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Abstract 
This study aims to generalize a previously developed accurate and inexpensive 3-D zig-zag theory up to an 
arbitrary representation form and to determine which simplifications are yet accurate in determining 
transverse shear and normal stress/deformation effects on vibrations of soft-core sandwiches with not 
moving middle/neutral plane (pumping). Natural frequencies are calculated using displacements assumed 
differently across the thickness, having fixed d.o.f., not yet explored forms of representation and zig-zag 
functions differently accounting for the transverse normal deformability and that partially or fully fulfill 
physical constraints. Applications are presented for sandwich plates and beams with length-to-thickness 
ratios and material properties of faces and core varying within an industrial range, for which layerwise 
effects are very important and so suited to the evaluation of theories. Analytical solutions are found using 
the same trial functions and expansion order for all theories, so to evaluate their accuracy under the same 
conditions. The choice of the representation form and of zig-zag functions is shown immaterial if 
displacement field coefficients are recomputed across the thickness by enforcing the fulfillment of all 
physical constraints (using symbolic calculus). Furthermore, it is shown that assigning a specific role to each 
coefficient is immaterial, as well as exchanging the order of representation of in-plane and transverse 
displacement components and even that zig-zag functions could be omitted. This no longer occurs for 
lower-order theories with only a partial fulfillment of constraints. Pumping motions are highlighted as the 
first modes, which require the theories much accurately accounting for transverse normal deformability.  

Keywords 
Composite and sandwich plates and beams, interlaminar transverse shear and normal stress continuity, 
Navier’s and 3D finite element analysis (FEA) solutions, free vibration behavior, different zig-zag functions, 
various form of representation of variables 

1 INTRODUCTION 

As it is well known, sandwiches find continuously increasing applications in aerospace, naval and terrestrial 
applications owing to superior specific strength and stiffness than traditional materials. 
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Table 1 Acronyms.; in bold the new teories; (n) degree of displacements. 

Acronym Description(section) Acronym Description(section) 

FEA-3D Mixed solid elements (Icardi and Atzori (2004)). MHR4 Mixed HR theory, displacements with Murakami’s zig-
zag function (Icardi and Urraci (2018b))(3.3). 

FSDT Equivalent first-order shear deformation theory, 
shear correction factor of 5/6 is assumed. 

MHR± MHR theory, where the right sign of Murakami’s zig-zag 
function is determined at each interface on a physical 

basis, (Icardi and Urraci (2018a))(3.3). 
HRZZ Mixed HR theory, (3)

,u  , (0)u , (Icardi and Urraci 

(2018b)) (3.3). 

MHR4± MHR4 theory, where the right sign of Murakami’s zig-
zag function is determined at each interface on a 

physical basis (Icardi and Urraci (2018a))(3.3). 
HRZZ4 Mixed HR theory, (3)

,u  , (4)u , (Icardi and Urraci 

(2018b))(3.3). 

MHWZZA Mixed HW theory, displacements with Murakami’s zig-
zag functions, stress and strains with Di Sciuva’s one 

(Icardi and Urraci (2018b))(3.3). 
HSDT Equivalent third-order shear deformation 

theory. 
MHWZZA4 Mixed HW theory, in-plane displacements with 

Murakami’s zig-zag functions, transverse displacement, 
stress and strains with Di Sciuva’s one (Icardi and Urraci 

(2018b))(3.3). 
HSDT_32 Enriched versions of HSDT, whose coefficients 

are redefined across the thickness, (3)
,u  , (2)u  

(4.4). 

PP23 (2)
,u  , (3)u  zig-zag theory (Icardi (2001))(3.3). 

HSDT_33 Enriched versions of HSDT, whose coefficients 

are redefined across the thickness, (3)
,u  , (3)u

(4.4). 

ZZ (3)
,u  , (4)u zig-zag theory (Icardi (2001))(3.3). 

HSDT_34 Enriched versions of HSDT, whose coefficients 

are redefined across the thickness, (3)
,u  , (4)u

(4.4). 

ZZA (3)
,u  , (4)u zig-zag adaptive theory (Icardi and Sola 

(2014))(2.2). 

HWZZ HW mixed version of ZZA (Icardi and Urraci 
(2018b))(2.4). 

ZZA* (3)
,u  , (4)u modified ZZA (Icardi and Urraci (2018a))(2.3). 

HWZZ_RDF Modified HWZZ theory(4.2). ZZA*_43 (4)
,u  , (3)u  modified version of ZZA* (4.3). 

HWZZM HWZZ with different zig-zag functions (Icardi and 
Urraci (2018a))(3). 

ZZA_X1 (3)
,u  , (4)u modified ZZA theories, with different 

representation across the thickness(4.1). 
ZZA_X2 
ZZA_X3 
ZZA_X4 

HWZZM* HWZZ with different zig-zag functions (Icardi and 
Urraci (2018a))(3.2). 

ZZA-XX Zig-zag general theory with exponential 
representation(4.1). 

HWZZM (♠) HWZZM theories, type A, B, B2, C, C2, 0, (Icardi 
and Urraci (2018a))(3.1). 

ZZA-XX’ Zig-zag general theory with power representation(4.1). 

MHR Mixed HR theory (3)
,u   with Murakami’s zig-zag 

function, (4)u , lacking (Icardi and Urraci 

(2018b))(3.3). 

ZZA_RDF Modified ZZA theory(4.1). 

However, their displacement field is no longer C1-continuous as in homogeneous non-layered materials, but 
instead it is C°-continuous (zig-zag effect) because only appropriate slope discontinuities at interfaces allow the 
fulfilment of local equilibrium equations, namely the continuity of transverse shear and normal stresses and of the 
transverse normal stress gradient at layer interfaces. 

A multitude of theories have been proposed so far for multilayered structures, to which sandwiches are ascribed 
whenever it is not necessary to describe cell scale effect of honeycomb core, which can be summarily categorized into 
equivalent single-layer (ESL), discrete-layer (DL) and zig-zag (ZZ) theories (acronyms used throughout the paper are 
defined in Table 1). 

They can further be subdivided into displacement-based and mixed theories, as strains and stresses could be 
chosen separately from one another using Hellinger-Reissner (HR) and Hu-Washizu variational theorems (HW). The 
papers by Carrera (1999, 2001, 2003, 2004), Carrera and Ciuffreda (2005), Demasi (2004), Vasilive and Lur’e (1992), 
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Reddy and Robbins (1994), Lur’e, and Shumova (1996), Noor et al. (1996), Altenbach (1998), Khandan et al. (2012) and 
Kapuria and Nath (2013) and the book by Reddy (2003) are cited among many others, wherein a broad discussion of 
this matter can be found. However a brief description must be given to justify accuracy and computational costs that 
differ greatly. 

ESL, completely disregard layerwise effects and are cheap but also unable to accurately predict through-thickness 
displacement and stress fields and even overall response quantities for certain loading, material properties and stack-
up and for sandwiches, as shown e.g. by Zhen and Wanji (2006), Kapuria et al. (2004), Burlayenko et al. (2015) and by 
Jun et al. (2016), by analyses carried out by Carrera’s unified formulation (CUF) (see Carrera (2001)) and by advanced ZZ 
(see Icardi and Sola (2014), Icardi and Urraci (2018a, 2018b)). Also DL, which assume quantities at layer level as the 
functional d.o.f., are of limited validity since their use must be restricted to limited regions of structures of industrial 
interest, otherwise the computational capacity could be overwhelmed due to too many unknowns growing with the 
number of physical and computational layers considered. It must however be recognized that DL have the merit of 
accurately predicting displacement and stress fields irrespective for lay-up, layer properties, loading or boundary 
conditions considered. ZZ theories, having intermediate features between ESL and DL, strikes the right balance 
between accuracy and cost saving, allowing designers’ demand of theories in a simple already accurate form to be met. 
Often higher-order sandwich theories are considered wherein in-plane and transverse displacements vary nonlinearly 
across the thickness and takes different forms between the faces and the core. 

One of the first examples of higher-order sandwich theory for dynamic studies is the paper by Cho et al. (1991) 
wherein similarly to DL a separate representation is used for each constituent layer. The results of this paper show that 
natural frequencies are overestimated by ESL for laminates with arbitrary layouts and soft-core sandwiches. Besides it 
is shown that sandwiches can vibrate even at lower frequencies in modes where the middle plane does not move 
(pumping), which so cannot be captured by any lower order theory not properly accounting for transverse normal 
deformability effects. 

Higher-order theories are of interest for industrial applications, such as structural health monitoring techniques 
for revealing and locating damage that are based on guided-wave propagation across the thickness (Barouni and 
Saravanos (2016)). The structural models used for studying through-thickness vibrations often consider the face sheets 
as ordinary plates with flexural and in-plane rigidities, irrespective they are made by different plies, although studies 
carried out by accounting for the laminated construction, including the present one, show that low frequency pumping 
occurs more easily when the faces consist of a superposition of rigid and less rigid materials. The core is often assumed 
to be shear resistant in the transverse direction, free of in-plane normal and shear stresses and deformable in the 
thickness direction. 

One of the first studies in this field is published by Frostig and Thomsen (2004), where free vibration through-
thickness modes of simply-supported sandwiches with equal faces are investigated using two different structural 
models. The first assumes the core transverse shear stress and the displacements of the faces as unknowns, while the 
other assumes a polynomial displacement field across the core based on the former one, whose unknowns are in 
additions the coefficients of polynomials. The latter model is suited for capturing nonlinear distributions of vertical and 
in-plane deformations, which are important when the core is soft and flexible. Another example where the same 
vibration problem is studied is the paper by Rao and Desai (2004), wherein analytical solutions are obtained using 
equivalent single layer and mixed layerwise theories. The latter ones account for warping of transverse cross-section. In 
a subsequent article, Malekzadeh et al (2005) investigate the dynamic behavior of sandwiches with a soft viscoelastic 
flexible core using non-linear displacements across the thickness, so to account for the distortions of the cross-
sectional plane and for the transverse normal deformation, while the face sheets are described by FSDT. 

Schwarts-Givli et al. (2007) study the free vibration of delaminated unidirectional sandwich panels using a 
structural model accounting for the flexibility of the core in the thickness direction and assuming nonlinear 
displacement, acceleration, and velocity fields across it. More recently, Frostig and Thomsen (2009a, 2009b) carried out 
with a flexible and compliant core in the vertical direction and with temperature-dependent mechanical properties. In 
another recent paper, Lopatin and Morozov (2010) investigate pumping vibrations of sandwiches with equal faces 
considering compressive and shear stiffnesses and a nonlinear distribution of the transverse normal displacement 
across the core thickness. Rahmani et al. (2010) study the free vibration behavior of a composite sandwich cylindrical 
shell with a flexible core using the classical shell theory for the face sheets and an elasticity approach for the core, so to 
account for high-order effects caused by the nonlinearity of in-plane and transverse displacements. 

Numerous studies of soft-core sandwiches with laminated faces have been recently carried out expanding the 
goals of analysis beyond global quantities, that is to through-thickness modal distributions of displacements and 
stresses. Those wherein sandwiches are described as three-layers structures have been abandoned in favour of 
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layerwise theories which allow to represent each face ply as a single physical layer and the core is splitted into one or 
more mathematical layers. Last in order of time, the paper by Yang et al. (2017) constitutes an example where a closed-
form free vibration analysis of simply supported composite laminated beams has been carried out employing Carrera 
Unified Formulation (CUF) (Carrera (2001)) which can solve cases including general loading and boundary conditions 
where other theories cease to be accurate (that is why it is today extensively applied). CUF allows displacements to 
take arbitrary forms that can be chosen by the user as an input of the analysis and also gets existing ESL and 
Murakami’s zig-zag theories (MZZ, discussed below) as particularizations. But also refined ZZ theories (Icardi and Sola 
(2014), Icardi and Urraci (2018a, 2018b)) allow to overcome certain limitations of the theories of sandwiches, such as 
the assumption of faces of equal thickness, with the same elastic properties and described as a single equivalent layer. 
Moreover it must be stressed that refined ZZ allow obtaining an accuracy comparable to that of CUF with fewer 
variables. Papers by Icardi and Urraci (2018a, 2018b) represent successful attempts to extend the physically-based ZZ 
formulation to assume a degree of generalization comparable to that of CUF. This research continues in this paper 
through the evolution of ZZ towards a physically-based general theory that considers arbitrary displacement fields and 
that does not require to embed zig-zag functions explicitly, the displacement coefficients being redefined for each 
physical or computational lamina, which requires a computational burden still comparable to that of ESL. As a 
necessary premise to better frame the new contributions brought in this paper, a brief discussion of the characteristics 
of available ZZ follows. 

ZZ can be subdivided into physically-based (DZZ) and kinematic-based (MZZ) theories because layerwise 
contributions are expressed differently. In DZZ they are embodied as the product of linear (Di Sciuva (1984)) or 
nonlinear (Icardi (2001)) zig-zag functions and unknown zig-zag amplitudes, while they are a priori assumed as 
functions featuring a periodic change of the slope of displacements at interfaces in MZZ, then stress fields are assumed 
apart from displacements within the framework of Hellinger-Reissner mixed variational theorem. The reason why MZZ 
theories sometimes provide an inappropriate representation of the displacement field (Icardi and Urraci (2018b)) is 
that the slope of displacements does not necessarily invert at interfaces as instead it is forcibly assumed. In addition 
there is also the possibility that while stresses are accurately reproduced, displacements are not because of the 
simplified kinematic assumptions used very often. 

Improved DZZ based on a global-local superposition of displacement fields, have been proposed by Li and Liu 
(1997) and refined over the years by Zhen and Wanji (see e.g. Zhen and Wanji (2007)). ZZA theory by Icardi and Sola 
(2014) and those by Icardi and Urraci (2018a, 2018b) as its generalizations have five fixed d.o.f. and through-thickness 
variable kinematic representation that satisfies physical and elasticity theory constraints. They proved capable of the 
same accuracy of CUF and DL with a lower number of variables, as proven in Icardi and Urraci (2018b). The 
representation can be arbitrarily chosen by the user to obtain a redefinition of the coefficients of the displacement 
field similar to what would get by DL. Although preliminary, the study by Icardi and Urraci (2018b) shows that 
physically-based zig-zag theories with feature similar to those of CUF and HT (discussed below) can be developed 
starting from different assumptions and by considering forms of representation different for each displacements, that 
also vary across the thickness. Not yet explored zig-zag functions have also been considered, as will as theories wherein 
they are even omitted (and therefore with an additional cost benefit), provided that a number of coefficients equal to 
the number of stress compatibility conditions (or, in general, of constraints enforced) is recomputed at interfaces. 

Theories based on a hierarchical set of locally defined polynomials (HT) have been developed (see, Catapano et al. 
(2011) and de Miguel et al. (2018)), which neither incorporate zig-zag contributions, nor post-processing steps, but 
which require a large number of degrees of freedom and a large expansion order. As an expamle of the studies where a 
variable-kinematics is used, see e.g. Vescovini and Dozio (2016). Although dynamic studies are still overwhelmingly 
carried out using ESL, excluding those previously mentioned concerning sandwiches, those carried out using DL and ZZ 
and CUF have highlight the superior performance of refined theories (see, e.g., Vescovini and Dozio (2016), Boscolo and 
Banerjee (2014), Khdeir and Aldraihem (2016), Sayyad and Ghugal (2015), Kazancı (2016), Lin and Zhang (2018)). In 
particular, those accounting for the transverse normal deformability have shown such deformation important even to 
predict first free-vibration modes of sandwiches with flexible soft-core, as highlighted in the previously cited articles 
(Cho et al. (1991), Barouni and Saravanos (2016), Frostig and Thomsen (2004, 2009a, 2009b), Rao and Desai (2004), 
Malekzadeh et al (2005), Schwarts-Givli et al. (2007), Lopatin and Morozov (2010), Rahmani et al. (2010), Yang et al. 
(2017)). 

Further research is required to get even whether and when CUF and refined DZZ of Icardi and Urraci (2018b) can 
provide a more accurate information than approaches based on a three-layer description. In particular, it is necessary 
to verify with which geometrical and material properties and boundary conditions this can occur (e.g. when face 
properties are asymmetric due to different geometric and material properties). It must also be better clarified what is 
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the minimum order and type of representation that allows to capture these effects. In this context it is necessary to 
test more extensively than in Icardi and Urraci (2018b) if theories derived from ZZA without the explicit incorporation 
of the zig-zag functions, or with arbitrary choices of these functions, as well as with arbitrary displacements are actually 
always as accurate as the parent theory. 

It must be extensively tested even if theories derived from ZZA with a partial a priori assumption of zig-zag 
functions, which of consequence doesn’t satisfy certain physical constraints, may still be sufficiently accurate. To 
contribute to clarify this matter, in this paper various theories derived by the authors as variants of ZZA Icardi and Sola 
(2014) that are obtained assuming differently the representation of displacement components one from the other and 
in different sections across the thickness, as well as differently assuming zig-zag functions or even omitting them are 
developed and compared each other, to reference results retaken from literature and to 3-D FEA (Icardi and Atzori 
(2004)). The purpose of numerical illustrations is to confirm the findings of previous articles (Icardi and Sola (2014), 
Icardi and Urraci (2018a, 2018b)), namely that the choice of zig-zag functions is immaterial, that these functions can 
even be omitted when a sufficient number of coefficients is incorporated that are re-determined at interfaces, that 
displacements can be arbitrarily chosen for the dynamic cases considered, provided that the full set of physical 
constraints (Khandan et al. (2012), Reddy (2003), Zhen and Wanji (2006), Kapuria et al. (2004)) is satisfied, as discussed 
below. 

The intended aim of numerical applications is also to show how a partial fulfillment of these constraints reflects on 
accuracy of results, as well as that the redefinition of coefficients which is consequent to the imposition of constraints 
allows theories to significantly increase their accuracy. The aim is also to show that there is no variation in the accuracy 
of results exchanging the order of representation of in-plane and transverse displacement components. Furthermore it 
is proven that for lower-order theories with only a partial fulfillment of constraints the choice of zig-zag and 
representation functions can no longer be arbitrary and which is the lowest degree and order of expansion that is 
sufficient to capture the pumping modes. Furthermore it is proven that assigning a specific role a priori to the 
displacement field coefficients is unnecessary as their role can be freely exchanged without changing the results. To 
prove all these claims, the theories of this paper are applied to the study of free vibrations of flexible soft-core 
sandwich plates, for which the transverse deformation is as important as transverse shear one. 

2 THEORETICAL FRAMEWORK 

The feature of theories retaken from recent papers by the authors and others new proposed in this paper that are 
used in the numerical applications are presented and discussed below, so to provide the necessary theoretical support 
as well as to better understand meaning, distinctive features and limitations of the assumptions made and justify how 
they are reflected on accuracy of results. Those developed in this paper intend to demonstrate that the choice of zig-
zag functions is immaterial once physical constraints specified below are enforced, as well as also to show that their 
explicit incorporation is inessential. Indeed, interlayer stress compatibility conditions can be satisfied by the normal 
coefficients that describe the displacement field, once they are redefined across the thickness by imposing the 
appropriate physical constraints, as outlined in the following. 

First the notations used and the basic assumptions (common for all the theories) are defined. Constituent layers 

are assumed to have linear elastic properties, a uniform arbitrary thickness kh  and to be perfectly bonded to each 
other (bonding resin interlayer disregarded). Global-scale response being examined, cell-scale effects are also 
disregarded, so sandwiches are described in homogenized form as multi-layered structures with a thick soft 
intermediate layer as the core. 

As reference frame, a rectangular, right-handed Cartesian coordinate reference system ( , ,x y z ) is assumed, ( ,x y ) 
being on the middle reference plane   of the multilayered plate (origin in the lower left edge) and z  as the thickness 

coordinate ( ,
2 2

h h
z

 
    

, h being the overall thickness and Lx and Ly being the plate side-lengths). ( )k z  and ( )k z  

represents the upper and lower position of interfaces, respectively, subscripts k and superscripts k are used to indicate 
the belonging of quantities to the layer k , while u and l mark upper and lower faces of the laminate. Symbols , ,x y z  
are replaced by greek letters, i.e. 1,2 ,x y   ; 3 z   , to make formulas compact. 

Elastic in-plane and transverse displacement components are indicated as u and u , respectively, a comma is 

used to indicate spatial derivatives (e.g., , ,(.) ,(.)x zx z      ) and strains are assumed to be infinitesimal. 

Strains and stresses are symbolized by ij  and ij , respectively. All theories assume the middle-plane displacements 
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0u , 0v , 0w  and the rotations of the normal 0 0 0 0
, ,( , ) ( , )  , ( , ) ( , )x x x y y yx y w x y x y w x y       , as the only functional 

degrees of freedom. Governing dynamic equations will not be reported as they can be obtained in a straightforward 
way for each theory using standard variational techniques, so just displacement, strain and stress fields which are ones 
that affect accuracy will be discussed. 

2.1 Analytical solutions 

Dynamic governing equation are solved as customary expressing functional degrees of freedom (d.o.f.) as the 

product of an harmonic function of time i te   and a truncated series expansion of unknown amplitudes iA  and trial 

functions ( , )i x y , which individually satisfy prescribed boundary conditions: 

1

( , )
m

i i

i

A x y





    (1) 

the symbol   being used to represent in turns the d.o.f. 0u , 0v , 0w , x , y , while mechanical boundary conditions 

are satisfied using Lagrange multipliers method. So, a number of unknown amplitudes iA  is determined in proportion 
to the number of boundary conditions enforced, while those remaining are determined deriving governing functionals 
with respect to still unknown amplitudes and equating to zero, the work of inertial forces 

[ ] [ ]i i i i
V V

b u dv u u dv        (2) 

being considered. An algebraic system is obtained, whose solution provides the numerical value of each amplitude. The 
trial functions adopted in each individual application and the expansion order used for each case are specified in Table 
2. They are chosen in order to satisfy the following boundary conditions, representative of simply-supported edges 
(other boundary conditions have been considered in Icardi and Urraci (2018a) and Icardi and Urraci (2018b), so they 
are not replicated also in the present study): 

0 0 0 0
, ,

0 0 0 0
, ,

(0, ) 0;  ( , ) 0;  (0, ) 0;  ( , ) 0

( , 0) 0;  ( , ) 0;  ( , 0) 0;  ( , ) 0
x xx x xx

y yy y yy

w y w L y w y w L y

w x w x L w x w x L

   

   
 (3) 

at 0x  , xx L  and 0y  , yy L  for 0z  , i.e. on the reference mid-plane. 

2.2 ZZA displacement-based theory 

The through-thickness displacement field of this theory (from which all other theories of this paper are 
particularized) is postulated as (Icardi and Sola (2014), Icardi and Urraci (2018a, 2018b)): 

0 0 0
, 0

1 1

0 2
0

1 1

( , , ) [ ( , ) ( ( , ) ( , ) )] [ ( )] [ ( , )( ) ( ) ( , ) ( )]

( , , ) [ ( , )] [ ( )] [ ( , )( ) ( ) ( , )( ) ( ) ( , ) ( )]

i

i

n n
u k k

i k k u k c
k k

n n
k k k

i k k k k k c
k k k

u x y z u x y z x y w x y F z x y z z H z C x y H z

u x y z w x y F z x y z z H z x y z z H z C x y H z

     


 





 

 

        

        

 

 
1

in




 (4) 

Linear- 0[...] , higher- [...] i  and layerwise [...] c  contributions are incorporated, whose meaning and purpose are as 

follows. 0[...]  contains the only five functional degrees of freedom, while [...] i  can contain any combination of 

independent functions [ ( )]u
iF z  and [ ( )]iF z , which here are chosen as: 
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2 3 4 4
3

2 3 4 5 5
4

[ ( )] [ ( , ) ( , ) ( ...)] [ (.) ] [( ...)]

[ ( )] [ ( , ) ( , ) ( , ) ( , ) ( ...)] [ (.) ] [( ...)]

u i i
i i i i

i i i i
i i i i

F z C x y z D x y z Oz Oz

F z b x y z c x y z d x y z e x y z Oz Oz
   




    

      





 (5) 

and of which Icardi (2001) is a particularization with a through-thickness fixed representation, namely higher-order 
contributions 4[( ...)]iOz , 5[( ...)]iOz  are characteristic of ZZA, while terms 3[ (.) ]i

 , 4[ (.) ]i
  are the same as in the 

previous theory. 

Table 2a Reference pattern of all cases ; *⸸§: Murakami’s slope assumption not respected by u (*), u (⸸) and u (§). 

Case Lay-up Layer thickness Material Lx/h Ly/Lx BCS 

a Kim (2007) [0/90/0] [ (h/3)3 ] [ (m)3 ] 4, 10, 20 - SS 
b Cho et al. (1991) [0] [ h ] [n] 10 1 SSSS 

c Icardi and Urraci (2018a) (*⸸§) [0/90/0/0/90] [(h/24)2 / (5h/12)]S [o1/o2/p/o1/o2] 5 1 SSSS 
d (*⸸§) [0/90/0/0/90] [(h/24)2 / (5h/12)]S [o1/o2/q/o1/o2] 5 1 SSSS 
e (*⸸§) [05] [(h/24)2 / (5h/12)]S [r1/r2/s/r1/r2] 4 1 SSSS 
f (*⸸§) [05] [(h/24)2 / (5h/12)]S [r1/r2/t/r1/r2] 4 1 SSSS 
g (*⸸§) [06] [(h/24)2 / (30h/48) /  

(10h/48) / (h/24)2] 
[r1/r2/s/u/r1/r2] 4 1 SSSS 

Table 2b Normalization, trial functions and expansion order for each case. 

Case Normalization Trial functions Expansion 
order 

a _

12_

MATp

MATp

h
G


 

 

0

1

0

1

0

1

( , ) cos ;

( , ) sin ;

( , ) cos

M

m
m x

M

m
m x
M

x m
m x

m x
u x y A

L

m x
w x y C

L

m x
x y D

L













      
      
       






 

5 

b _

11

MATnh
Q


 

 

0

1 1

0

1 1

0

1 1

0

( , ) cos sin ;

( , ) sin cos ;

( , ) sin sin ;

( , )

M N

mn
m n x y
M N

mn
m n x y

M N

mn
m n x y

x

m n
u x y A x y

L L

m n
v x y B x y

L L

m n
w x y C x y

L L

x y

 

 

 

 

 

 

             
             
             



 





1 1

0

1 1

cos sin ;

( , ) sin cos ;

M N

mn
m n x y
M N

y mn
m n x y

m n
D x y

L L

m n
x y E x y

L L

 

 
 

 

             
              

 


 

10 

c 
2

_ 2

2_ 2 max max

MATo ijx i
i ij

MATo i ij

L u
u

h E u

 
  


  

 
10 

d 
2

_ 2

2_ 2 max max

MATo ijx i
i ij

MATo i ij

L u
u

h E u

 
  


  

 

10 

e 
2

_ 2

2_ 2 max max

MATr ijx i
i ij

MATr i ij

L u
u

h E u

 
  


  

 
15 

f 
2

_ 2

2_ 2 max max

MATr ijx i
i ij

MATr i ij

L u
u

h E u

 
  


  

 
15 

g 
2

_ 2

2_ 2 max max

MATr ijx i
i ij

MATr i ij

L u
u

h E u

 
  


  

 

15 

Note that [ ( )]u
iF z  and [ ( )]iF z  aren’t just depending on z because symbols u

 ,   represent the functional 

dependence on the d.o.f. which are function of in-plane coordinates. Expressions of coefficients iC , iD , ib  to ie  are 
obtained using symbolic calculus by enforcing the fulfilment of stress boundary conditions 
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, 0      ; 0( )p    (6) 

having assumed only a transverse distributed loading to act at upper (+) and lower (-) faces (non-homogeneous 
conditions ; 0    could be enforced without difficulty). It should be noticed that for this paper, 0( ) 0p   , 

being free vibration analyses. Contributions [...] i  by (5) can be rearranged as: 

2 3 4
2 3 4

2 3 4 5
1 2 3 4 5

( , , ) [ ] ...

( , , ) [ ] ...

i n
n

i n
n

U x y z A z A z A z A z

U x y z A z A z A z A z A z A z
    

      

    

      
 (7) 

to highlight which those under square brackets are determined by enforcing the fulfilment of boundary conditions (6) 
and local equilibrium equations: 

, , b       ; , , b        (8) 

at selected points across the thickness, while higher-order contributions 4
4 ... n

nA z A z   , 5
5A z   ... n

nA z , 
which enable a variable-kinematics representation across the thickness, are computed by imposing just the fulfilment 
of (8). Note that the in-plane position of equilibrium points can be chosen appropriately for each case and that 
coefficients that qualify displacements are re-computed specifically for each computational/physical layer, so that the 
representation can properly manage strong variations of layer properties without any increase of the d.o.f. In the 
numerical applications a third/fourth order representation that embraces the whole laminate is used being generally 
sufficient to obtain accurate results (Icardi and Sola (2014), Icardi and Urraci (2018a, 2018b)). [...] c  represent layerwise 
contributions where the expressions of zig-zag amplitudes k

 , k  and k  are determined so that the continuity of 
out-of-plane stresses and of the transverse normal stress gradient ,   at layer interfaces 

( ) ( )( ) ( )k kz z    ; ( ) ( )( ) ( )k kz z    ; ( ) ( )
, ,( ) ( )k kz z     

 (9) 

is satisfied, as prescribed by the elasticity theory. The other layerwise contributions k
uC and kC restore the continuity 

of displacements 

( ) ( )( ) ( )k ku z u z 
  ; ( ) ( )( ) ( )k ku z u z 

   (10) 

at mathematical layer interfaces, i.e. when it is chosen to split physical layers. The symbols in  and n  in the 
summations of (4) are used to distinguish the number of physical layer interfaces from that of mathematical layer 
interfaces, respectively. The enforcement of equilibrium and stress compatibility conditions yields to a system of 
algebraic equations at each interface that is solved using a symbolic calculus tool. Notice that if just the material 
properties and/or the orientation of layers change, but not their number, symbolic expressions representing the 
solution will remain the same. The computation of zig-zag amplitudes takes only an small fraction of the overall 
calculation time, so costs remains compatible with that of ESL (see, Table 3). Note that SEUPT technique (Icardi and 
Sola (2014)) can be used to obtain a C° formulation of the ZZA theory, as well as of all the other theories of this paper. 

2.3 ZZA* displacement-based theory 

A modified version of ZZA indicated as ZZA* (Icardi and Urraci (2018a)) is considered to show that zig-zag functions 
( )k kz z H  and 2( )k kz z H  (Hk being the Heaviside unit step function: Hk=0 for z < zk, while Hk=1 for z ≥zk), can be 
replaced with any other arbitrary set of functions whose coefficients are redefined at layer interfaces through the 
enforcement of the whole set of physical constraints (6, 8-10), without the accuracy of the results being affected. This 



Free Vibration of flexible soft-core sandwiches according to layerwise theories differently accounting for 
the transverse normal deformability 

Ugo Icardi et al. 

Latin American Journal of Solids and Structures, 2019, 16(8), e230 9/35 

translates into the fact that contributions [...]c  can be completely omitted if other coefficients can be redefined across 
the thickness, even if they are not multiplied by zig-zag functions. As this latter choice speeds-up the computations of 
coefficients, it turns into a computational advantage that grows with the number of computational layers. To construct 
ZZA*, the displacement field (4) is rewritten as: 

0 0 0 2 3 3
, 0

1 1

0 2 2
0

1 1

( , , ) [ ( , ) ( ( , ) ( , ) )] { ( , ) [ ( , ) ] [ ( , ) ( , ) ] ( , )}

( , , ) [ ( , )] {[ ( , ) ( , ) ] [ ( , ) ( , ) ]

i

i

n n
i i i i i

k j k i c
k k

n n
i i i i

k k
k k

u x y z u x y z x y w x y B x y z C x y z D x y z D x y z C x y

u x y z w x y b x y z b x y z c x y z c x y z

       








 

 

         

    

 

 

 





3 4

1

[ ( , ) ] ( , ) ( , )}
in

i i i
k i c

k

d x y z e x y z d x y 


    

 (11) 

wherein 0[...]  still contains the only five functional d.o.f., the same of ZZA. Terms i
kB
 , ,i i

kC C 
 serve the same 

purpose as k
 , iC  and k

uC  inside ZZA, while i
kb
  and i

kc  have the function of k  and k  and i
kd
 that of kC  once 

they are redefined across the thickness in order to satisfy physical constraints. 

Table 3 Processing time [s] on a computer with quad-core CPU@2.60GHz, 64-bit OS and 8.00 GB RAM; errors:  ♥> 3%; ♣> 10%. 

 Theory 
Case 

a b c d e f g 

 Reference FSDT ♥3.0397♣ ♥3.5504♣ ♥21.6851♣ ♥23.4756♣ ♥21.9426♣ ♥23.1613♣ ♥27.5775♣ 

 theories HSDT ♥3.2507♣ ♥3.8809♣ ♥24.4111♣ ♥25.6612♣ ♥23.9855♣ ♥25.3175♣ ♥30.1449♣ 

Ne
w

 T
he

or
ie

s 

 ZZA_RDF 4.9187 6.6559 48.3134 44.0099 41.1360 43.4205 51.6997 

 ZZA*_43 3.8743 5.2426 38.0547 34.6650 32.4013 34.2008 40.7219 

(mixed HW) HWZZ_RDF 4.5332 6.1343 44.5274 40.5611 37.9124 40.0179 47.6483 

         

 HSDT_32 ♥3.1870♣ 4.3126 ♥31.3042♣ ♥28.5158♣ ♥26.6537♣ ♥28.1339♣ ♥33.4983♣ 

(no zig-zag 
functions) 

HSDT_33 3.4203 4.6283 33.5957 30.6032 ♥28.6047 30.1933 ♥35.9504 

 HSDT_34 3.8645 5.2293 37.9586 34.5775 32.3195 34.1144 40.6191 

         

 ZZA_X1 3.9015 5.2795 38.3226 34.9090 32.6294 34.4415 41.0086 

(arbitrary 
representation) 

ZZA_X2 4.0033 5.4172 39.3223 35.8197 33.4806 35.3400 42.0784 

 ZZA_X3 4.0537 5.4854 39.8173 36.2706 33.9020 35.7848 42.6081 

 ZZA_X4 4.0517 5.4827 39.7974 36.2525 33.8851 35.7670 42.5868 

         

(general) ZZA-XX 9.8060 13.2694 96.3194 87.7398 82.0102 86.5648 103.0703 

 ZZA-XX’ 9.5369 12.9052 93.6760 85.3319 79.7595 84.1891 100.2417 

M
ixe

d 
HR

 

(uniform w) HRZZ 4.6117 6.2076 ♥44.8213♣ 41.0461 ♥38.3657♣ ♥40.4964♣ ♥48.2179♣ 

(polynomial w4) HRZZ4 5.0138 6.7541 ♥48.8044♣ 44.6591 ♥41.7428♣ ♥44.0610♣ ♥52.4623♣ 

         

(Murakami’s 
zig-zag 

MHR ♥2.8107♣ 4.1177 ♥32.1710♣ ♥27.2271♣ ♥25.4491♣ ♥26.8625♣ ♥31.9844♣ 

u3,v3) MHR± ♥3.0388♣ 4.2840 ♥32.3442♣ 28.3264 ♥26.4767♣ 27.9471♣ ♥33.2758♣ 

         

(Murakami’s 
zig-zag 

MHR4 ♥2.9093 4.2454 ♥33.0563♣ ♥28.0714♣ ♥26.2383♣ ♥27.6955♣ ♥32.9763♣ 

u3,v3,w4) MHR4± ♥3.0384 4.3450 ♥33.2339♣ ♥28.7299♣ ♥26.8538♣ ♥28.3451♣ ♥33.7498♣ 
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 Theory 
Case 

a b c d e f g 

M
ixe

d 
HW

 

 HWZZ 4.9640 6.4877 45.4263 42.8977 40.0964 42.3232 50.3931 
         

(no zig-zag 
functions) 

HWZZM* 3.9374 5.1532 36.1369 34.0740 31.8489 33.6177 40.0277 

         
 MHWZZA ♥3.7606♣ 5.1634 ♥38.0218♣ ♥34.1415♣ ♥31.9120♣ ♥33.6843♣ ♥40.1070♣ 
 MHWZZA4 ♥3.7602♣ 5.1663 ♥38.0678♣ ♥34.1607♣ ♥31.9299♣ ♥33.7032♣ ♥40.1295♣ 
 HWZZM 4.1887 5.6511 40.8973 37.3664 34.9263 36.8660 43.8954 

(Murakami’s 
zig-zag 

HWZZMA ♥4.1595♣ 5.5746 ♥40.0733♣ ♥36.8605♣ ♥34.4534♣ ♥36.3669♣ ♥43.3010♣ 

u3,v3,w4) HWZZMB ♥4.1817♣ 5.6134 ♥40.4178♣ 37.1167 ♥34.6929♣ 36.6197 ♥43.6020♣ 
 HWZZMB2 ♥4.1869♣ 5.6175 ♥40.4263♣ ♥37.1439♣ ♥34.7183♣ ♥36.6464 ♥43.6339♣ 
 HWZZMC 4.1659 5.6065 40.4737 37.0715 34.6507 36.5750 43.5489 
 HWZZMC2 4.1849 5.6148 40.4071 37.1262 34.7018 36.6290 43.6131 
 HWZZM0 4.1554 5.5491 ♥39.7426♣ ♥36.6915♣ ♥34.2955♣ ♥36.2002♣ ♥43.1026♣ 

 (adaptive 
u3,v3,w4) 

ZZA 5.3866 7.0182 48.9768 46.4055 43.3751 45.7840 54.5138 

 (u3,v3,w4) ZZ ♥3.7072♣ 5.0165 ♥36.4137 33.1702 ♥31.0041♣ ♥32.7259♣ ♥38.9659♣ 
          
 (no zig-zag 

functions) 
u3,v3,w4) 

ZZA* 3.8722 5.2398 38.0345 34.6466 32.3841 34.1826 40.7003 

 (no zig-zag 
functions) 
u2,v2,w3) 

PP23 ♥2.8765♣ 3.8924 ♥28.2542♣ ♥25.7375 ♥24.0568♣ ♥25.3928♣ ♥30.2345♣ 

Again iC , iD , ib , ic , id  and ie  allow local equilibrium equations (8) and stress boundary conditions (6) and be 

met. At the bounding lower face ib  and ic  enable the fulfillment of stress boundary conditions regarding that 
transverse normal stress   and gradient ,   then they are canceled in subsequent layers where iC , iD , id  and 

ie allow to satisfy the three equilibria (8) at two points per layer (excluding the upper layer), while these coefficients 
enable stress-free boundary conditions on   and three equilibrium equations at a single point to be satisfied. 

The remaining still free variables allow to meet three equilibrium equations at a single point across the upper 
layer and the boundary conditions at the upper bounding surface. It could be noticed that the first, the intermediate 
and the last layers can be subdivided each into two or more computational layers if more equilibrium points are 
required for improving accuracy. However, this decomposition into computational layers does not prove necessary for 
the benchmarks considered, just a third/fourth order overall piecewise representation of displacements being usually 
appropriate. 

However for this to happen, the displacement field (11) must contain a sufficient number of contributions for 
ensuring the imposition of a sufficient number of equilibrium conditions at selected positions jz  across the thickness. 

This doesn’t necessarily mean that an increased order of expansion is required, because coefficients can be evaluated 
at different positions using the same power of the thickness coordinate. 

Numerical illustrations will show that ZZA* can achieve the same accuracy of ZZA with a little lower computational 
effort, but the most important result is to demonstrate that the choice of zig-zag functions is immaterial, whenever 
coefficients are redefined layer-by-layer as outlined above (otherwise accuracy would depend on the choice of zig-zag 
functions). 
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2.4 HWZZ mixed theory 

HWZZ theory (Icardi and Urraci (2018b)) is a mixed version of ZZA developed within the framework of Hu-Washizu 
variational theorem which is obtained keeping only contributions to displacement, strain and stress fields deemed 
essential, for the purpose of reducing the computational effort but preserving accuracy. 

Displacements derive from those of ZZA neglecting the contributions of k which provide much less important 

slope variations than k
 , k . Higher-order and adaptive contributions, 4

4 ...A z  n
nA z , 5

5 ... n
nA z A z   , 

which as k  are important for an accurate description of the stress field in ZZA, but here because stresses are 
assumed separately from displacements, are also neglected. 

As a direct consequence, no decomposition into mathematical layers is allowed For consistency, consequently, 

contributions k
uC , k

vC , k
wC  are omitted. As a result, the displacement field of HWZZ is: 

0 0 0 2 3
, 0

1

0 2 3 4
0

1

( , , ) [ ( , ) ( ( , ) ( , ) )] [ ( , ) ( , ) ] [ ( , )( ) ( )]

( , , ) [ ( , )] [ ( , ) ( , ) ( , ) ( , ) ] [ ( , )( ) ( )]

i

i

n
i i k

x i k k c
k

n
i i i i k

i k k c
k

u x y z u x y z x y w x y C x y z D x y z x y z z H z

u x y z w x y b x y z c x y z d x y z e x y z x y z z H z

    







        

       




 (12) 

The decomposition into mathematical layers is restored in out-of-plane strains zz , xz , yz , as their expressions 

are derived from 

0 0 0 2 3
, 0

1 1

0 2 3 4
0

1

( , , ) [ ( , ) ( ( , ) ( , ) )] [ ( , ) ( , ) ] [ ( , )( ) ( ) ( , ) ]

( , , ) [ ( , )] [ ( , ) ( , ) ( , ) ( , ) ] [ ( , )( ) ( )

in
i i k k

x i k k u k c
k k

i i i i k
i k k

k

u x y z u x y z x y w x y C x y z D x y z x y z z H z C x y H

w x y z w x y b x y z c x y z d x y z e x y z x y z z H z

     






 





         

       

 

1

( , ) ]
in

k
w k c

k

C x y H




 
 (13) 

The symbol (.)  states that displacements refer to the computational layer  . Instead, no decomposition into 
mathematical layers is allowed for the in-plane strains, they being derived from (12). 

The expressions of membrane stresses xx , yy , xy  are obtained in a straightforward way from stress-strain 

relations, while for improving accuracy and recovering mistakes consequent the restrictive assumptions made, such as 

the small stress jumps resulting from omission of contributions by k , xz , yz , zz  are obtained from membrane 

stresses by integrating local equilibrium equations (8). 

3 HWZZM MIXED THEORY 

It is constructed following a similar pattern to HWZZ in order to show that the choice of zig-zag functions is 
immaterial, as the same results can be achieved irrespective of the choice made whenever the full set of physical 
constraints discussed so far in this paper are enforced. HWZZM is developed assuming the following displacement field 
(Icardi and Urraci (2018a)): 
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 (14) 

Layerwise functions within the third square bracket constitute variations of Murakami’s zig-zag contributions 

( ) ( 1)k k kM z    in canonical form, where ,k k ka z b    
1
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,k

k k

a
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 1
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
, which, unlike what done 
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in the literature, are multiplied by amplitudes u
kA   and u

kB   whose expressions are defined by enforcing the fulfillment 
of interfacial stress compatibility conditions. 

Note that this is operation is the one making the choice of zig-zag functions immaterial, since the product of zig-
zag amplitudes and functions becomes an invariant, as shown by the numerical results, once the full set of physical 
stress compatibility constraints (9) is enforced. Again, kC  and kC restore the continuity of displacements at interfaces 
of mathematical layers. HWZZM is developed starting from the previous displacement field and similar to HWZZ 
inhibiting the decomposition into fictitious computational layers. Moreover, contributions to in-plane displacements 
over the third-order and to the transverse displacement over the fourth-order are neglected. As for HWZZ, membrane 
strains are derived from (14) with the decomposition into computational layers prevented, while it is allowed for 

deriving the expressions of out-of-plane strains. Membrane stresses xx , yy , xy  are obtained from stress-strain 

relations, while out-of-plane master stresses come from integration of local equilibrium equations. 

3.1 Theories HWZZM(A-B-B2-C-C2-0) 

In this section, several theories are particularized from HWZZM by assuming a priori the expressions of some zig-
zag amplitudes, as specified below. Since contrary to what was done previously they are not determined through the 
imposition of physical and elasticity constraints, the theories of the present section resemble Murakami's like ones 
nowadays widely used, at least from the standpoint of the basic idea on which they are founded. Their purpose is that 
of highlighting that as physical constraints are only partially satisfied, in the present case due to the omission of certain 
interfacial stress compatibility conditions, it is no longer possible to obtain the same accuracy of ZZA, ZZA*, HWZZ and 
HWZZM with the same order of representation. On the contrary, it will be shown that displacement representation 
form and zig-zag functions can be assumed arbitrarily and the latter even omitted with no loss of accuracy, if instead 
the full set of constraints is enforced (see, section 4). 

Amplitudes of HWZZMA are assumed coincident with those of HWZZM at the first interface from below, while 

( )
u
kA z  and ( )

u
kB z  of HWZZMB are assumed the same of HWZZMA at the first interface from below, but ( )u

kA z  is 

calculated like in HWZZM. In HWZZMC ( )
u
kB z  is assumed uniform across the thickness (it is that by HWZZM at the first 

interface from below), while the remaining amplitudes are computed at each interface. In HWZZM0 ( )
u
kB z are 

neglected, while ( )u
kA z  and ( )

u
kA z  are assumed the same of HWZZMB. HWZZMB2 and HWZZMC2 theories are similar 

to HWZZMB and HWZZMC, except amplitudes are those of HWZZM at the first interface from above. 
Because out-of-plane stresses by these theories result discontinuous, integration of local equilibrium equations is 

required, with a corresponding increase in costs by 0.9%. But at the same time, a savings of 10% is obtained, as zig-zag 
amplitudes are not computed at each interface, so in the end a positive is achieved which, however, is thwarted by the 
lack of accuracy. 

3.2 HWZZM* theory 

This theory is derived as a particularization of ZZA*, in order to assess the effect of omission of layerwise 
functions. It is developed in a similar way of HWZZ, omitting terms i

kc , i
kC
 , i

kd
  into displacement field (no 

decomposition into mathematical layers is allowed for displacement field): 
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 (15) 

In this case, terms [...]i  only serve to satisfy stress-boundary conditions and local equilibrium equations, while 

[...]c  serve to satisfy stress compatibility conditions (9). Accordingly, the representation (15) is nothing but an 

equivalent form of (11). Regarding master strain field, contributions i
kC
  and i

kd
  are restored, because 

decomposition into mathematical layers is allowed for calculation of out-of-plane strains. Finally, in-plane stresses are 
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obtained from master strain field using stress-strain relations, while out-of-plane ones are obtained by integrating local 
equilibrium equations. 

From a practical viewpoint, (15) imply a reduction of about 10% of the processing time per each layer with respect 
to ZZA and about of 6% with respect to HWZZ, but the goal is not so much this reduction, even if it becomes more 
important with the increase of the constituent layers, but instead that of proving how arbitrary layerwise functions give 
the same result once the full set of physical constrains (6, 8-10) is enforced. 

3.3 Lower order theories for comparisons 

Lower-order theories with some features reminiscent to ones of theories in the literature are particularized for 
sake of comparison. MHR considers piecewise cubic in-plane displacements incorporating Murakami’s zig-zag function 
as the layerwise function, and a fourth-order polynomial transverse displacement: 

0 0 0 2 3
, 0

0 2 3 4
0

( , , ) [ ( , ) ( ( , ) ( , ) )] [ ( , ) ( , ) ] ( , ) ( )

( , , ) [ ( , )] [ ( , ) ( , ) ( , ) ( , ) ]
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i
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u x y z w x y a x y z b x y z c x y z d x y z
    



      

    
 (16) 

where ( )kM z  is defined in section 3. Coefficients C , D , a , b , c ,d  are calculated by enforcing the fulfilment of 

stress boundaries conditions (6), while zu  is calculated by enforcing the fulfilment of first and second equilibrium 
equations (8) at the middle-plane of the laminate. The expressions of out-of-plane stresses are derived integrating local 
equilibrium equations, within the framework of HR variational theorem. 

MHR±, is a variant where the right sign of Murakami’s zig-zag function is determined at each interface on a 
physical basis (that which produces the least error in equilibrium equations), instead of being forced to reverse by the 
coefficient ( 1)k . 

A refined variant MHR4 is obtained assuming the in-plane displacement of MHR and a fourth-order piecewise 
variation of the transverse displacement 

0 2 3 4
0( , , ) [ ( , )] [ ( , ) ( , ) ( , ) ( , ) ] ( , ) ( )k

i zu x y z w x y a x y z b x y z c x y z d x y z w x y M z        (17) 

Coefficients a  to d  are determined by enforcing the fulfiment of stress boundary conditions (6), while zw  is 
calculated by enforcing the fulfilment of the third local equilibrium equation at the middle-plane. Another theory, 
MHR4±, is obtained by MHR4, assuming the right sign of Murakami’s zig-zag functions at each interface on a physical 
basis, similarly to MHR±. 

Theory MHWZZA has the same displacement-field of MHR (16), but its master stress field is that of HWZZ and, in 
addition, displacement, strain and stress fields are recovered using ZZA as post-processor. 

Theory MHWZZA4 is derived assuming the in-plane displacement field by MHR, the transverse displacement by 
ZZA and as master strain and stress fields ones by HWZZ. So, the only substantial difference of MHWZZA4 with respect 
to HWZZ and ZZA is a different zig-zag function and a simplified kinematics, while MHR4, MHR4±, MHR± and MHR are 
approximations obtained with increasing restrictions from MHWZZA4, in order to identify the effects played by single 
contributions omitted. 

Theory HRZZ is developed within the framework of HR variational theorem postulating a uniform transverse 
displacement and a third-order zig-zag representation of in-plane displacements: 
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then assuming the transverse normal stress   the same of ZZA, while transverse shear stresses   are derived from 
equilibrium equations wherein membrane strains follows from (18). Because a uniform transverse displacement is 
chosen, transformed, reduced stiffness properties are assumed. 
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Theory HRZZ4 assumes the same in-plane representation of HRZZ, the following fourth-order polynomial 
approximation of the transverse displacement: 

0 2 3 4
0( , , ) [ ( , )] [ ( , ) ( , ) ( , ) ( , ) ]iu x y z w x y b x y z c x y z d x y z e x y z       (19) 

and the same stress fields of HRZZ. In this case u
  being no longer null it is not necessary to use transformed, reduced 

stiffness properties. Coefficients b  to e  are determined by enforcing the stress boundary conditions (6). 
Regarding PP23 theory, in-plane displacements are parabolic, while the transverse one is cubic: 
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  (19’) 

Coefficients are calculated similarly to ZZA, by imposing the fulfilment of boundary conditions (6) and of continuity 
of out-of-plane stresses, of ,   and of displacements (9)-(10) and the fulfilment of local equilibrium equations (8) at 

different points across the thickness. Results of out-of-plane stresses are post-processed by integrating local 
equilibrium equations. 

Regarding ZZ theory, the displacement field is: 
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 (19”) 

Coefficients , , , , ,C D b c d e   are not redefined across the thickness and are obtained by imposing the boundary 

conditions (6) of out-of-plane stresses and of ,  , while k
 , k  and k  are calculated by imposing the continuity of 

transverse shear stresses and of its gradient (9) across the thickness. similarly to PP23 and other lower-order theories, 
out-of-plane stresses have to be post-processed and obtained by integrating local equilibrium equations. 

4 NEW THEORIES OF THIS PAPER 

New theories with a growing order of generalization are introduced below, which are aimed at demonstrating that 
the representation form of the displacement field and can be assumed arbitrarily and zig-zag functions can be omitted, 
whenever the full set of constraints (6, 8-10) is enforced and the coefficients of the representation are redefined across 
the thickness. The comparison with theories partially fulfilling constraints will show that instead the accuracy depends 
on the choices made, as known in literature for non-physically-based theories (see for example Catapano et al. (2011) 
and de Miguel et al. (2018)), which cannot fully satisfy (6, 8-10). Although zig-zag functions are not incorporated, the 
theories of this sections can still be considered as physically-based zig-zag theories, because constraints are enforced in 
order to determine the expressions of coefficients. 

In spite displacements can be assumed arbitrarily, including a different representation for each component and 
from point to point across the thickness, unlike DL the d.o.f. remain fixed because coefficients, which are redefined 
through the use of symbolic calculations, aren’t assumed as d.o.f. but instead they are fixed once for all, as outlined 
forward. 

ZZA-X1 to ZZA-X4 new theories here presented derive from the parent theory ZZA-XX as particularizations 
obtained by specifying a different representations of the displacement field. ZZA-XX assumes the displacement field as 
an infinite series constituted by the product of initially unknown amplitudes and exponential functions of the thickness 
coordinate: 
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Coefficients _
i
kC   represent amplitudes that are recalculated across the thickness, hence contributions 


    holds 

for each computational layer  . The expressions of _
i
kC  , _

i
kC  , _

i
jD   and _

i
jD  are determined in the order they 

are listed by enforcing boundary conditions (6), compatibility conditions of out-of-plane stresses (9), the continuity of 

displacements across the thickness (10) and finally the fulfilment of local equilibrium equations at points across the 

thickness (8). Symbols iz  and ih  represent the thickness coordinate and the thickness of each layer, respectively, while 
(  / )i ik z he  represent the primary functions, which will be specified differently in ZZA-X1 to ZZA-X4. However, note that 

the previous assignment of a fixed role to the coefficients is unnecessary since their role can be exchanged arbitrarily 

without accuracy suffering, as will be shown in the numerical applications subverting the purpose of coefficients, 

provided that the entire set of (6, 8-10) is enforced. 

Actually coefficients _
i
kC  , _

i
kC   assume the role of d.o.f., since to make the formulation more general, middle 

plane d.o.f. used so far in this paper are abandoned. To get as accurate results as ZZA the same number of physical 

constraints and conditions should be enforced in ZZA-XX, but obviously more other could be added to enrich accuracy, 

so it can be used in place of the exact solution if unavailable, as well as of 3-D FEA to estimate the accuracy of results of 

other cheaper theories. 

A mutation of ZZA-XX here indicated as ZZA-XX’ is also considered, which is obtained by substituting the 

exponentials with powers: 

( )
_ _

1 1

( )
_ _

1 1

( , , ) ( , ) ( , )

( , , ) ( , ) ( , )

i k i
k j

k j

i k i
k j

k j

u x y z C x y z D x y

u x y z C x y z D x y

  

  

 

 
 

 

 
   
  
 
   
  

 

 
 (20’) 

in order to assess whether the representation form is immaterial. Naturally previous definitions of coefficients 
continues to be valid. 

Four different particularizations ZZA-X1 to ZZA-X4 are introduced hereafter, whose representation is different for 
each displacement and varies across the thickness, so providing a much greater degree of generalization than all 
previous theories of this paper. For demonstration purposes, the displacement field of these theories is assumed 
differently from one another and differently for even and odd layers. It is assumed as the products of unknown 
amplitudes and a truncated series of general functions of z, indicated respectively as kF  and kG , respectively for the 
in-plane and the transverse displacement components: 
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A different explicit definition of 
kF  and kG  will define the different characteristics of ZZA-X1 to ZZA-X4. 

Differently from ZZA-XX here the d.o.f so far used (which still appear within the linear contributions 0[...] ) are 
reassumed. ZZA-X1 to ZZA-X4 are particularized as follows: 
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The previous forms of representation are chosen as examples that show that displacements can be arbitrarily 
assumed within the framework of physically based zig-zag theories of this paper, whenever conditions (6,8-10) are 
enforced completely. In other words, the previous theories provide the same results of ZZA, ZZA*, HWZZM, HWZZM*, 
HWZZ, HSDT_34, ZZA*_43, ZZA-XX, ZZA-XX’, ZZA_RDF, HWZZ_RDF, which are all united by the fact of satisfying the 
constraints just mentioned. In view of the arbitrariness of the representations assumed so far in (11)-(15), (20), (20’) 
and considering further variants (24), (25), (28) discussed below will lead us to affirm that any form of representation 
can be assumed without any change in the results, if (6,8-10) are enforced. 

4.1 ZZA_RDF 

This theory is developed assuming the same displacement field of ZZA, but a different role is attributed to 
coefficients in order to demonstrate that their function can be exchanged without the accuracy being affected: 
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 (24) 

In the present case, terms k , k , k
 , are calculated by imposing equilibrium equations at different points 

across the thickness (for layers i>1), while iC , id  and ie  restore the continuity of out-of-plane stresses and of 
gradient of transverse normal stress across the thickness (for layers i>1). The numerical applications will show that 
results indistinguishable from those of ZZA and other theories derived from it that completely fulfill (6,8-10) like the 
present theory, so demonstrating what claimed. It could be noticed that for some laminations in which one interface 
matches the middle reference plane, some stresses could be erroneously predicted to vanish for z=0; so, in this case 
apparently not every term can be used to impose compatibility stress conditions. Anyway, this issue can be overcome 
assuming a different reference plane; e.g., whose distance is / 2dh h  from the bottom face. In this case the 
displacement field can be rewritten as follows: 
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whereas d.o.f. can still be referred to the middle plane of the laminate. Results will prove the results of (24’) to be 
identical to those provided by (24), so showing the choice of kinematics immaterial and the choice of the reference 
system unimportant when (6,8-10) are enforced. Numerical tests conducted for verification purposes have also shown 
that the same results are obtained calculating iD  from the enforcement of the continuity of transverse shear stresses 

instead of calculating iC  as usually done, thus confirming the interchangeability of coefficients even with a different 
reference system. 

4.2 HWZZ_RDF 

This theory is developed as a variation of HWZZ wherein master displacement, strain and stress fields are the 

same of HWZZ, but ic  terms (for i>1) are calculated by imposing the continuity of the transverse normal stress gradient 
at the interfaces, while in HWZZ it was recovered through equilibria, instead of being explicitly imposed, otherwise 

small jumps of out-of-plane stresses take place as contributions k  are omitted. Numerical results will show that 
contributions coming from HW variational principle that appear in HWZZ are unnecessary, as the same results can be 
achieved by HWZZ_RDF with a lower computational cost. 

4.3 ZZA*_43 

This theory is a modified version of ZZA*, whose in-plane displacements are constructed as a fourth-order 
piecewise polynomial, while the transverse one is piecewise cubic, that is, the expansion order is reversed: 
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Similarly to ZZA*, terms 
i

kB


, ,i i
kC C 


serve the same purpose as 
k
 , 

iC  and 
k
uC  of ZZA, while 

i
kb


 and 
i

kc

have the function of k  and k  and 
i

kd


 play the role of 
kC . Once such coefficients are redefined across the 

thickness in order to satisfy physical constraints. Terms 
iC , 

iD , 
iE , ib , ic  and id  are calculated by imposing local 

equilibrium equations (8) and stress boundary conditions (9). Numerical results will show that the same results of ZZA 
and ZZA* are obtained, so demonstrating that the expansion order of in-plane and out-of-plane components can be 
freely exchanged, provided that (6,8-10) are enforced. However it must be considered that the choice of position of 
equilibrium points across the thickness is very important for the present theory, as to get accurate results they have to 
be chosen near the interfaces, while in the case of ZZA they can be chosen within layers. 

4.4 HSDT_32, HSDT_33, HSDT_34 

Three enriched versions of HSDT are considered, whose in-plane displacements are still cubic, while the transverse 
one can be parabolic, cubic or of fourth order, and all differently to HSDT are of piecewise type because coefficients are 
recomputed layer-by-layer. 

The purpose of these new theories is to demonstrate that redefinition of coefficients always improves accuracy of 
results and highlight which is the minimum expansion orders of in-plane and transverse displacements that still allow 
to get accurate results, both in terms of frequency and modal quantities. 

They also help to prove that the representation can be chosen arbitrarily, as previously stated in (section 4.1). 
HSDT_32 theory has piecewise cubic in-plane displacements and a parabolic transverse one: 
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Coefficients iB , iC , iD , ib  and ic  are calculated by imposing out-of-plane stresses boundary conditions on 
transverse shear and normal stresses, their compatibility at interfaces and the fulfillment of local equilibrium equations 
across the thickness. Contributions iE  and id  enable the continuity of displacements, since the possibility of changing 
the representation across the thickness makes it necessary. The same holds for uniform contributions across the 
thickness of (27) and (28). 

As discussed above in (section 4.3), it is not necessary to define the specific role of each one, because they can be 
freely exchanged. 

Because conditions related to the gradient of the transverse normal stress cannot be imposed by (26), the 
following two more higher order theories HSDT_33, HSDT_34 are considered. HSDT_33 has a piecewise cubic 
polynomial transverse displacement: 
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Coefficients are still are calculated by imposing the full set of conditions (6,8-10) but now less equilibrium points 
than for ZZA and for theories of sections 3.1, 3.2 and 4.1 to 4.3 equilibrium are sufficient because the number of terms 
is lower. Anyway results of this theory are better than those of HSDT_32. 

Finally, theory HSDT_34 is developed, whose transverse displacement is a fourth-order piecewise polynomial: 
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This latter theory will be shown to be as accurate as the best former ones, so the fourth order expansion is the 
most appropriate choice for the transverse displacement, which so represents the necessary expansion order for 
getting the maximal accuracy. 

5 NUMERICAL ASSESSMENTS AND DISCUSSION 

The purpose of the present new theories is to confirm that previous findings of Icardi and Urraci (2018a, 2018b) 
ascertained on static cases still hold in dynamics, but above all the aim is to demonstrate that other new ones 
extending them still exist. As numerical applications that demonstrate the existence of such cases free vibrations of 
soft, flexible core sandwiches are presented, being well suited to highlight the different degree of accuracy of the 
theories considered to represent the layerwise effects involved, in particular those related to the transverse normal 
deformation which become dominant for pumping modes. 

Numerical applications aim to show that: (i) the choice of zig-zag functions is immaterial; (ii) these functions can 
even be omitted from the displacement field (with a considerable advantage as regards the computational cost of the 
symbolic phase) once a sufficient number of coefficients is included in the displacement field that is recalculated at 
each interface in order to satisfy the constraints; (iii) the functions that represent the variation of displacements across 
the thickness can be arbitrarily chosen, depending on the component considered and the position across the thickness, 
provided that the full set of physical constraints (6,8-10) is enforced, which justifies the appellation of physically-based 
given to the present theories. The aim of this study is also to show that: (iv) the redefinition of coefficients which is 
consequent to the imposition of constraints (6,8-10) allows the theories of any order to significantly increase their 
accuracy; (v) exchanging order and form of representation of polynomial theories or the functions used in more general 
cases, results does not change if the full set of constraints (6,8-10) is satisfied; (vi) certain lower-order theories with 
only a partial fulfillment of constraints can still be sufficiently accurate in predicting pumping modes, as well as modal 
through-thickness displacement and stress distributions; (vii) it is unnecessary to assign a specific role a priori to the 
displacement field coefficients, as they can be freely exchanged without the results change if (6,8-10) are enforced and 
coefficients are redefined layer-by-layer. This study also has the intended aim of assessing which lower order theories 
only partially satisfying the constraints (6,8-10), which as a consequence do not respect (i) to (iii) and so their accuracy 
depends on the choices made, are sufficient to adequately describe pumping motions. 

In light of all this, it will be proven numerically that once the choice of zig-zag functions is immaterial, through the 
comparison of theories that assume these functions differently or omit them, when their coefficients are recomputed 
at each interface in order to satisfy the stress contact constraints. From the comparison of theories with a different 
representation of the displacement field it will be also shown that such the representation can be arbitrarily chosen 
and varied as desired across the thickness without results change. Comparisons will also show that the redefinition of 
coefficients, which significantly increase accuracy, also makes immaterial to assign a specific role a priori to the 
coefficients, as the results don’t change. Lower-order theories will be shown sufficiently accurate in predicting pumping 
modes, as well as modal through-thickness displacement and stress distributions in a number of cases but not always, 
which instead applies for higher-order counterparts. As regards the aspects related to the theoretical modelling of 
natural frequencies and relative through-thickness modal distributions of stress and displacements, the detailed 
aspects coming from the analysis of the results of the individual cases shows the following discussed in the subsequent 
sessions. 

5.1 A premise about terminology 

Note that in the discussion that follows and throughout the paper the appellation of higher-order theories is 
reserved to ZZA Icardi and Sola (2014), ZZA*, HWZZM, HWZZM* retaken from Icardi and Urraci (2018a), HWZZ Icardi 
and Urraci (2018b), HSDT_34, ZZA*_43, ZZA-XX, ZZA-XX’, ZZA_RDF, HWZZ_RDF and ZZA_X1, to _X4 introduced in this 
paper, while the appellation lower-order is attributed to theories HWZZMA, B, B2, C, C2 and 0 and MHR±, 
MHR4± retaken from Icardi and Urraci (2018a), HRZZ, HRZZ4, MHWZZA, MHWZZA4, MHR, MHR4 retaken from Icardi 
and Urraci (2018b), PP23, ZZ retaken from Icardi (2001) and HSDT_32, HSD_33 introduced in this paper, in addition to 
FSDT (shear correction factor 5/6) and HSDT used for comparisons. It is specified that FSDT is derived from (4) including 

only the contribution 0[...] , while the second adds also a cubic contribution thanks to which shear stress free boundary 
conditions can be satisfied. With regard HSDT and FSDT theories, it should also be specified that results previously 
given in Icardi and Urraci (2018a) have been computed assuming simply-supported edges applied on the middle 
reference plane Ω , while in the present paper they are applied to the whole cross section, as allowed by the three-
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dimensional model ZZA from which HSDT is particularized. It should be noted that eigen-frequencies computed with 
the constraints considered in Icardi and Urraci (2018a) by HSDT considerably differ from the present ones, which result 
more similar to those in the literature being much lower, while FSDT is indifferent to where the boundary conditions 
are placed, due to its extremely simplified kinematics. 

5.2 A Discussion of cases examined 

The accuracy of previous theories in predicting free vibration modes of flexible soft-core sandwich beams and 
plates is assessed considering mainly thick structures for which layerwise effects take on the utmost importance. 
However, the effect of increasing the length-to-thickness ratio and of varying the orthotropy ratio in one case is also 
investigated using the various theories developed in this paper to confirm the already well known results in the 
literature. Comparisons will be carried out with 3-D FEA (Icardi and Atzori (2004)), exact and reference solution retaken 
from literature. Lay-up, material properties of constituent layers, dimensions, boundary conditions, normalizations, 
trial functions and expansion order used for each case are given in Tables 2 and 4. 

5.3 Case a 

It constitutes a preliminary test that is considered in order to check the correct implementation of the theories of 
this paper and simultaneously evaluate how errors of lower-order ones grow varying the length-to-thickness and 
orthotropy ratios. The first three natural frequencies of a 0-90-0 laminate are considered and compared with the first 
frequency provided by Kim (2007) (see, Table 5). Results are reported varying the length-to-thickness ratio from 4, to 
10, to 20 and the orthotropy ratio 1 2/E E from 3, to 25, to 40. 

Table 4 Mechanical Properties. Material m, E1/E2=3, 25, 40 (=m1, m2, m3), where E2=6.89GPa. Material n: the following 
orthotropic stiffness properties are assumed: Q11=105 MPa; Q12=0.23319*Q11; Q13=0.010776*Q11; Q22=0.543103*Q11; 

Q23=0.098276*Q11; Q33=0.530172*Q11; Q55=0.26681*Q11; Q44=0.159914*Q11; Q66=0.262931*Q11; density=1627 kg/m3. 

Material 
name 

E1 
[GPa] 

E2 
[GPa] 

E3 
[GPa] 

G12 
[GPa] 

G13 
[GPa] 

G23 
[GPa] 

υ12 υ13 υ23 
ρ 

[kg/m3] 

m E1 E2 E2 0.5E2 0.5E2 0.2E2 0.25 0.25 0.25 1558.35 
o1 33.5 8 8 2.26 2.26 3 0.35 0.35 0.35 1627 
o2 139 3.475 3.475 1.7375 1.7375 0.695 0.25 0.25 0.25 1627 
p 6.89 6.89 6.89 3.45 3.45 3.45 0 0 0 97 
q 0.035 0.035 0.035 0.0123 0.0123 0.0123 0.4 0.4 0.4 32 
r1 36.23 10.62 7.21 5.6 5.68 3.46 0.26 0.33 0.48 1800 
r2 190 7.7 7.7 4.2 4.2 2.96 0.3 0.3 0.3 1600 
s 0.036 0.036 0.036 0.013 0.013 0.013 0.38 0.38 0.38 32 
t 0.070 0.070 0.070 0.019 0.019 0.019 0.3 0.3 0.3 52.1 
u 0.020 0.020 0.020 0.012 0.012 0.012 0.3 0.3 0.3 39.7 

No modal distributions of stresses and displacements are given for this case since it does not represent a 
particularly challenging benchmark. Indeed, most theories, i.e. excluded some of the lowest-order ones, provide 
accurate results, both as regards the frequencies and the modal distributions of displacement and stresses across the 
thickness, which in any case are already well known cross-ply laminates being extensively studied, as shown in the 
literature. Anyway, although this benchmark is not particularly difficult, it is still interesting because it is widely studied 
in the literature, so it allows a direct comparisons with the results of other researchers. It is interesting also why on a 
closer inspection the existence of small discrepancies are shown, that will become much more evident in the next 
cases, how it transpires from the results of this paper. So this case, already allows to start identifying the different 
behavior of structural models due to their different assumptions although the material differences come from the sole 
orientation difference of the sheets. The results of Table 5 confirm the well-known role according to which as the 
length / thickness ratio decreases, the ratio of orthotropy increases and going towards the higher modes, the 
discrepancies between the theories increase. It is also confirmed that for laminates consisting of identical re-oriented 
sheets it is not very important to accurately describe the normal transverse deformation, even if it turns out that the 
theories more accurately describing this effect are slightly more accurate. 
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Table 5 Normalized frequencies, case a. 
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0.5309 1.3783 2.5919 
  0.5176 1.1954 1.9011 0.5176 1.3161 2.0131 0.5256 1.3406 2.4898 
  0.5235 1.2540 2.0802 0.5179 1.4089 2.3268 0.5686 1.2409 1.8951 

m2 4 0.5246 1.2634 2.1011 0.5176 1.1942 1.9073 0.5373 1.2317 2.0517 
  0.5235 1.2540 2.0802 0.5171 1.1910 1.8978 0.6553 1.7022 2.9648 
  0.5246 1.2634 2.1011 0.5172 1.1920 1.9062 0.4331 1.2283 1.8657 
  0.5176 1.1954 1.9011 0.4523 1.2984 2.2496    
  0.1464 0.3901 0.6490 0.1465 0.6888 0.8398 0.1465 0.3951 0.6759 
  0.1463 0.3897 0.6486 0.1462 0.3090 0.7040 0.1462 0.3924 0.6667 
  0.1463 0.3921 0.6601 0.1462 0.3445 0.7187 0.1564 0.4299 0.7057 

m2 10 0.1463 0.3925 0.6623 0.1462 0.3897 0.6484 0.1510 0.4061 0.6700 
  0.1463 0.3921 0.6601 0.1462 0.3895 0.6475 0.1621 0.4770 0.8447 
  0.1463 0.3925 0.6623 0.1462 0.3895 0.6478 0.1458 0.3852 0.6542 
  0.1463 0.3897 0.6486 0.1459 0.3881 0.6553 0.1462Kim (2007) - - 
  0.0449 0.1464 0.2653 0.0449 0.2657 0.4464 0.0449 0.1465 0.2668 
  0.0449 0.1461 0.2652 0.0449 0.2305 0.3423 0.0449 0.1462 0.2658 
  0.0449 0.1462 0.2658 0.0449 0.2652 0.3831 0.0461 0.1564 0.2907 

m2 20 0.0449 0.1462 0.2659 0.0449 0.1461 0.2651 0.0455 0.1510 0.2763 
  0.0449 0.1462 0.2658 0.0449 0.1462 0.2651 0.0466 0.1621 0.3111 
  0.0449 0.1462 0.2659 0.0449 0.1462 0.2651 0.0449 0.1461 0.2644 
  0.0449 0.1461 0.2652 0.0449 0.1462 0.2651    
  0.4505 1.0912 1.7769 0.4523 1.2929 1.8689 0.4535 1.1445 2.0080 
  0.4504 1.0939 1.7804 0.4504 1.1551 1.8604 0.4516 1.1282 1.9587 
  0.4518 1.1151 1.8553 0.4506 1.1610 1.9166 0.4944 1.1846 1.8539 

m1 4 0.4520 1.1191 1.8676 0.4504 1.0933 1.7763 0.4694 1.1268 1.8253 
  0.4518 1.1151 1.8553 0.4501 1.0885 1.7596 0.5276 1.4123 2.4616 
  0.4520 1.1191 1.8676 0.4501 1.0895 1.7656 0.4334 1.0582 1.6250 
  0.4504 1.0939 1.7804 0.4389 1.1044 1.8119    
  0.5175 1.1888 1.8911 0.5214 1.2928 1.9949 0.5309 1.3783 2.5919 
  0.5176 1.1954 1.9011 0.5176 1.3161 2.0131 0.5256 1.3406 2.4898 
  0.5235 1.2540 2.0802 0.5179 1.4089 2.3268 0.5686 1.2409 1.8951 

m2 4 0.5246 1.2634 2.1011 0.5176 1.1942 1.9073 0.5373 1.2317 2.0517 
  0.5235 1.2540 2.0802 0.5171 1.1910 1.8978 0.6553 1.7022 2.9648 
  0.5246 1.2634 2.1011 0.5172 1.1920 1.9062 0.4331 1.2283 1.8657 
  0.5176 1.1954 1.9011 0.4523 1.2984 2.2496    
  0.5463 1.2337 1.9173 0.5522 1.3355 2.0498 0.5735 1.5622 3.0566 
  0.5467 1.2407 1.9706 0.5465 1.3867 2.0636 0.5650 1.5075 2.9157 
  0.5578 1.3290 2.2076 0.5469 1.5957 2.5734 0.5929 1.2560 1.9057 

m3 4 0.5599 1.3414 2.2332 0.5466 1.2394 1.9680 0.5641 1.3021 2.2374 
  0.5578 1.3290 2.2076 0.5461 1.2373 1.9637 0.7212 1.8585 3.2266 
  0.5599 1.3414 2.2332 0.5462 1.2389 1.9721 0.6310 1.3421 1.9666 
  0.5467 1.2407 1.9706 0.6424 1.4535 2.6059    

♠ ZZA*, HWZZ, HWZZM, HWZZM*, HWZZMC, HWZZMC2, HSDT_33, HSDT_34, ZZA*_43, ZZA_RDF, HWZZ_RDF, ZZA_X1, ZZA_X2, ZZA_X3, ZZA_X4, 
ZZA-XX, ZZA-XX’ (error < 1%); Modes with 1,2,3 halfwaves 

5.4 Case b 
An additional preliminary test is retaken from Cho et al. (1991), in order to further assess the correct 

implementation of theories and begin to distinguish their degree of accuracy, as a result of their assumptions. 
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Although not yet being a particularly challenging benchmark for theories, the present case is an interesting test 
case because it regards a monolayer for which pumping modes occurs as the first modes, as a consequence of its 
material properties (see Table 4). 

It should be noted that being a single-layer structure it masks any errors inherent to an imperfect description of 
stress-continuity effects (9) which precisely presuppose the existence of interfaces between different materials that do 
not exist here. Nevertheless, it represents an interesting case because it highlights just the ability of theories to 
describe the transverse normal deformation. Consequently, it offers the possibility of testing the theories as far as the 
ability to adequately describe normal transverse deformation is concerned. However, it is not yet a very challenging 
and particularly suited case since its effects related to the transverse normal deformability are still rather mild, beyond 
the fact that pumping starts to occur. Anyway, the present is a case  that allows to gradually discriminate the accuracy 
of theories in later stages up to more difficult cases from the point of view of modeling presented next. 

Being a monolayer and therefore not producing layerwise effects, it is not suitable for discriminating the theories.  
It could erroneously make us assume valid theories that are not appropriate for much difficult cases. In fact, even 
polynomial theories that will appear unsuitable for the next more challenging cases seem to be accurate in the present 
case, which so provides deceptive indications. 

Nevertheless to this and although it does not appear to be particularly selective, this case has often been 
considered by researchers who have developed sandwich theories, so becoming a standard test case and, 
consequently, comparative results can be found in the literature. The available results, as well as the present ones of 
Table 6, show that some modes are asymmetric while others are symmetrical with respect to the middle plane and that 
almost all the theories considered in this paper are adequately accurate. 

Table 6 Normalized frequencies, case b. 

Theories Mode with (n, m) waves 
(n, m) 
waves 

Theories Mode with (n, m) waves 
(n, m) 
waves 
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0.0474 0.2170 0.3941 1.3077 1.6530  
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0.1033 0.3450 0.5624 1.3331 1.7160  
0.0474 0.2169 0.3940 1.3085 1.6543 (1,1) 0.1033 0.3450 0.5624 1.3339 1.7184 (1,2) 
0.0474 - - 1.3086 1.6549  0.1031 - - 1.3339 1.7208  
0.0473 - - 1.3078 1.6540  0.1031 - - 1.3331 1.7201  
0.1188 0.3515 0.6728 1.4205 1.6805  0.1694 0.4338 0.7880 1.4316 1.7509  
0.1188 0.3515 0.6728 1.4215 1.6819 (2,1) 0.1694 0.4338 0.7880 1.4324 1.7535 (2,2) 
0.1187 - - 1.4215 1.6826  0.1692 - - 1.4323 1.7560  
0.1185 - - 1.4209 1.6817  0.1698 - - 1.4316 1.7554  
0.1888 0.4953 0.7600 1.3765 1.8115  0.2180 0.5029 0.9728 1.5778 1.7334  
0.1888 0.4953 0.7601 1.3772 1.8156 (1,3) 0.2180 0.5029 0.9728 1.5788 1.7351 (3,1) 
0.1884 - - 1.3772 1.8207  0.2180 - - 1.5788 1.7360  
0.1881 - - 1.3764 1.8203  0.2172 - - 1.5782 1.7353  
0.3320 0.6504 1.1814 1.5737 1.9289         
0.3321 0.6504 1.1816 1.5744 1.9338 (3,3)        
0.3315 - - 1.5744 1.9390         
0.3302 - - 1.5736 1.9388         

♠ ZZA, ZZA*, HWZZ, HWZZM, HWZZM*, HWZZMA, B,C, 0, HRZZ, HRZZ4, HSDT_32, HSDT_33, HSDT_34, ZZA*_43, ZZA_RDF, HWZZ_RDF ZZ, 
ZZA_X1, ZZA_X2, ZZA_X3, ZZA_X4, ZZA-XX, ZZA-XX’, PP23, MHWZZA, MHWZZA4, MHR, MHR±, MHR4, MHR4±; 

Colored columns: pumping modes. 

This is due to the secondary importance of transverse normal deformation effect, because flexural modes characterized 
by a though-thickness symmetric transverse displacement with a magnitude of an order lower than the in-plane 
components, which on the contrary are antisymmetric. A similar behavior is highlighted as regards the magnitude of   
compared to that of   and  , but the difference becomes of several orders of magnitude less. 

Instead the modes attributable as pumping show an antisymmetric u  and symmetrical u , u  with the same 
amplitude ratios as before, while   continues to be several orders of magnitude less. For this case, the modes attributable 
as flexural are those at lower frequencies, while those identified as pumping modes occur subsequently. 

As far as the theories MHR, MHR4, MHR±, MHR4±, MHWZZA, MHWZZA4 are concerned, it should be noted that more 
accurate results are obtained for this monolayer case by deleting zig-zag functions, because with the choices made they do 
not automatically vanish (errors up to 5% on frequencies) as on the contrary it rightly occurs for physically-based ones. As 
there is not much dispersion of the results of the theories, figures relating to the modal distributions of displacements and 
stresses across the thickness are not presented for this case. 
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5.5 Cases c to g 
Challenging cases not yet proposed in the literature are considered hereafter to prove what claimed at the beginning of 

section 5 regarding the choice of zig-zag and representation functions. Moreover, due to their characteristics, these cases 
also lend themselves to show that theories with an enriched representation across the core and considering the constituent 
individual laminae rather than a single sheet forming the face, should be chosen to capture pumping and other effects that 
trigger other 3-D phenomena and so not overlooking them as will be shown by the present numerical results. 

These latter considerations, which are in conflict with what still often proposed in literature, namely that it is sufficient 
to carry out the analysis of sandwiches three-layer sandwich theories instead of using layerwise theories, constitutes the 
further purpose of numerical tests. It results in highlighting that layerwise theories are unnecessary unless not demanding 
cases with mild variations of displacements and stresses across the interfaces of core are considered, like the previous ones, 
while for those from here on out their use is advisable. 

It is emphasized that hereafter cases involving properties commonly used by the industry are considered and not ad hoc 
constructed cases just in order to justify theories that otherwise would have little practical use. So ultimately this paper 
claims through the numerical results of these last sections that it is essential to provide a very accurate description of 
layerwise effects, but discrete-layer models are unnecessary for doing so, most of the present theories having a fixed number 
of variables and thus being cost-effective being accurate. The last purpose prefixed is to understand how far it is necessary to 
go when considering refined theories for capturing pumping modes. In light of the above considerations, a fairly wide and 
diversified number of cases are discussed hereafter which lend to highlight the relative merits of theories, some of which 
reproduces characteristics similar to those of theories already published. 

Extremely thick cases, which apparently contradict the intent of considering only materials of industrial interest that are 
commonly used, are studied here because they better highlight the different degree of accuracy offered by theories, given 
their very strong layerwise effects, and therefore allow to better understand their intrinsic characteristics. 

Case c, which is retaken from Icardi and Urraci (2018a), concerns a sandwich plate with elastic and thickness properties 
of faces and core commonly used in the industrial applications. So, unlike the previous cases, variations of more than one 
order of magnitude of elastic coefficients and a distinctly different thickness of constituent layers are considered. Specifically, 
the core is thick and has rather weak properties compared to laminated faces (Table 4) that enhance layerwise effects 

Table 7 Normalized frequencies, case c. 

THEORY 
Mode 1 

(1,1) 
Mode 2 

(2,1) 
Mode 3 

(1,2) 
Mode 4 

(2,2) 
Mode 5 

(3,1) 
Mode 6 

(1,1) 

3D FEAIcardi and Atzori (2004) 1.6882 2.8796 3.4723 4.3033 4.6899 5.7441 
Theories with identical results♠ 1.6898 2.8855 3.4777 4.3171 4.7030 5.7500 

HWZZMA 5.3141 7.2110 11.3333 19.3264 21.7117 46.2461 
HWZZMB 1.7010 2.8913 3.5605 4.3693 4.7101 34.1888 

HWZZMB2 1.7651 4.7210 3.5473 5.0578 10.6544 34.7002 
HWZZM0 2.5169 5.6364 5.9019 8.8827 11.3106 34.3120 

HRZZ 1.6823 2.8517 3.3940 4.1648 4.5907 34.3046 
HRZZ4 1.6821 2.8525 3.3965 4.1720 4.5948 34.1832 

MHWZZA 11.7654 2.7153 2.7264 3.7526 6.8737 1.4635 
MHWZZA4 1.1776 3.9325 4.3165 4.3950 4.5656 5.6519 

MHR 12.7147 15.1380 16.4288 27.1626 27.6009 64.6322 
MHR4 12.7626 16.6121 22.2689 27.7771 27.8687 75.2673 
MHR± 1.6959 2.9097 3.4919 4.3405 4.7643 61.7387 

MHR4± 5.1510 5.8356 6.7704 7.2618 7.2672 66.5689 
PP23 1.7180 3.0361 3.6828 4.6462 5.1672 7.4814 

ZZ 1.6914 2.9610 3.4900 4.3536 5.0224 5.8191 
HSDT_32 1.7083 3.7725 5.5851 6.5974 6.8196 7.6773 

HSDTIcardi and Urraci (2018a) 16.5610 28.7206 37.7283 44.0301 44.2319 - 
HSDT 3.9263 5.9589 6.8677 8.2366 8.4810 - 
FSDT 11.0783 17.6361 20.9784 25.0619 25.3697 - 

♠ ZZA, ZZA*, HWZZ, HWZZM, HWZZM*, HWZZMC, HWZZMC2, HSDT_33, HSDT_34, ZZA*_43, ZZA_RDF, HWZZ_RDF, ZZA_X1, ZZA_X2, 
ZZA_X3, ZZA_X4, ZZA-XX, ZZA-XX’ (error < 1%); 

Colored columns: pumping modes. 
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This case is considered in order to discern the different behavior of theories, because like for all sandwiches with 
similar characteristics, the strong variations of properties of constituent layers enhances the effects of the different 
assumptions made as regards the description of transverse shear and normal deformations largely influencing pumping 
motions. 

The results of Table 7 show that, due to the aforementioned strong differences between the material 
properties of faces and core, there is a greater dispersion between the theories than in the previous cases. Some 
lower-order theories, (specifically MHR, MHR4, MHR4±, MHWZZA, MHWZZA4, HWZZMA, HWZZMB, HWZZMB2, 
HWZZM0, FSDT and HSDT) are no longer accurate as in the previous two cases. Others still accurately predict the 
flexural frequencies but are unable to represent the pumping modes because of their bad description of the 
normal transverse deformation (HRZZ, HRZZ4, MHR±). Remaining lower-order theories inaccurately predict the 
modal distributions of displacements and stresses, but instead quite accurately predict the frequencies. It could 
be noticed that theories misestimating frequencies, i.e. lower-order ones, predict modal displacements with 
trends that go against those of more accurate theories as regards the in-plane components, while less big errors 
are made for the transversal component. In-plane stresses of less accurate theories already show discrepancies 
with respect to the other theories, but the largest discrepancies are shown for out-of-plane components, a sign of 
the lesser ability of lower-order theories to describe 3-D effects. 

As an example in Figure 1 the through-thickness variation of   for mode 1 is reported for all theories. It is noted 
that HRZZ4 and MHWZZA4 underestimate such stress across the core and also across the faces, while MHWZZA, MHR 
and MHR4 overestimate it, while FSDT and HSDT are not able to provide realistic results even when the values obtained 
by integration from equilibrium equations are reported, which confirms what is already known in the literature. Similar 
considerations apply to the other two out-of-plane stress components. 

As shown in Table 7, only the highest-order theories ZZA, ZZA*, HWZZM, HWZZM*, HWZZ, HSDT_34, ZZXX_43, 
ZZAXX, ZZAXX’, ZZA_RDF, HWZZ_RDF and ZZA_X1 to X4 accurately predict pumping modes, but it is noted however by 
results not reported for brevity that even HSDT_33 and ZZ are able to adequately predict frequencies and modal 
distributions. 

Theory HSDT_34 is accurate and efficient, while its counterparts HSDT_32, HSDT_33 appear to be much less so. All 
this demonstrates that only an accurate piecewise description of the transverse displacement, like those of HSDT_34 
and other higher-order theories, is adequate for this case. 

 
Figure 1 Case c: Normalized modal transverse shear stress (mode 1, bending). 
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The behavior of each lower-order theory being strongly case-dependent, as emerges from the previous 
considerations and from ones of cases above, it is not possible to deduce rules of general character, but instead they 
must limit to the single case. Considering the fact that the computational cost of all higher-order theories of this paper, 
which are always the most accurate ones, is still comparable with that of lower-order counterparties (see Table 3) 
which are not always accurate, the latter do not bring any advantage and therefore become uninteresting. 

The results of this case demonstrate the validity of what claimed, that the choice of zig-zag functions is 
immaterial, these functions can even be omitted from the displacement field. The functions that represent the 
variation of displacements across the thickness can be arbitrarily chosen, the redefinition of coefficients allows the 
theories of any order to significantly increase their accuracy, exchanging order and form of representation results does 
not change and that certain lower-order theories with only a partial fulfillment of constraints can still be sufficiently 
accurate. Moreover, it is unnecessary to assign a specific role a priori to the displacement field coefficients, as they can 
be freely exchanged without the results change. 

Case d. This case, which is obtained from previous one varying the material properties of core, aims to highlights 
that vibration modes are strongly influenced by modest changes in properties. In particular, pumping modes can 
disappear from first frequencies with even small changes, so it is not easy to decide a priori if to use higher or lower-
order models, since it is not easy to guess whether the transverse normal deformation has a primary role or not. 
However, considering that the higher-order theories are remarkably efficient in reality, the problem does not arise. 
Although a no easily identifiable general rule can be drawn from the results presented in this paper, it will be cleared 
from the results presented in Table 8 for this case, that higher-order theories of this paper can be applied in all cases 
without weighing negatively on costs (Table 3). So it is not necessary to operate a priori any potentially risky choice for 
the accuracy of the results opting for any of lower order theories. Furthermore, it can be noticed from Table 3 that 
lower-order theories are not most economically convenient compared to higher-order counterparts because post-
processing operations are necessary to achieve the necessary degree of accuracy. 

It remains to examine the details regarding the various theories considered, that the numerical results highlight. 
For this case similar considerations apply to those of case c, but now there are more dispersions of the results 
(especially for mode 4). 

Table 8 Normalized frequencies, case d. 

THEORY 
Mode 1 

(1,1) 
Mode 2 

(2,1) 
Mode 3 

(1,2) 
Mode 4 

(2,2) 
Mode 5 

(3,1) 
Mode 6 

(3,2) 

3D FEAIcardi and Atzori (2004) 3.1542 5.1028 5.5209 6.8629 7.5472 8.8919 
Theories with identical results♠ 3.1633 5.1395 5.5511 6.9273 7.6341 9.0113 

HWZZMA 6.5590 8.9323 14.0140 27.4411 27.5244 28.4907 
HWZZMB 3.1691 5.1555 5.6482 6.9579 7.7820 9.0647 

HWZZMB2 3.2500 5.7445 5.9271 7.7215 10.5917 11.2177 
HWZZM0 3.6985 7.1062 7.5328 10.5826 12.8762 16.1719 

HRZZ 3.1479 5.0779 5.4561 6.7539 7.4598 8.6694 
HRZZ4 3.1514 5.0913 5.4767 6.7941 7.4976 8.7509 

MHWZZA 1.3295 2.3539 2.9193 3.1509 3.5257 8.2946 
MHWZZA4 1.3279 3.6122 3.7515 3.8117 4.1134 5.4391 

MHR 13.8886 16.7596 18.6062 29.6763 30.2885 30.6550 
MHR4 13.9395 18.3181 24.6705 30.3678 30.5640 33.9737 
MHR± 3.1738 5.1859 5.5979 7.0148 7.7790 9.1996 

MHR4± 8.1940 9.0023 10.5224 12.2961 12.5958 14.3421 
PP23 3.1836 5.2373 5.6681 7.1282 8.2192 9.5185 

ZZ 3.1649 5.1612 5.5674 6.9544 7.8132 9.1460 
HSDT_32 3.3692 5.6590 7.2343 8.6884 9.1652 11.4630 

HSDT 4.9605 7.6850 8.5441 10.4062 10.9805 13.0905 
FSDT 12.1820 19.4765 23.1196 27.6664 28.0848 34.2690 

♠ ZZA, ZZA*, HWZZ, HWZZM, HWZZM*, HWZZMC, HWZZMC2, HSDT_33, HSDT_34, ZZA*_43, ZZA_RDF, HWZZ_RDF, ZZA_X1, ZZA_X2, 
ZZA_X3, ZZA_X4, ZZA-XX, ZZA-XX’ (error < 1%). 
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Figure 2 Case d: Normalized modal in-plane displacement (mode 4, bending). 

First, it is noted from Table 8 that there are no pumping modes among the first considered, due to the 
combination of properties of faces and core considered, although there are not significant changes compared to the 
previous case. Consequently, even most of lower-order models can accurately predict eigen-frequencies and eigen-
modes, the only exception being represented by MHWZZA4, MHR, MHR4, MHR4 ±, HSDT_32, HSDT and FSDT theories. 

Higher-order theories without zig-zag functions, i.e. HSDT_34, ZZA* _43, ZZA*, ZZA_X1 to _X4, HWZZM and 
HWZZM*, appear convenient for this case, as they combine accuracy and low costs, but also HWZZ appears accurate 
and efficient. All the other theories work very well, a sign that this case presents a return to characteristics similar to 
those of the first two cases examined where the effects of transverse normal deformation are not of primary 
importance. 

As examples, the modal distribution of u  and   across the thickness are reported in Figures 2 and 3, which 
confirm the previous considerations. The following additional cases are examined in search of behaviors that may 
highlight further peculiarities of theories. All the final considerations of the previous case d still apply as regards the 
theoretical aspects of modeling concerning the choice of zig-zag functions, their omission, the choice of the 
representation and how it can be varied without results change, as well as the role to be assigned to displacement field 
coefficients and the fact that certain lower-order theories can be sufficiently accurate. 

Case e. This case proposes a denser and more rigid core than case c and two laminated faces made of epoxy glass 
and epoxy rayon layers (see, Table 4). Therefore, this case has strong different material properties which increase 
layerwise effects rising due to different stiffness ratios and material properties of faces and core. In this case pumping 
modes start to take place from the eighth up to the tenth mode, as it results from Table 9 which shows the free 
vibration frequencies predicted by the various theories. These results show that almost all lower-order theories 
considered in this paper are unsuitable for accurately predicting the behavior in this case with strong layerwise effects, 
which therefore turns out to be decidedly challenging for structural models. In fact, theories HWZZMA, HWZZM0, 
MHWZZA, MHWZZA4, MHR4 ±, MHR, MHR4, HSDT32. HSDT and FSDT appear totally inadequate being unable to 
predict even the first fundamental frequency with some accuracy, while HWZZMB, HWZZMB2, HRZZ, HRZZ4, MHR ± are 
able to accurately capture modes only up to the seventh one, that is excluding all the pumping modes. 
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Figure 3 Case d: Normalized modal transverse shear stress (mode 4, bending). 

Table 9 Normalized frequencies, case e. 

THEORY 
Mode 1 

(1,1) 
Mode 2 

(1,2) 
Mode 3 

(2,1) 
Mode 4 

(1,3) 
Mode 5 

(2,2) 
Mode 6 

(2,3) 
Mode 7 

(1,4) 
Mode 8 

(1,2) 
Mode 9 

(1,3) 
Mode 10 

(1,1) 

3D FEAIcardi and Atzori 

(2004) 1.8250 2.9115 3.8103 4.3378 4.5581 5.7563 6.1051 6.4866 6.6342 6.7820 

Theories with  
identical results♠ 1.8302 2.9306 3.8184 4.3758 4.5813 5.7983 6.1442 6.5052 6.6158 6.8955 

HWZZMA 5.6059 6.0176 7.4697 8.5589 16.2177 17.6828 18.2564 19.0662 36.9624 49.9279 
HWZZMB 1.8359 2.9415 3.8693 4.3991 4.6093 5.8330 6.1905 15.8263 27.0305 38.2535 

HWZZMB2 1.8515 3.3472 4.0131 4.4161 4.6227 5.8334 6.1915 16.1119 29.0452 44.5313 
HWZZM0 2.5444 5.4380 6.2492 8.9994 10.6722 14.0410 27.9576 15.8951 27.3268 39.4091 

HRZZ 1.8116 2.8521 3.6589 4.1144 4.2849 5.1317 5.3547 13.3111 15.6067 22.8002 
HRZZ4 1.8160 2.8702 3.6892 4.1721 4.3456 5.2736 5.5271 15.6428 16.6538 22.9738 

MHWZZA 0.6942 2.3977 2.6214 3.0188 3.9030 4.5651 6.1380 7.7168 10.9624 13.5256 
MHWZZA4 0.6980 2.0240 2.4328 3.2701 3.4373 3.6584 3.8426 6.2970 21.3296 28.1332 

MHR 9.5006 12.2412 15.1366 17.2619 17.6349 17.9766 18.3084 18.8505 37.6813 52.1934 
MHR4 9.5609 13.3372 18.6770 18.9136 20.7667 24.6293 25.1072 15.6264 25.7609 34.6050 
MHR± 1.8389 2.9673 3.8584 4.4778 4.6501 5.9317 6.3553 16.9912 31.6639 45.3776 

MHR4± 5.0499 5.9727 6.7604 7.1795 7.2376 7.8740 7.9708 31.6309 36.3794 41.6820 
PP23 1.8537 3.0414 4.0033 4.8769 4.8892 6.4580 7.3601 10.6373 10.8652 11.9880 

ZZ 1.8612 2.9504 4.0880 4.3963 4.8128 5.9917 6.1812 7.6125 7.6180 7.8116 
HSDT_32 2.0354 3.1806 4.8855 5.2842 6.0359 7.1412 7.3720 7.5825 8.7272 12.6639 
HSDT_33 1.8301 2.9303 3.8175 4.3750 4.5800 5.7964 6.1428 6.7578 6.8938 7.1157 

HSDT 3.3835 5.1523 6.0926 7.2858 7.3239 9.0389 9.7357 - - - 
FSDT 8.7966 13.4532 17.2541 19.7304 20.0760 24.7239 26.4143 - - - 

♠ ZZA, ZZA*, HWZZ, HWZZM, HWZZM*, HWZZMC, HWZZMC2, HSDT_34, ZZA*_43, ZZA_RDF, HWZZ_RDF, ZZA_X1, ZZA_X2, ZZA_X3, 
ZZA_X4, ZZA-XX, ZZA-XX’ (error < 1%); Colored columns: pumping modes. 
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This highlights once again a diversification of the type of performance achievable by the various theories 
depending on the case considered. In this case, theories PP23 (whose displacement field is parabolic-cubic), and ZZ 
(which does not consider the redefinition of coefficients) appear much less accurate than in the previous cases, a sign 
that only theories that impose the fulfillment of full set off physical constraint (6,8-11) and whose terms are redefined, 
possess the ability to adapt to changing conditions across the thickness caused by layerwise effects. 

Furthermore, it is seen that as the frequency of modes increases, lower-order theories make ever greater errors, 
so the only fundamental frequency is not sufficient to test the accuracy of structural models, as well known but not 
always taken into due consideration in the literature. 

For this case the variation of   across the thickness for mode 10 is given as an example in Figure 4, for which the 
following considerations that can also be extended to its other two out-of-plane stress counterparts apply. The 
fundamental aspect to note is that the correct variation of modal stresses across the thickness is captured in this case 
only by higher order theories. 

 
Figure 4 Case e: Normalized modal transverse normal stress (mode 10, pumping). 

The same holds for displacements, which in non-mixed theories directly affect the stresses, but also the mixed 
formulations of this paper, wherein stresses are assumed apart with the intention of obtaining greater accuracy, 
appear however inadequate. Anyway it could be noticed that HSDT_33, HWZZMC, C2 and ZZ, even if not included 
among the higher-order theories, in this case prove to be adequate. 

Beyond this, the numerical efficiency of high-order theories is confirmed (see Table 3), along with that zig-zag 
functions can be arbitrarily chosen, or even that they can be omitted, as well as the form of representation can be 
assumed arbitrarily, without the results being affected, so confirming the results of previous cases. 

Case f. This case derives from the previous one considering a more rigid and denser core (see, Table 4) selected 
between available foamy materials of industrial interest, while the faces are the same made of layers of epoxy glass 
and epoxy rayon. Due to the variation of the core characteristics remarked above, a different behavior than for the 
previous case is shown by the results of Table 10 regarding free vibration frequencies, because similarly to case d but 
differently to previous case e the existence of pumping modes does not occur among the first 10 modes. 

As a consequence, the theories exhibit a dissimilar behavior compared to that shown for the previous case e 
because the dispersion of the results is lower, despite apparently there should be the same layerwise effects as the 
characteristics of the core assumed are still similar to those of case e, while in reality they are minor since the existence 
of pumping modes is precluded. As a consequence, for this case, which further demonstrates that even mild variations 
of material properties cause strongly different behaviors in sandwich structures, many theories appear adequate. 

In fact, the first frequencies are captured with sufficient precision by most theories, the exceptions being 
represented by HWZZMA, HWZZM0, MHWZZA, MHWZZA4, MHR, MHR4, MHR4 ±, HSDT, FSDT, HSDT_32. As many of 
the considerations of case e still holds and discrepancies among theories are more limited than in the previous case, for 
the present case are not reported figures. 

As far as calculation costs (Table 3) and theoretical aspects of modeling are concerned, what has already been 
observed in the previous case about the choice of zig-zag functions and of the representation form across the thickness 
is confirmed. 
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Table 10 Normalized frequencies, case f. 

THEORY 
Mode 1 

(1,1) 
Mode 2 

(1,2) 
Mode 3 

(2,1) 
Mode 4 

(1,3) 
Mode 5 

(2,2) 
Mode 6 

(2,3) 
Mode 7 

(1,4) 
Mode 8 

(3,1) 
Mode 9 

(3,2) 
Mode 10 

(2.4) 

3D FEAIcardi and Atzori (2004) 2.0795 3.3263 4.1141 4.9108 4.9759 6.3078 6.8086 7.4053 8.0236 8.0545 
Theories with 

identical results♠ 2.0796 3.3265 4.1004 4.9036 4.9648 6.2918 6.7699 7.3228 7.9472 8.0112 

HWZZMA 5.5699 6.0388 7.2736 8.6068 16.2809 16.6222 17.1914 17.4915 30.6469 28.1735 
HWZZMB 2.0847 3.3368 4.1449 4.9246 4.9909 6.3213 6.8051 7.4984 8.0336 8.0493 

HWZZMB2 2.1027 3.4048 4.3459 4.9246 5.3958 6.3213 6.8051 7.8723 8.0487 8.0962 
HWZZM0 2.6805 5.5223 6.3050 8.9939 10.6038 12.3649 13.8818 14.4314 17.7913 20.3025 

HRZZ 2.0555 3.2287 3.9386 4.6061 4.6658 5.6683 6.0051 6.2595 6.4412 6.6360 
HRZZ4 2.0616 3.2539 3.9753 4.6830 4.7377 5.8248 6.2043 6.4185 6.6973 6.9919 

MHWZZA 0.6897 2.5190 2.8355 3.2094 4.0947 4.7940 5.2636 6.3369 10.2714 11.2195 
MHWZZA4 0.6916 2.1904 2.5936 3.4786 3.6347 3.8856 4.0466 5.6961 8.6553 8.7156 

MHR 9.2783 11.9900 14.8886 17.0729 17.2357 17.6067 18.5309 19.4935 21.3978 21.7227 
MHR4 9.3355 13.0453 18.2477 18.5238 20.3075 24.1139 24.6192 26.5227 28.1148 29.0030 
MHR± 2.0873 3.3592 4.1351 4.9964 5.0251 6.4125 6.9726 7.4450 8.0906 8.2465 

MHR4± 5.1728 6.5043 7.5808 7.6859 7.8535 8.8055 9.2334 8.2442 8.9815 10.1505 
PP23 2.1040 3.4462 4.2652 5.2636 5.4763 6.9835 8.0887 8.1308 8.9025 9.4691 

ZZ 2.1040 3.3412 4.3350 4.9154 5.1633 6.4531 6.7886 8.0586 8.1505 8.6417 
HSDT_32 2.2404 3.5104 5.2991 5.4004 6.2323 7.5868 7.6496 9.6758 10.9591 11.5818 

HSDT 3.4532 5.2974 6.1860 7.4331 7.5539 9.2594 9.6431 10.0533 10.5555 11.4844 
FSDT 8.5977 13.1629 16.8641 19.3114 19.6340 24.1875 25.2568 25.8551 27.2188 29.6662 

♠ ZZA, ZZA*, HWZZ, HWZZM, HWZZM*, HWZZMC, HWZZMC2, HSDT_33, HSDT_34, ZZA*_43, ZZA_RDF, HWZZ_RDF, ZZA_X1, ZZA_X2, 
ZZA_X3, ZZA_X4, ZZA-XX, ZZA-XX’ (error < 1%). 

Case g. This case has the same laminated faces of cases e and f, made of epoxy-glass and epoxy-rayon layers, but 
currently the core is made up of two different industrial foams, one constituting the ¾ of the thickness which is made 
of Rohacell 31 and the other for the remaining quarter which it is made by the same manufacturer but which is less 
rigid but more dense (properties given in Table 4). In this way the sandwich structure takes on characteristics that are 
even more strongly asymmetrical than those of case e due to the faces, which make the present case very challenging 
from the standpoint of modeling. 

So, differences between the predictions of the various theories are more marked, as shown by the results for the 
free vibration frequencies presented in Table 11. u  and u  modal displacements of the first mode, are reported in 

Figures 5 and 6, respectively; it should be noticed that nevertheless figures concern a bending mode, strong 
discrepancies caused by the noticeable layerwise effects are noted among the results by the various theories. 

In Figure 7 it is also reported the through-thickness variation of   for pumping mode 9, which provides a direct 
measure of the ability of theories to describe the transverse normal deformation. Because of considerable 
discrepancies between theories, only higher order theories and HWZZMC, HWZZMC2, HSDT_33 (that commit errors of 
less than 3%) and ZZ (that is still sufficiently accurate, but whose errors are over 10%) are reported in Figure 7. Because 
of coefficients of ZZ are defined once and for all layers, once again the beneficial role played by the redefinition of 
coefficients is highlighted. The ZZ model of 2001 despite having fixed coefficients appears superior to many mixed 
models like MHR, MHR4, MHWZZA, HWZZMA, HWZZM0, HSDT_32, because although it requires a post-processing it 
appears cost-effective and more easy to implement. So ZZ represents a valid alternative for not particularly challenging 
cases that do not require the use of adaptive models. 

Instead of other cases, theories HWZZMA, HWZZMB, HWZZMB2, HWZZM0, MHWZZA, MHWZZA4, MHR, MHR4, 
MHR ±, MHR4 ±, HSDT_32 now provide highly inaccurate results, sign that when layerwise effects are strongly 
enhanced these theories are unsuited. Since PP23, ZZ, HSDT_33 appear less accurate than adaptive theories with 
redefined coefficients at the highest frequency considered, it is proven that only by cubic / quartic theories whose 
coefficients are redefined through the thickness are appropriate for higher-order modes. 
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Table 11 Normalized frequencies, case g. 

THEORY 
Mode 1 

(1,1) 
Mode 2 

(1,2) 
Mode 3 

(2,1) 
Mode 4 

(1,3) 
Mode 5 

(2,2) 
Mode 6 

(2,3) 
Mode 7 

(1,2) 
Mode 8 

(1,4) 
Mode 9 

(1,1) 
Mode 10 

(1,3) 

3D FEAIcardi and Atzori (2004) 1.8088 2.8905 3.8226 4.3159 4.5659 5.7612 5.8607 6.0359 6.0584 6.1857 
Theories with 

identical results♠ 1.8078 2.8887 3.7844 4.3068 4.5319 5.7260 5.8201 6.0452 6.0635 6.1789 

HWZZMA 5.6747 7.4231 11.1292 14.2994 16.4451 17.3334 17.3941 19.7369 21.3192 22.6575 
HWZZMB 2.8387 5.7485 7.5786 9.8365 9.9593 13.7832 15.7482 16.2849 19.0510 29.2717 

HWZZMB2 2.6087 5.5092 6.6212 9.3733 9.8365 10.2068 13.7832 15.8463 19.0510 29.2851 
HWZZM0 3.0359 6.5841 7.6661 10.7550 12.5084 15.7974 16.2958 16.3219 20.4687 29.5538 

HRZZ 1.8069 2.8837 3.7376 4.2738 4.4553 5.5480 15.8071 5.8823 28.4136 28.7126 
HRZZ4 1.8067 2.8826 3.7339 4.2671 4.4484 5.5302 15.6286 5.8443 27.3772 27.9550 

MHWZZA 0.7246 0.9179 3.3407 3.3479 3.5688 4.3557 6.1238 4.0545 7.9043 16.7350 
MHWZZA4 0.6978 0.8651 3.5557 6.3966 6.8917 9.7175 6.2385 10.1841 6.8404 23.3498 

MHR 10.9702 12.9657 15.3170 17.2175 19.5764 19.5866 12.4103 20.1339 12.9515 25.9401 
MHR4 11.1870 14.7950 22.6656 22.9203 26.2358 33.1135 15.4831 34.9702 27.0792 28.0628 
MHR± 2.1762 3.5080 4.3617 5.2810 5.3128 6.8076 20.4583 7.3859 27.0941 39.0589 

MHR4± 2.4204 4.0933 4.8042 5.9706 6.1081 7.6269 25.1892 8.3280 29.2856 48.0530 
PP23 1.8240 2.9766 3.9065 4.6939 4.7518 6.2354 7.0409 7.2868 7.7506 8.9504 

ZZ 1.8390 2.9088 4.0557 4.3283 4.7655 5.9222 6.0851 6.5598 6.5919 7.9180 
HSDT_32 2.8859 5.3262 6.8437 8.8258 9.9568 34.1067 41.9080 42.6294 50.1473 53.2910 
HSDT_33 1.8076 2.8884 3.7832 4.3069 4.5306 5.7250 5.8278 6.0465 6.3980 6.4500 

HSDT 3.3705 5.1307 6.0685 7.2555 7.2900 8.9979 - 9.6855 - - 
FSDT 8.7728 13.4157 17.2080 19.6752 20.0217 24.6560 - 26.3410 - - 

♠ ZZA, ZZA*, HWZZ, HWZZM, HWZZM*, HWZZMC, HWZZMC2, HSDT_34, ZZA*_43, ZZA_RDF, HWZZ_RDF, ZZA_X1, ZZA_X2, ZZA_X3, ZZA_X4, 
ZZA-XX, ZZA-XX’ (error < 1%); Dashed lines: pumping modes. 

 
Figure 5 Case g: Normalized modal in-plane displacement (mode 1, bending). 
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Figure 6 Case g: Normalized modal transverse displacement (mode 1, bending). 

 
Figure 7 Case g: Normalized modal transverse normal stress (mode 9, pumping). 

Because of all this, it turns out that mixed theories such as HRZZ, HRZZ4, MHWZZA, MHWZZA4 (first ones with 
characteristics similar to those of theories proposed in the literature) has little practical significance since they are 
neither particularly advantageous from the standpoint point of computational costs savings, nor adequate to study 
vibrations due to a displacement field not well represented, although the stress field can be quite well represented. 

The results also show that theories HWZZMC and HWZZMC2 can accurately calculate natural frequencies, while 
they are less accurate in calculating modal displacements and stresses. 

The always accurate results of the adaptive theories of higher order ZZA, ZZA *, HWZZM, HWZZM *, HWZZ, 
HSDT_34, ZZA * _43, ZZA-XX, ZZA-XX ', ZZA_RDF, HWZZ_RDF and ZZA_X1, to _X4, demonstrate what claimed by the 
theoretical viewpoint at the beginning of section 4 dedicated to the numerical results, as well as in the introductory 
section, i.e. about the possibility of arbitrarily choosing the zig-zag functions and the form of the representation. 
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Whoever studies problems involving sandwiches in the literature in an analytical way usually uses symmetric 
laminations, because the theories developed for these structures usually assume the symmetry. Then the finite 
element method the used for studying asymmetric sandwiches which may exist due to project choices or due to the 
occurrence of damage, for example due to impact. But the results obtained for this case show that the present higher-
order models are as accurate as 3-D FEA,although they have the same number of variables as classical theories like 
FSDT and HSDT, so they can be used as an alternative to more expensive models in terms of cost and preparation 
without loss of accuracy even for asymmetric laminations. 

6 CONCLUDING REMARKS 

In this paper, free vibrations of flexible soft-core sandwich structures assumed as multilayer structures having 
strong variations of properties of constituent laminae are studied, with the intended aim to discriminate which 
theoretical assumptions, meaning which different representation of variables across the thickness and which different 
zig-zag functions, can be more appropriate to efficiently and accurately capture pumping modes dominated by the 
transverse normal deformation. 

Various zig-zag theories by the authors, having a fixed number of variables irrespective of the number of 
constituent layers, a different representation across the thickness and different zig-zag functions, have been 
considered in order to confirm the findings of previous articles, at the time demonstrated for static applications and to 
find other new ones characteristic of physically based theories whose coefficients are redefined across the thickness by 
enforcing the physical constraints imposed by the elasticity theory. 

The intended aim is to numerically prove that, whenever the full set of physical constraints is satisfied, the choice 
of zig-zag functions is immaterial, that these functions can even be omitted if coefficients, whose number is related to 
the number of constraints to enforce, are re-determined at interfaces, and moreover that the order of representation 
of in-plane and transverse displacement components can be freely assumed, as well as that the role assigned to single 
coefficients because results remains unchanged. In addition, it is proven that there is no variation in the accuracy of 
results exchanging the order of representation of in-plane and transverse displacement components, while if physical 
constraints are only partially satisfied the accuracy lowers and becomes dependent on the assumptions made, so the 
choice of zig-zag and representation functions can no longer be arbitrary. 

Confirming the findings in the literature, numerical applications show that pumping modes, for which the 
transverse deformation becomes as important as transverse shear and in-plane ones, may or may not appear among 
the first mode, as the behaviour is strongly dependent on the material properties of core and faces of the individual 
cases. 

Certain lower-order theories with only a partial fulfillment of constraints can still be sufficiently accurate in 
predicting pumping modes, as well as modal through-thickness displacement and stress fields, but in most cases the 
only rule that seems satisfied and therefore assumes a general character is that only higher-order theories with a full 
fulfilment of physical constraints can always accurately and efficiently capture the effects played by the transverse 
normal deformation and so to adequately represent the dynamic behavior. 

Considering that their computational cost is still comparable with that of lower-order counterparties which are 
not always accurate, they turn out to be the most suited ones for analysis. However, only those with the highest rank, 
i.e. with no simplifying assumptions, are such. Indeed, discrepancies appear among theories with a higher-order 
representation and reference results, when formulated by introducing simplifying assumptions, without a general rule 
being drawn from theories that fail because they are not always the same in the various cases examined. 

It turns out from numerical results that mixed theories of this paper, some of which have characteristics similar to 
those of theories proposed in the literature, have little practical significance since they are neither advantageous from 
the standpoint point of computational costs saving, nor accurate as their displacement field is not well represented. 

The results also show that the present, most accurate higher-order models reach the same accuracy degree of 3-D 
FEA with a much lower number of unknowns and ultimately with a much lower cost, both because an analytical 
approach is used and the d.o.f. number is the same as classical theories like FSDT and HSDT. So the theories of this 
paper can be used as an alternative to more expensive models in terms of cost and preparation without any loss of 
accuracy. 

Finally, the results confirm what claimed above about the arbitrariness of zig-zag and representation functions if 
the coefficients are redefined in order to satisfy all the physical constraints required by the elasticity theory. It is also 
shown that the redefinition of coefficients allows the theories of any order to significantly increase their accuracy and, 
in addition that exchanging order and form of representation results do not change. 
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