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The dynamics of a passive scalar plume in a turbulent boundary layer is experimentally
investigated via vertical turbulent transport time series. Experimental data are acquired
in a rough-wall turbulent boundary layer that develops in a recirculating wind tunnel
setup. Two source sizes in an elevated position are considered in order to investigate
the inßuence of the emission conditions on the plume dynamics. The analysis is focused
on the effects of the meandering motion and the relative dispersion of the plume with
respect to its center of mass. First, classical statistics are investigated. We found that (in
accordance with previous studies) the meandering motion is the main factor responsible
for differences in the variance and intermittency, as well as the kurtosis and power spectral
density, between the two source sizes. On the contrary, the mean and the skewness are
slightly affected by the emission conditions. With the aim to characterize the temporal
structure of the turbulent transport series, the visibility algorithm is exploited to carry
out a complex network-based analysis. In particular, two network metricsÑthe average
peak occurrence and the assortativity coefÞcientÑare analyzed, as they are able to capture
the temporal occurrence of extreme events and their relative intensity in the series. The
effects of the meandering motion and the relative dispersion of the plume are discussed
in view of the network metrics, revealing that a stronger meandering motion is associated
with higher values of both the average peak occurrence and the assortativity coefÞcient.
The network-based analysis advances the level of information of classical statistics by
characterizing the impact of the emission conditions on the temporal structure of the signals
in terms of extreme events (namely, peaks and pits) and their relative intensity. In this way,
complex networks provideÑthrough the evaluation of network metricsÑan effective tool
for time-series analysis of experimental data.

DOI: 10.1103/PhysRevFluids.4.104501

I. INTRODUCTION

The release in the atmospheric boundary layer of ßammable or toxic substances, as well as the
dispersion of pollutants, need to be carefully addressed due to their signiÞcant environmental and
health impact. To this end, different numerical and experimental strategies have been adopted so
far [1] in order to investigate the relation between turbulence dynamics, release conditions, and
one-point probability density functions (PDFs) of the pollutant concentration. In particular, several
works investigated the relation between statistical moments in order to infer the corresponding
PDF [2Ð8]. For example, Chatwin and Sullivan [2] investigated the relation between mean and
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standard deviation of a passive scalar in a shear ßow, while Mole and Clarke [3] found a functional
dependency between the third- and fourth-order moments. In other works, instead, the form of the
PDF of the concentration was directly investigated (see, among others, [9,10]), with implications on
the passive scalar modeling.

Although several setup conÞgurations can be adopted, the release of a contaminant from a
point source in a turbulent boundary layer provides an accurate representation of a typical plume
dispersion process in the atmospheric boundary layer [1]. From a modeling perspective, Gifford
[11] described the dynamics of a plume continuously emitted by a point source as mainly governed
by two mechanisms: the meandering motion of the instantaneous center of mass of the plume, and
the relative dispersion, i.e., spreading, of the plume with respect to its center of mass. The plume
meandering motion is due to turbulent length scales larger than the plume size. Namely, only the
large scale eddies of the turbulent ßow are able to make the plume meander in space. The two
main parameters that affect the meandering of a developing plume are the size and the distance of
the source from the ground. For an elevated source, plumes emitted by a smaller source size are
affected by a wider range of turbulent length scales (thus implying a stronger meandering motion)
with respect to a plume emitted by a larger source size. As shown in previous studies [12,13], small
variations of the source size signiÞcantly affect the role of meandering in the plume dispersion,
by inducing variations in the (one-point) concentration statistics up to streamwise distances of the
order of a hundred times the source size. For a ground-level source, instead, the plume dynamics is
slightly affected by the source size [12Ð14] because close to the ground turbulent length scales are
typically of the same order of magnitude as the source size. The effect of turbulent eddies nominally
smaller than the plume size, instead, is to contribute to the local mixing of the concentration Þeld,
thus promoting the relative dispersion of the plume.

In this work, we address the same issue studied by Fackrell and Robins [12] and Nironi et al.
[13] to investigate the spatiotemporal development of a passive scalar plume, emitted from an
elevated point source of varying size. In particular, experimental measurements of velocity and
passive scalar concentration are performed in a turbulent boundary layer over a rough wall, which is
intended to represent the dispersion process of a passive scalar in the atmospheric boundary layer.
The present analysis highlights the effects of the meandering and the relative dispersion on the
wall-normal turbulent transport of the passive scalar. The turbulent transport is here investigated
as it plays a key role into the interplay between the turbulence velocity Þeld and the concentration
of the passive scalar. In fact, due to the presence of the ground, the extent to which the passive
scalar is transported along the wall-normal direction is a fundamental aspect for the dispersion
characterization. SpeciÞcally, the role of the different source size in the plume dynamics, as well
as the plume spatial evolution along the streamwise and wall-normal coordinates, is emphasized
throughout the study.

In order to investigate the plume dynamics, two approaches are carried out: (i) we obtain statistics
of wall-normal turbulent transport, thus enriching the benchmark for a dispersing plume in a rough
wall setup [12,13], and (ii) a complex network-based analysis is performed in order to advance the
level of information of classical statistical tools, thus revealing nontrivial insights into the temporal
structure of the signals. Although different research Þelds have taken advantage of network science
during past decades (e.g., social, biological, or technological networks [15]), only recently complex
networks have emerged as an effective framework also to study ßuid ßows. The main applications
of network science to ßuid ßows involve the study of two-phase ßows [16,17], turbulent jets [18,19],
isotropic and wall-bounded turbulence [20Ð22], reacting ßows [23,24], Lagrangian mixing [25,26],
and geophysical ßows [27,28]. Among several techniques that have been developed so far to study
time series by means of complex networks [29], the visibility graph approach [30] was here adopted
since it is a simple but powerful tool to extract nontrivial insights into the nonlinear process from
which the time series are obtained [29].

The paper is organized as follows. SectionII includes the description of the experimental setup
and the measurement techniques (Sec.II A ), as well as the data preprocessing (Sec.II B). The
statistical analysis of the wall-normal turbulent transport is reported in Sec.III . Typical statistical
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FIG. 1. Sketch of the TBL setup; the plume is illustrated in green, while the horizontal dash-dotted line
refers to the source axis. The symbols are deÞned in the main text. Two large-scale eddies of (Eulerian)
characteristic size� are also depicted as rotating arrows.

quantities are evaluated, such as the Þrst four moments (i.e., the mean value, the standard deviation,
the skewness, and kurtosis), the power spectral density, and the intermittency factor. The complex
network analysis is shown in Sec.IV: the main concepts of complex network and visibility graph are
outlined in Sec.IV A , while the metrics deÞnition and interpretation are discussed in Sec.IV B. Two
network metrics are investigated, i.e., the average peak occurrence and the assortativity coefÞcient
[21], with the aim to characterize the temporal structure of the turbulent transport time series.
The average peak occurrence and the assortativity coefÞcient are here selected as they are able
to highlight the temporal structure of extreme events (i.e., peaks and pits) and their relative intensity
in a time series. The results of the visibility-network approach are shown in Sec.IV C, while the
conclusions are drawn in Sec.V.

II. METHODS

A. Experimental setup and measurements

A neutrally stratiÞed atmospheric turbulent boundary layer (TBL) was generated in a recirculat-
ing wind tunnel of the Laboratoire de MŽcanique des Fluides et dÕAcoustique at the ƒcole Centrale
de Lyon, in France. The setup and the measurement tools are the same as that adopted by Nironi
et al. [13] (see AppendixA). However, measurements were performed in a wind tunnel which is
smaller than that used by Nironiet al. [13], with a working section that is 9 m long, 1 m wide, and
0.7 m high. A row of Irwin spires [31] was placed at the beginning of the test section, while cubic
roughness elements with sizehr = 0.02 m were uniformly displaced on the ßoor. As a result, a TBL
of free-stream velocityu� = 4.94 m/ s and thickness� = 0.314 m was generated, with� evaluated
as the wall-normal coordinate where the mean velocityu = 0.95u� (see a sketch of the setup in
Fig. 1). The Reynolds number of the experiment was evaluated as Re� = � u� /� � 1.034× 105

(� = 1.5 × 10Š5 m2/ s is the kinematic viscosity of air), which guarantees a well-developed rough
turbulent ßow [32]. In this work, the streamwise, spanwise, and wall-normal directions are indicated
as (x, y, z), respectively, and the origin of the axes is at the wall in correspondence to the outlet
section of the source (see the sketch in Fig.1).

A mixture of air and a passive scalar was continuously ejected from a metallic L-shaped tube.
Due to its density being similar to that of air, ethane (C2H6) was used as a passive tracer. The
passive scalar source was located at a streamwise distance from the beginning of the working section
xs/� � 17.5 and at a wall-normal heighths/� � 0.24. Two internal diameter conÞgurations were
considered (see Fig.1): D = 0.003 m (i.e.,D/� � 9.55× 10Š3) and D = 0.006 m (i.e.,D/� �
1.91× 10Š2). In the following, these two conÞgurations are referred to as D3 and D6, respectively.
The ethane-air mixture does not substantially introduce or subtract momentum from the ßow Þeld
at the source. This condition is referred to as isokinetic [13,14]; namely, the source velocity,us,
of the mixture equals the local mean velocity,u, at the source height,us � u(z = hs) � 3.37 m/ s.
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In order to have isokinetic conditions, the total mass ßow rate,Mt = � us� D2/ 4, was imposed as
Mt /� � 86 l/ h for D3 andMt /� � 344 l/ h for D6, where� = � air = � C2H6 is the density of the
air-ethane mixture. Furthermore, to consider the recirculation of ethane-air in the wind tunnel, the
background concentration (which increases linearly with time) was subtracted from the recorded
time series.

The streamwise and vertical velocity time series,u and w, were acquired by means of a
X-probe hot-wire anemometer (HWA), while concentration time series,c, were recorded with a
fast ßame ionization detector (FID) [33] (for further details on the instruments see AppendixA).
The acquisition time was set equal toT = 180 s while the number of recorded data points is
NT = 1.8 × 105. Measurements were performed at different locations along the three Cartesian
directions, (x, y, z). SpeciÞcally, data were recorded atx/� = { 0.325, 0.650, 1.30, 2.60, 3.90} in
the streamwise direction. For eachx/� location, one-point measurements were taken along the
vertical (i.e., at Þxedy/� ) and transversal (i.e., at Þxedz/� ) directions. Transversal proÞles
of concentration and velocity are obtained atz = hs, and at spanwise locations ranging in the
interval y/� = [Š0.6, 0.6]. On the other hand, vertical proÞles are obtained aty/� = 0 at various
wall-normal locations ranging in the intervalz/� = [0.096, 0.828] (the limits depend on the
estimated size of the plume at a givenx/� ). Due to the crucial role played by the wall-normal
direction that represents the direction of spatial inhomogeneity of the ßow, here we focus on
measurements taken aty/� = 0, namely, in the (x, z) plane normal to the wall and passing through
the source axis (Fig.1). We refer to the near Þeld and the far Þeld as the streamwise locations
closest and farthest from the source, respectively. Therefore, the near and far Þelds correspond to
locationsx/� = 0.325 andx/� = 3.90, respectively, whilex/� = 1.30 is considered an intermediate
location.

B. Data preprocessing

Each time series was normalized by a reference value, which isu� for the velocity components
(measured in meters per second) and� c = Me/ (� u� � 2) for the passive scalar concentration
(measured in parts per million), whereMe is the mass ßow rate of ethane. Therefore, in this work
we indicate byc, u, andw the normalized concentration, and streamwise and wall-normal velocity,
respectively. To take into account the presence of random instrumental noise oncÑwhich produces
negative concentration valuesÑwe preprocessed the concentration data as

c(x, z; ti ) = 0, if c(x, z; ti ) < �, (1)

where� = | minx,z[mini [c(x, z; ti )]] | is the absolute value of the minimum amplitude of all con-
centration series for a givenD. In other words, we set equal to zero all concentration values
that are smaller (in modulus) than the maximum amplitude of negative values in the series. This
preprocessing operation is reasonably valid as the values of� are two orders of magnitude lower
than the average concentration values, and three orders of magnitude lower than the maximum
c values. Furthermore, since in this work we focus on the vertical passive scalar ßux,w�c�, the
Reynolds decomposition was performed for velocity and concentration time series asw� = w Š w
andc� = c Š c, wherew andc are the time averages ofw andc, respectively.

Finally, we estimated the vertical position,h�
s, of the actual axis of the plume, for both D3 and

D6, as thez coordinate of maximumc(z) value (see AppendixB for more details). In fact, since
the plume develops in a turbulent boundary layer, it is affected by the mean shear and by the
source wake. While the latter is mainly present very close to the source, the mean shear acts at
any streamwise location and tends to tilt the plume axis towards the wall. As a consequence, the
wall-normal coordinate of the plume axis,h�

s, alongz/� is not exactly atz = hs, but it decreases
downstream from the source. Although the values ofh�

s for D3 and D6 should be different, this is
true only in the near Þeld, i.e., where the differences between the plumes emitted by D3 and D6 are
the strongest.
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FIG. 2. Vertical proÞles of (a)Ð(c) the mean value of wall-normal transportw�c� and (d)Ð(f) the standard
deviation	 w�c� . The proÞles are plotted at three streamwise locations, in the near Þeld (x/� = 0.325), in the far
Þeld (x/� = 3.90), and at an intermediate location (x/� = 1.30), for the two source diameters,D = 3 mm and
D = 6 mm. The wall-normal coordinate of the source axis,hs, is illustrated as a horizontal dotted line, while
the plume axis height,h�

s, is displayed as a blue (red) dashed line for the source D3 (D6).

III. STATISTICAL ANALYSIS OF THE PLUME DYNAMICS

Previous works (e.g., [12,13]) focused on the inßuence of the source size on the one-point
concentration statistics, at varying distance from the source. Namely, it was shown that, while
the mean concentration proÞles are almost unaffected by the source conditions, the higher-order
statistics (variance, skewness, kurtosis) show a high sensitivity to the source size, even at large
distances from the release point [13]. In a similar way, we examine here the statistics of vertical
turbulent transport,w�c�. We show the vertical proÞles of the statistics by focusing on the effect
of the source size in the two conÞgurations D3 and D6, corresponding to source diameters
D/� � 9.55× 10Š3 andD/� � 1.91× 10Š2, respectively.

A. Mean and standard deviation of turbulent transport

Figure2 shows the vertical proÞles of mean and standard deviation values of the (normalized)
turbulent ßux,w�c�. The proÞles are reported at three representative streamwise locations, i.e., in
the near Þeld (x/� = 0.325), in the far Þeld (x/� = 3.90), and at an intermediate location (x/� =
1.3). The vertical proÞles ofw�c�Ñnamely, the total mass transportÑtend to collapse for the two
conÞgurations D3 and D6, as shown in Figs.2(a)Ð2(c). This behavior is more evident in the far Þeld
than in the proximity of the source, as the dependence of the mean concentration on the source size
D rapidly vanishes downstream from the source. In fact, the plume sizes, i.e., the transversal and
wall-normal spread of the plume, become much larger thanD with increasingx/� due to the relative
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dispersion (e.g., see Fig.1); as a result, the effect ofD onw�c� becomes negligible forx/� � 0. The
vertical turbulent transport is zero at the plume axis,h�

s (as an effect of the mean shear), namely,
where the vertical concentration gradient is minimum (see Fig.10 in Appendix B). Above and
below the plume axis, instead, the mean value of turbulent ßux is nonzero [see Figs.2(a)Ð2(c)]:
for z > h�

s, w�c� is positive, while forz < h�
s, w�c� is negative. Above the source axis, the passive

scalar is mainly carried out upwards by positivew� ßuctuations; on the other hand, below the source
axis the passive scalar is mainly transported downwards by negativew� ßuctuations. In particular,
the maximum or minimum value ofw�c� corresponds to the maximum of the mean concentration
gradient (this is also evident by using the Boussinesq approximationw�c� � Š 
 c/
 z [1]).

As shown in Figs.2(d)Ð2(f), the effect of the source size for an elevated source is instead much
more evident for the standard deviation,	 w�c� , rather than for the mean valuesÑin analogy with what
is observed in the concentration statistics [12,13]Ðeven at large distances from the source. This is
a consequence of the stronger meandering motion of the plume emitted by the smallest source
size, D3, which produces more variability in the series and the corresponding high intermittency in
the dynamics of vertical turbulent transport (see Sec.III C). The maximum difference of standard
deviation between D3 and D6 is present close to the plume axis in the near Þeld, and such
difference strongly decreases by moving downstream towards the far Þeld due to the weakening
of the meandering and the strengthening of the relative dispersion. By moving in the wall-normal
direction,	 w�c� decreases as the plume intensity vanishes away from the source axis.

B. Skewness and kurtosis of turbulent transport

The behavior of the higher-order moments is here investigated by focusing on the skewness,
Sw�c� , and the kurtosis,Kw�c� , of the vertical turbulent ßux. Formally, they are deÞned as the
normalized third- and fourth-order central moments, namely,Sw�c� = (w�c� Š w�c� )3/	 3

w�c� and

Kw�c� = (w�c� Š w�c� )4/	 4
w�c� , respectively. Figure3 shows the skewness and the kurtosis as a

function of z/� for three streamwise locations (as for the mean and standard deviation shown in
Fig. 2).

The behavior of the skewness [Figs.3(a)Ð3(c)] is similar for the two source conÞgurations D3 and
D6 at anyx/� . In particular,Sw�c� � 0 at the plume axis, while the skewness is negative (positive)
below (above) the plume axis, because below and aboveh�

s the vertical turbulent transport is mainly
downwards (i.e.,w�c� < 0) and upwards (i.e.,w�c� > 0), respectively. As shown in Figs.3(d)Ð3(f),
the kurtosis values are greater than three (which corresponds to normal distribution), thus implying
that the PDFs ofw�c� are fat-tailed distributions (under some circumstances, the PDFs can be well
Þtted by a gamma distribution [13]). In particular,Kw�c� is minimum at the plume axis at each
streamwise location, as the plume develops aroundz = h�

s and extreme events (with respect tow�c�)
are less probable to appear; on the contrary, away from the plume axis extremew�c� values are more
probable, as the signals are much more intermittent. Differently from the skewness, the kurtosis
proÞles for D3 and D6 are different in the near Þeld [see Fig.3(d)], and the difference ofKw�c�

progressively reduces towards the far Þeld [see Fig.3(f)]. This implies that the meandering affects
the behavior of the standard deviation but also the behavior of the kurtosis: the values ofKw�c� for
D3, in fact, are higher than the values ofKw�c� for D6; namely, extreme values are more probable
for D3 than for D6.

C. Spectra and intermittency factor

Figure 4 shows the normalized power spectral density,E� = E�/	 w�c� , of the signalsw�c�,
as a function of the normalized wavenumber� � = �� , where � = 2� /� is the wavenumber,
� = u/ f is a characteristic turbulent length scale (see Fig.1), f is the frequency, andu is the
(local) mean streamwise velocity. Spectra are plotted along the source axis, namely, forz = hs.
Since the (instantaneous) plume size,� z, depends on the source size and the spatial location,
the relation between� z and turbulent length scales,� , affects the behavior of the spectra. In
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FIG. 3. Vertical proÞles of (a)Ð(c) the skewness of wall-normal transportSw�c� , in linear-linear scale, and
(d)Ð(f) the kurtosisKw�c� , in log-linear scale. The proÞles are plotted at three streamwise locations, in the near
Þeld (x/� = 0.325), in the far Þeld (x/� = 3.90), and at an intermediate location (x/� = 1.30), for the two
source diameters,D = 3 mm andD = 6 mm. The wall-normal coordinate of the source axis,hs, is illustrated
as a horizontal dotted line, while the plume axis height,h�

s, is displayed as a blue (red) dashed line for the
source D3 (D6).

particular, � z is smaller for D3 than for D6 in the near Þeld, due to the spatial proximity of
the source; by moving downstream, instead,� z increases and the difference of� z between D3
and D6 diminishes. In the near Þeld [Fig.4(a)], the difference of spectral density between D3
and D6 is larger at small wavenumbers than at high wavenumbers. In fact, turbulent length
scales,� , larger than the (instantaneous) plume size,� z, contribute to the (instantaneous) plume
meandering motion in the wall-normal direction (e.g., see the sketch in Fig.1). Therefore, since
in the near Þeld� z,D3 < � z,D6, the differences ofE� between D3 and D6 at low� � are more
evident, because the plume for D3 is affected by a wider range (� z < � < � max, or equivalently,
� �

min < � � < 2� �/� z) of turbulent scales. On the other hand, at high wavenumbers (namely, small
turbulent length scales), the spectral density for the two source sizes tends to coincide, as turbulent
scales� < � z only promote the dispersion of the plume. The large scale ßuctuationsÑinduced by
a wider range of turbulent scale in the near ÞeldÑprogressively weaken towards the far Þeld [see
Figs. 4(b) and 4(c)], so that the intensity of spectral density decreases withx/� and approaches
the same behavior at all wavenumbers for D3 and D6. In fact, for increasingx/� , the plume size
increases (i.e.,� z 	 � max) and the range of scales for which� > � z decreases. In other words,
all turbulent scales tend to contribute to the relative dispersion of the plume in the far Þeld.
Finally, it should be noted that spectra of vertical turbulent transport normalized by its variance
do not show a self-similar behavior along the streamwise direction. This is in contrast to what has
been recently reported for concentration series, which show a self-similar behavior in the range
0.5 � x/� � 4 [34].

104501-7



G. IACOBELLO et al.

FIG. 4. Normalized spectral density,E� , as a function of the normalized wavenumber,� � , of the wall-
normal turbulent ßux,w�c�. Spectra are evaluated at the source axis (z = hs), for the two source diameters,D =
3 mm andD = 6 mm, at three streamwise locations: (a) in the near Þeld (x/� = 0.325), (b) at an intermediate
location (x/� = 1.30), and (c) in the far Þeld (x/� = 3.90).

The last parameter investigated is the intermittency factor. For the concentration series, an
intermittency factor,� c, can be deÞned as the fraction of nonzero concentration values where small
� c values correspond to highly intermittent series [13]. In other words,� c is the fraction of time in
which the passive scalar is measured. In a similar way, here we deÞne the intermittency factor for the
vertical turbulent transport as the fraction of time in which the passive scalar is transported upwards,
� + = prob[w� > 0, c 
= 0], and downwards,� Š = prob[w� < 0, c 
= 0], with (� + + � Š ) = � c (by
deÞnition) and prob[€, €] indicating the joint probability. In the deÞnition of� + and� Š , the velocity
ßuctuations,w�, impose the sign to the ßuxes while the concentration discriminates between the
presence (c 
= 0) or the absence (c = 0) of the plume. Therefore, although the overall intermittency
is governed by the concentration Þeld (i.e.,c 
= 0 or c = 0), the velocity component introduces
a directionality for the intermittency (namely,w� > 0 or w� < 0). For example, the intermittency
factor for the portion of the concentration signal shown in Fig.5(a) is � c = 0.44, because there
are 22 nonzero values ofc(ti ) out of 50 values. Among the 22 nonzero values, 14 observations
correspond to an upward motion (i.e.,� + = 14/ 50 = 0.28), while 8 observations correspond to a
downward motion (i.e.,� + = 8/ 50 = 0.16).

FIG. 5. (a) Example of the intermittent behavior of the concentration signal (Þrst 50 values) measured
at x/� = 1.30 and at the source axis. Blue and red data correspond to upward and downward transport,
respectively. The corresponding values of the intermittency factor for the shown time interval are also reported.
(b) Intermittency factors of the passive scalar concentration,� c, and wall-normal turbulent ßux,� + and� Š , as
a function ofx/� along the source axis (i.e.,y/� = 0 andz = hs).
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Figure5(b) shows that, at the source axis, the vertical transport is more intermittent downward
(w� < 0) than upward (w� > 0), namely,� Š < � + for both D3 and D6. Consistently with the results
shown in Figs.2 and3, at the source axis the passive scalar is mainly transported upwards (as the
plume axis lies below the source axis). Consequently, the fraction of time in which the passive
scalar is transported upwards,� + , results to be greater than the fraction of time in which the passive
scalar is transported downwards,� Š . Furthermore, the intermittency factor is always smaller for
the source diameter D3 than for D6, whether� c, � + , or � Š is considered. This validates the fact
that meandering motion is stronger for the plume emitted by a smaller source, inducing higher
intermittency in the signals. More in detail, in the near Þeld, the values of intermittency factor
for D3 and D6 are different while they approach the same value in the far Þeld, as the effect of
the meandering is replaced by the relative dispersion of the plume. Although a strong meandering
motion is present in the near Þeld, the intermittency factors do not monotonically increase withx/�
because of the effect of the source proximity in the near Þeld (as mentioned in Sec.III A for the
mean turbulent transport). Therefore, a minimum value of the intermittency is found atx/� � 1.3,
which is also found by Nironiet al. [13] in the case of� c.

IV. VISIBILITY-NETWORK ANALYSIS OF TURBULENT TRANSPORT

In this section, we present the results of the analysis of the vertical turbulent transport by means
of the visibility graph approach. The network analysis is here performed to advance the level of
information of classical statistical analysis (see Sec.III ), thus providing a richer picture of the
plume dynamics via turbulent transport investigation. Differently from classical statistics tools,
different temporal arrangements of the same time series generate different visibility networks (e.g., a
shufßed series maintains the same statistics of the originating series, but exhibits a different temporal
structure and visibility network). Since the network metrics evaluated from the visibility graph
approach are able to characterize the temporal structure of the time series, they carry high-order
and nonlinear information of the signal [21]. As a result, the visibility graph approach is proposed
to shed light on the temporal structureÑin terms of extreme events and their relative intensityÑof
the turbulent transport time series.

A. Concepts and deÞnitions

A complex network is formally deÞned as a graph that shows nontrivial topological features [15].
Networks are made up ofN entities called nodes interconnected by a set ofL links, and they are
commonly represented by an adjacency matrix, which is deÞned as

Ai j =
�

1 if {i, j } � L , with i 
= j

0 otherwise,
(2)

wherei, j = 1, . . . , N andL is the set ofL links. Therefore, the entriesAi j take into account the
presence of a link between each pair of nodes. In this work, we considered each connection to be
undirected (i.e.,Ai j = Aji ) and unweighted, resulting in binary and symmetrical adjacency matrices.

In order to investigate the time series of turbulent transport, we employed the natural visibility
graph (NVG) method [30], which is a widely exploited technique to map time series in complex
networks. This method was Þrstly proposed by Lacasaet al. [30], who showed that the resulting
visibility network is able to inherit important features of the mapped time series. According to the
algorithm, each datum of a time series,si � s(ti ), is mapped in a node of the network and a link
between two nodes, (i, j ), is established if

sk < sj + (si Š sj )
t j Š tk
t j Š ti

, (3)

for all tk betweenti andt j (or analogously� k, i < k < j ). Therefore, by construction, each node
i is always linked to its immediately closest nodes, namely,j = i ± 1. From Eq. (3) it follows
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FIG. 6. Examples of two intervals of time series, (ti , si ), and corresponding visibility networks, showing
different temporal structures. Nodes and links are depicted as red dots and green lines, respectively. (a) First
10 out of 105 observations of a series extracted from a uniform probability distribution in the interval [0, 1].
(b) First 20 out of 105 observations of a series extracted from a uniform probability distribution in the interval
[0, 1], with periodic spikes (every 14 instants,ti ) uniformly distributed in the interval [0, 100]. The values ofsi

in the vertical axis are not shown due to the invariance of the visibility algorithm to afÞne transformations.

that the natural visibility algorithm satisÞes a convexity criterion, so that (subsets of) nodes that
form a convex series (e.g., a bowl-like series) are fully linked with each other. In this work, each
network hasN = NT = 1.8 × 105 nodes, corresponding to the recorded data values of each velocity
and concentration series. The most important nodes (hubs) for a visibility network are associated
with positive peaks in the series, because very high values are more likely to see other nodes (i.e.,
hubs have a better visibility). Figure6 shows two simple examples of time series (illustrated as
black stems) mapped into visibility networks, where nodes and links are depicted as red dots and
green lines, respectively. It is worth highlighting that the visibility criterion emphasizes the positive
peaks, but not the negative ones. Consequently, when the series mainly displaypits (i.e., negative
peaks) instead of positive peaks, it is possible to exploit Eq. (3) to build visibility networks from
the complementary series,Šsi . The comparison of the metrics extracted from the original series,si ,
and its opposite,Šsi , allows one to characterize the peak-pit asymmetry in the series [35], namely,
if peaks are mainly positive or negative.

The main advantage of the visibility algorithm relies on the fact that it does not require anya
priori parameter. However, the NVG is invariant under rescaling and translation of both horizontal
and vertical axes (i.e., afÞne transformations) [30]. This peculiar feature of NVG is crucial, and it
must always be taken into account when the network structure is investigated. In fact, the invariance
to afÞne transformations implies that two time series with different mean and standard deviation
values but with similar temporal structure are mapped into the same visibility network. If the
analysis should be sensitive to afÞne transformations of the series, the invariance of NVG represents
a drawback of the method. On the other hand, if the focus is on the temporal structure of the series
(as in this work), the invariance is a potential beneÞt. In fact, it is possible to exploit the NVG to
analyze series without a preprocessed normalization of the series. Finally, it should be noted that
the condition in Eq. (3) still holds for nonuniform sampling or time series with missing values [29],
which is an advantage when incomplete data measurements are available.

B. Network metrics

In order to characterize the structure of complex networks, several metrics have been proposed
so far [15]. In a previous work on the investigation of velocity time series in a turbulent channel
ßow, three metrics were exploited [21]: the transitivity, the mean link length, and the degree
centrality. Among these three metrics, the transitivity and the mean link length are able to highlight
the presence of small variations in the series and the occurrence of peaks, respectively. On the
other hand, the degree centrality cannot be uniquely related to a speciÞc temporal feature, since
the degree accounts for both the recurrence of peaks and the presence of small variations in the
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series [21]. Therefore, to extract information on the characterization of extreme events of the plume
dynamics we here exploited two speciÞc network metrics: the mean link length, and the assortativity
coefÞcient. The mean link length,di , was proposed by Iacobelloet al. [21] as a local measure to
characterize the temporal occurrence of peaks in a series, deÞned as

di =
1
ki

N�

j= 1

|t j Š ti |Ai j , (4)

whereki =
�

j Ai j is the degree of a nodei, namely, the number of nodes linked toi. The average
value over all nodes of the mean link length is thend� =

�
i di /N, and it represents a characteristic

temporal distance between two visible data in a series. A high value of the average mean link length,
d� , indicates that peaks rarely occur in a series, since peaks prevent visibility between data that are
far from each other [21]. Therefore, largedi values correspond to hubs in the network and peaks in
the series, as peaks activate long-range links (i.e., farther temporal horizons). As mentioned above,
although the degree is usually adopted as the metric to characterize hubs, the mean link length is
revealed to be a more reliable metric than degree for peak characterization in visibility networks.
For example, in a visibility network built on a fully convex series (e.g., a bowl-like series with a
minimum value), each node has maximum degree value equal toN Š 1 due to the full convexity of
the series, but the node corresponding to the minimum value does not represent a peak. It is also
worth noting that while the kurtosis is an estimation index of extreme values in a PDF, the mean link
length quantiÞes the average temporal distance between extreme events (while the PDF is invariant
to the temporal structure of the signal). In this work, in order to better highlight the cases in which
peaks frequently appear (i.e., lowd� values), we introduce the average peak occurrence, =  d�Š1,
corresponding to a characteristic frequency of peaks in a series.

It must be emphasized that we refer to peaks as the local (or global) highest positive values in the
series [21]. This does not necessarily imply that peaks also correspond to outliers, namely, very large
values with respect to a local subset of data; on the contrary, outliers typically correspond to peaks.
For example, in Fig.6(a)outliers are not present and peaks correspond to nodesi = { 2, 4, 7, 9}; in
Fig. 6(b), instead, peaks correspond to outliers, namely, nodesi = { 2, 15}. Therefore, the average
peak occurrence, , is sensitive to the appearance of peaks in time (horizontal separation), but it
does slightly take into account the relative intensity of peaks compared to all the other values in
the series. To address this issue, we also investigated the assortativity coefÞcient,r , which is the
Pearson correlation coefÞcient of the degree of the nodes at the ends of each link [36], namely,

r =

�
i

�
j> i

Ai, j

L kikj Š
� �

i

�
j> i

Ai, j

2L (ki + kj )
� 2

�
i

�
j> i

Ai, j

2L

�
k2

i + k2
j

�
Š

� �
i

�
j> i

Ai, j

2L (ki + kj )
� 2 , (5)

where (i, j ) are the end nodes of each linkl � L . Positiver values are obtained when nodes are
linked with other nodes of similar degree: in this case, the network is said to be assortative. On
the contrary, the network is said to be disassortative ifr < 0, or nonassortative ifr = 0. As for the
correlation coefÞcient,r ranges in the interval [Š1, 1]. In particular, a negativer value means that
high-degree nodes (i.e., nodes with more visibility) tend to be more linked with low-degree nodes
(i.e., nodes with less visibility), rather than with other high-degree nodes. When peaks are focused,
the assortativity coefÞcient quantiÞes the extent to which peaks (which are expected to have more
visibility) are more prominent with respect to small ßuctuations (which are expected to have less
visibility). Highly positive values ofr indicate that peaks are slightly pronounced with respect to the
other values in the series [e.g., Fig.6(a)], while strongly negative values ofr indicate a substantial
presence of outliers [e.g., Fig.6(b)]. In other words,r is a measure of the vertical separations in
the series, namely, how intense peaks are with respect to the other data in the time series. As a rule
of thumb,r = 0 discriminates between the prominence of peaks (i.e.,r > 0) and the prominence
of outliers (i.e.,r < 0). If the network is nonassortative (i.e.,r � 0), in general neither peaks nor
outliers are expected to be prominent. However, if two signals are compared, it can be inferred that
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the signal showingr � 0 is more likely to have outliers or peaks than the signal withr > 0 orr < 0,
respectively.

To summarize, the two network metrics, andr , are here selected to characterize the temporal
structure of the series in terms of horizontal and vertical separations, respectively. For instance,
in Fig. 6(a),  = 0.230 andr = 0.22, while in Fig.6(b),  = 0.156 andr = Š 0.19. These values
are evaluated as described in the caption of Fig.6. Accordingly,  is more reliable to detect the
occurrence of peaks in the series, whiler is able to discern between peaks (in whichr is generally
positive) and outliers (in whichr is generally negative) in a time series. For example, large values of
 indicate that the corresponding series has many peaks, which appear as outliers only ifr decreases
towards negative values. Accordingly, the two metrics, andr , should be analyzed in pairs in order
to infer the temporal structure of the series evaluated at different spatial locations.

C. Spatiotemporal investigation ofw�c� through the network metrics

The results from the application of the visibility algorithm to the time series of turbulent
transport,w�c�, are reported in this section. The two conÞgurations of source diameter, D3 and D6,
are displayed for different downstream locations,x/� , and at various wall-normal coordinates,z/� .

The behaviors of the average peak occurrence, , and the assortativity coefÞcient,r , are shown
in Figs.7(a)and7(b), respectively, as a function of the vertical coordinate,z/� . In general, andr
have their maximum values close to the plume axis,h�

s (see horizontal dashed lines in Fig.7): this
means that, around the plume axis, peaks frequently occur and the vertical separation between them
and the other data in the series is weak (sincer > 0). This behavior of the metrics is due to the fact
that the plume is mainly located around the source axis while it meanders and develops downstream.
The difference in the features of the temporal structure of thew�c� can be observed in Fig.8, which
shows segments of time series ofw�c� measured atx/� = 0.325 for D3 [Figs.8(a)Ð8(c)] and for
D6 [Figs.8(d)Ð8(f)]. SpeciÞcally, high values in the signals are much more frequent (i.e., high )
and much less prominent (i.e., highr) around the plume axis [see Figs.8(b) and8(e)] than away
from it.

The effect of the source size,D, on the metrics is clearly visible in the near Þeld (i.e.,x/� =
0.325) and also at intermediate streamwise distances (i.e., up tox/� = 1.30) around the plume axis,
where the metrics for D3 have smaller values than the metrics for D6. The peaks tend to appear
more as outliers (i.e., lowerr ) and they occur less frequently (i.e., lower ) for the smallest source
size D3 [see Fig.8(b)] than for D6 [see Fig.8(e)]. Since a plume emitted from a smaller source
diameter is affected by a wider range of turbulent scales, its meandering motion is more intense. A
strong meandering motion implies a high variability (i.e., standard deviation) and a large fraction of
small data values (i.e., strong intermittency), which are captured as different values between D3 and
D6 of the network metrics, andr . It should be noted that the networks corresponding to locations
around the plume axis do not show large negativer values, as the higher variability in the signals
prevents a strong separation between small values and peaks (which would giver < 0). In the far
Þeld (i.e.,x/� = 2.60Ð3.90), the vertical proÞles of the two metrics tend to collapse for both source
diameter conÞgurations, D3 and D6. This behavior is a consequence of the increase of the plume
size by moving downstream, due to the relative dispersion. In the far Þeld the plume size exceeds
the largest turbulent scales and the mixing of the passive scalar is then fully regulated by the relative
dispersion rather than by the meandering. Therefore, by moving downstream around the plume axis,
the average peak occurrence always decreases withx/� , since large concentration values (and in turn
high turbulent transport) are less probable to appear in the far Þeld because of the plume weakening.
On the other hand, forz � h�

s, the assortativity coefÞcient Þrst decreases (reaching a minimum at
aboutx/� = 1.30) and then increases withx/� . The behavior of the assortativity coefÞcient is still a
consequence of the interplay between the reducing meandering motion and increasing dispersion of
the plume as it evolves downstream. It is worth noting that the minimum value ofr along the source
axis is found atx/� � 1.3, which is the streamwise location where the plume reaches the ground
and all the intermittency factors are minimum [see also Fig.5(b)].
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