopted PaQ scheme is hardware-friendly, namely,
memory compression improves latency too. We refer to this
kind of schemes as latency proportional. Fig. 5 shows the
average latency for one feed-forward pass of the ConvNet
used in KWS. The analysis is conducted under different
memory constraints (the same reported in Tab. 4).

As PaQ-8 dominates PaQ-16 (please refer to the previous
section), the reported results are for 8-bit only. The execu-
tion time is measured using the timer API provided by the
mbed-os operating system and averaged over the entire test
set. The experiments were run on the boards reported in
Tab. 3, labeled as NUCLEO-F4 and NUCLEO-F7 for brevity.
The NUCLEO-F4 board has a maximum RAM of 256kB,
therefore larger models cannot be deployed.

Adopting pruning and quantization schemes that preserve
the regularity on the ConvNet topology is the key to achieve
a direct proportionality between inference time and memory
footprint. The choices implemented in the proposed frame-
work go in this direction as they have been conceived to
(7)) reduce the number of memory accesses, (ii) alleviate the
cost of the im2col procedure, and (iii) reduce the number of
operations as the memory footprint gets smaller. The result is
the linearity shown in the plot. The same trend holds for the
other benchmarks.

3) EXECUTION TIME
The PaQ flow takes a few minutes for each fine-tuning
stage (50 epochs each). The actual execution time may vary
depending on the complexity of the ConvNet and the memory
constraint. The worst case is the largest benchmark (FER):
25 minutes on average for each {M;, b} pair, 80% spent for the
fine-tuning stages. A significant reduction can be achieved
limiting the number of retraining epochs. Early stopping
policies may be introduced to serve this purpose as it was
done in other works to prevent over-fitting [34] or accelerate
the training stage [35]. While the speed-up of the PaQ flow
is out of the scope of this work, Table 5 supports our claim
showing the number of fine-tuning epochs after which PaQ
is already able to reach the highest top-1 accuracy.
Collected numbers refer to the average over all the pairs
{M;, b} of the exploration space. For the three benchmarks,
both pruning and quantization converge much earlier than the
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TABLE 5. Average number of fine-tuning epochs to achieve the maximum
top-1 accuracy on the test set.

Q-aware Pruning | b-Quantization
IC 30.7 22.1
KWS 27.7 15.4
FER 18.7 13.5

50-epoch threshold we set for safety, revealing the potential
margins.

V. CONCLUSION

This work introduced an accurate analysis of memory-
bounded ConvNets. The study was conducted through an
assessment framework that provides a hardware-conscious
exploration of the memory-accuracy space. This represents a
key differentiation factor with respect to existing optimization
flows. Overall, our study proves that the design space explo-
ration of compressed ConvNets enables to identify when
custom hardware is needed. Understanding these cases is
paramount to reduce the implementation costs, especially in
the context of lightweight IoT applications. With the pro-
posed framework, we demonstrated that optimal solutions
are not that far from those that can be effectively ported
into general-purpose hardware, even under the tight mem-
ory constraints posed by off-the-shelf MCUs. The results
revealed that custom accelerators are not always needed:
just for some applications and extreme memory compression
they ensure savings. When deployed on commercial boards,
hardware-compliant solutions have proven to be latency pro-
portional, that is, performance linearly improves with the
memory compression. This is an important feature which val-
idates the efficiency and the scalability of the adopted prune-
and-quantize strategy. As an additional insight, the analysis
highlighted a natural bond between pruning and quantization
that can be used in future works to drive and speed-up the
optimization process.
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