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ABSTRACT 

In transonic high-pressure turbine stages, oblique shocks originated from vane trailing 

edges impact the rear suction side of each adjacent vane. High-pressure vanes are usually 

cooled to tolerate the combustor exit temperature levels, which would reduce dramatically the 

residual life of a solid vane. Then, it is highly probable that shock impingement will occur in 

proximity of one of the coolant rows. It has already been observed that the presence of an 

adverse pressure gradient generates non-negligible effects on heat load due to the increase in 

boundary layer thickness and turbulence level, with a detrimental impact on the local 

adiabatic effectiveness values. Furthermore, the generation of a tornado-like vortex has been 

recently observed that could further decrease the efficacy of the cooling system by moving 

cold flow far from the vane wall. It must be also underlined that manufacturing deviations 

and in-service degradation are responsible for the stochastic variation of geometrical 

parameters. This latter phenomenon greatly alters the unsteady location of the shock 

impingement and the time-dependent thermal load on the vane. Present work starts from 

what is shown in literature and provides a highly-detailed description of the aero-thermal 

field that occurs on a model that represents the flow conditions occurring on the rear suction 

side of a cooled vane. The numerical model is initially validated against the experimental data 

obtained by the University of Karlsruhe during TATEF2 EU project, and then an uncertainty 

quantification methodology based on the probabilistic collocation method and on Padè’s 

polynomials is used to consider the probability distribution of the geometrical parameters. 

The choice of aleatory unknowns allows to consider the mutual effects between shock-waves, 

trailing edge thickness and hole diameter. Turbulence is modelled by using the Reynolds 

Stress Model already implemented in ANSYS® Fluent®. Special attention is paid to the 

description of the flow field in the shock/boundary layer interaction region, where the 

presence of a secondary effects will completely change the local adiabatic effectiveness values. 
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NOMENCLATURE 

A  [m2] area 

D  [m] diameter 

Ma  [-] Mach number 

Pr  [-] Prandtl number 

T  [K] temperature 

X  [m] stream-wise coordinate  

Y  [m] pitch-wise coordinate 

Z  [m] span-wise coordinate 
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Subscripts & Superscripts 

0   total or stagnation 

aw   adiabatic wall 

c   coolant 

𝑓𝜔   Probability Density Function 

is   isentropic 

m   hot gas 

nd   non-dimensional 

nom  nominal 

𝑃𝑛   Legendre polynomial of nth order 

rec   recovery 

te   trailing edge 

�̂�𝑛   Polynomial Chaos expansion coefficients 

𝑢(𝑥, 𝜔)  a solution depending on physical variable x and random variable 𝜔 

w   wall 

Greek 

γ  [-] isentropic exponent 

η  [-] effectiveness 

𝜔j   Gauss-Lobatto integration weights 

Acronyms 

BR  [-] Blowing Ratio 

CFD  Computational Fluid Dynamics 

EXP  Experimental 

RANS  Reynolds-Averaged Navier-Stokes 

RSM  Reynolds Stress Model 

TE   Trailing Edge 

UQ   Uncertainty Quantification 

INTRODUCTION 

A widely-used strategy to increase efficiency and specific power output of gas turbines consists 

in increasing the turbine entry temperature. Therefore, metal temperatures approach the melting 

point of the alloys used in high-pressure nozzles and the stators are more and more loaded as shown 

by Salvadori et al. (2001). Advanced cooling systems such as film cooling are necessary to protect 

nozzles from high temperature. The interaction of the coolant with the main-flow increases 

complexity in the flow’s structures. Andreopulos and Rodi (1984) have identified a pair of counter-

rotating vortices with a velocity component perpendicular to the surface. This structure has been 

named “kidney-shaped vortices”. These vortices are generated by the redistribution of the vorticity 

content in the boundary layers, and play a key role in the performances of the cooling devices. A 

lift-off effect is generated, which transport the coolant away from the wall with a detrimental effect 

on the surface coverage. Leboeuf and Sgarzi (2001) numerically investigated these three-

dimensional structures over flat plates. They noticed that the kidney vortices are greatly influenced 

by the flow behaviour inside of the orifice. An additional vortical structure, the so called “tornado 

effect”, has been originally individuated by Hagen and Kurosaka (1993). They demonstrated the 

presence of a core-wise, cross-flow transport in hairpin vortices (created by coolant injection) in the 

laminar boundary layer. This core-wise phenomenon continuously moves the fluid from the wall to 

the free stream. Similar structures were observed for a turbulent boundary layer in a previous 

research by Chen and Blackwelder (1978) and in presence of shocks by Carnevale et al. (2014). 

The effect of hole’s shape and location have also been studied. Montis et al. (2014) investigated 

the effect of the cooling position on the losses of a turbine stage. In high-pressure stages, oblique 

shocks shed from the Trailing Edge (TE) impinge onto the suction side of the adjacent vane. In case 
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of presence of a row of film cooling holes their effectiveness is affected by the three-dimensional 

interaction between the cooling flow, the boundary layer development and the shock itself. Ligrani 

et al. (2001), Ochs et al. (2007) and Salvadori et al. (2013) demonstrated a non-negligible variation 

in the local value of adiabatic effectiveness when the hole is located a few diameters before the 

shock impingement zone. Furthermore, Montomoli et al. (2012) demonstrated that small variations 

in the coolant duct geometry affect the coolant flow redistribution in a non-negligible way. They 

employed Uncertainty Quantification (UQ) methodologies to highlight the importance of stochastic 

studies to obtain a reliable comparison with experimental data. 

In this work the effect of the impinging shock is reproduced in a test case designed by the 

Institut fur Thermische Stroemungsmaschinen in Karlsruhe (see Ochs et al., 2007 for details). A 

shaped plate positioned at the mid-height of a converging nozzle creates a diverging region where 

the Mach number reaches 𝑀𝑎 = 1.5, while at the end of the plate the flow slows down through a 

shock system. Two geometrical parameters have been perturbed to introduce the uncertainty due to 

manufacturing deviations, namely the diameter of both the plate TE and the cooling hole. The 

stochastic distribution of adiabatic effectiveness is obtained using a probabilistic collocation method 

with Padè’s polynomials. Laymaa and Heidmann (2003) already faced the sensitivity to uncertainty 

of film cooling devices but herein an innovative approach has been used to deal with the un-dumped 

oscillations associated to the Runge’s phenomenon for higher order polynomial. Present work 

shows that the impact of uncertainty is relevant where the shock interacts with the coolant and the 

boundary layer. 

TEST CASE DESCRIPTION 

A numerical simulation of the proposed configuration has been previously performed by 

Salvadori et al. (2013) using a deterministic approach. Figure 1a shows a sketch of the test case, 

which includes the converging nozzle, the central (shaped) plate, the cylindrical cooling hole and 

the plenum. The main-flow reaches sonic speed at the throat while the shape of the lower part of the 

contoured plate allows the flow to accelerate further to supersonic velocities. At the trailing edge an 

oblique shock wave is generated, impinging on the lower wall in a region immediately after the 

cooling hole exit position. The flow physics is depicted in Figure 1b, which has been obtained for 

the nominal conditions during the current numerical campaign. The coolant interacts with the main-

flow generating a weak shock, which merges with the oblique shock shed by the plate trailing edge 

that impinges on the lower wall. It is expected that the adiabatic effectiveness will be modified by 

the adverse pressure gradient that is responsible for a local growth of the boundary layer. 

 

 (a)  (b) 

Figure 1: Control volume (a) and flow features (b) 

In the experimental apparatus, five injection holes are located upstream of the shock 

impingement position and have a pitch-to-diameter ratio of 4 (see Ochs et al., 2007). The control 

volume selected for the numerical campaign includes only a portion of the entire domain, being the 

channel symmetric along the hole mid-plane and between two adjacent holes. Therefore, the 

computational domain is limited in the z direction by two planes of symmetry, which are set normal 

to the x-z plane (use Figure 1b for reference). This choice neglects the formation of coolant 
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oscillations on planes parallel to the x-z plane, and is coherent with the steady nature of the 

computations presented in the present work. The theoretical free stream Mach number at the shock 

location is around Ma = 1.5 and the blowing ratio BR = 1.0 has been selected. The non-

dimensional coolant total pressure is 1.01 with respect to main-flow inlet total pressure and the non-

dimensional coolant total temperature is 0.557 with respect to main-flow inlet total temperature. 

For each investigated case, the numerical BR value has been calculated using the formula in Eq. 1, 

in accordance with the experimental definition: 

 

𝐵𝑅 =
�̇�𝑐

�̇�𝑚
∙

𝐴𝑚

𝐴𝑐
 (1) 

 

It must be pointed out that the aim of the present work is not to reproduce exactly the 

experimental data but only to capture the flow features, and then to quantify the uncertainty 

associated with the hole diameter and the plate trailing edge dimensions. The impact of geometrical 

uncertainties on the adiabatic effectiveness is evaluated using the following definition: 

 

𝜂𝑎𝑤 =
𝑇𝑎𝑤 − 𝑇𝑟𝑒𝑐,𝑚

𝑇0,𝑐 − 𝑇𝑟𝑒𝑐,𝑚
 (2) 

 

Calculations with an adiabatic condition for the cooled plate are used to evaluate the adiabatic 

wall temperature distribution 𝑇𝑎𝑤. The evaluation of the main-flow recovery temperature 𝑇𝑟𝑒𝑐,𝑚 has 

been performed using Eq. 3: 

 

𝑇𝑟𝑒𝑐,𝑚 = 𝑇0,𝑚 ∙
1 + Pr0.33 𝛾 − 1

2 𝑀𝑎𝑖𝑠
2  

1 +
𝛾 − 1

2 𝑀𝑎𝑖𝑠
2

 (3) 

 

The aim of the present work is to analyse the accuracy of CFD simulations in the evaluation of 

the cooling efficacy in such kind of configuration and the impact of stochastic uncertainties in the 

evaluation of the centreline adiabatic effectiveness. 

GRID AND TEST-CASE MODELING 

The computational domain assumes flow symmetry at the hole centreline and between two 

adjacent holes. Therefore, the control volume includes the main-flow inlet, a coolant supply plenum 

and the cylindrical cooling channel, the end-walls that define the nozzle, the central shaped plate 

and the outlet. The importance of the plenum in film cooling simulations has been demonstrated by 

Garg and Rigby (1998) and more recently by Acharya and Leedom (2012) using large eddy 

simulations. That is the reason why the plenum has been included in the control volume.  In the 

present calculations, steady Reynolds-Averaged Navier-Stokes (RANS) equations are solved. In 

this work a pressure-based approach has been selected. Pressure and density equations are coupled 

and the calculation is fully second order accurate. The Reynolds Stress Model (RSM) already 

implemented in the ANSYS® FLUENT® code (Launder et al., 1975) has been used as turbulence 

closure to consider the anisotropic behaviour of turbulence, whose impact on the shock/coolant 

interaction could be crucial to match the real distribution of adiabatic effectiveness. Inlet turbulence 

level is set at 5% while a turbulence length scale of 1mm has been considered. Walls have been set 

as adiabatic and viscous heating has also been considered to make the heat transfer evaluation 

accurate. Calculation is converged when all the residuals are constantly below 10-4 and the mass-

flow error is below 1%. 
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The meshes used for the nine calculations (necessary for the UQ analysis) has been generated 

using the commercial hybrid grid generator CentaurTM by Centaursoft. The mesh is denser in the 

region where the shock-boundary layer interaction is expected (see Figure 2a) and the overall 

quality of the mesh is high. The number of tetrahedral elements in the coolant hole has been 

increased as shown in Figure 2b, with a very high resolution of the channel flow. The generated 

grids are particularly accurate in the near-wall region, where a value of y+ always below 0.3 has 

been obtained for the first layer. The final mesh shown in Figure 2a and Figure 2b is the one used 

for the nominal case and contains approximately 8M elements. All the generated meshes include a 

similar number of elements and are generated using the same elements distribution. 

 

 (a)  (b) 

Figure 2: Computational grid: whole domain (a) and detail of the hole region (b) 

SHOCK-BOUNDARY LAYER INTERACTION WITH COOLANT 

Figure 3a shows the comparison between the numerical and experimental maps of adiabatic 

effectiveness as defined in Eq. 2. As can be observed, the lateral spreading of the cooling flow is 

underestimated by CFD with respect to the experiments. The coolant flow seems to be confined in 

the centreline by the numerical simulation, where the experiments show a wider (and non-

symmetric) redistribution of the flow coming from the cylindrical hole. It could be observed that 

results obtained using RSM are closer to the experiments with respect to the data shown by 

Salvadori et al. (2013), obtained using the k-ω model by Wilcox (2004). This result can be 

explained considering the anisotropy of the RSM, which allows for a more pronounced lateral 

pitch-wise mixing of the coolant with the hot gas. 

 

 (a)  (b) 

Figure 3: Comparison of adiabatic effectiveness maps obtained by CFD and experiments (a) 

and streamlines behaviour in the shock impingement region (b) for the nominal case 

Present results can also be discussed considering Figure 5, where the experimentally evaluated 

centreline adiabatic effectiveness is compared with the numerical data, including the data obtained 

for “Grid 5”, which is the baseline (deterministic) configuration. As can be observed, up to x/D = 
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7.0 numerical data overestimate the adiabatic effectiveness (+30% at x/D = 4.0), while after that 

location there is an underestimation up to -25% at x/D = 15.0. This behaviour could be associated to 

a wrong prediction of the shock impingement location and interaction with coolant. Numerical 

simulation suggests that shock impinges on the lower end-wall at approximately x/D = 5.0, where 

the slope of the curve changes by a non-negligible factor, while experimental data suggest x/D = 

8.0. This wrong prediction could be ascribed to the inherently unsteady nature of the phenomena 

under evaluation. In fact, the oblique shock is expected to oscillate on the x-y plane due to the 

vortex shedding which occurs at the trailing edge of the plate. It is well known from fluid dynamics 

that the correct intensity of a shock can be correctly captured only by an unsteady analysis due to 

non-linear, unsteady stress terms (He, 2003). Therefore, the pressure field in the hole exit region is 

time-dependent and the coolant redistribution could shed on the x-z plane thus leading to an 

enhanced lateral spreading. Since no information about the shock oscillation is available from the 

experiments, it is not possible to analyse this topic unless unsteady CFD is performed, which is not 

the aim of the present work. As a first conclusion, we can say that steady numerical simulations 

cannot capture exactly the adiabatic effectiveness values due to missing non-linear interaction 

features, and then only the overall behaviour of the coolant/shock interaction will be described here. 

A detailed analysis has been performed to better understand why the centreline adiabatic 

effectiveness reduces its value after the shock location. This can be explained looking at the 

streamlines exiting from the coolant flow for the nominal case. In Figure 3b, the isentropic Mach 

number distribution on the cooling hole symmetry plane, the adiabatic effectiveness lines on the 

lower end-wall and the streamlines exiting from the cooling hole are shown. As can be observed, 

the cold flow is initially kept near the lower wall, coherently with the adiabatic effectiveness maps 

and with a numerical BR = 0.83, which is slightly lower than the experimental value and suggests a 

lower jet penetration in the main-flow. A few diameters later (approximately x/D = 5.0) the adverse 

pressure gradient associated with the shock impingement generates a lift-off effect of the coolant. In 

that region, the boundary layer height is increased by the shock impingement and the cooling flow 

is furtherly detached from the wall. After the shock interaction, the coolant flow does not reattach, 

which explains why the adiabatic effectiveness values shown in Figure 5 decrease so sharply. This 

behaviour is coherent with the presence of the already mentioned tornado-like vortex, which per 

Carnevale et al. (2014) enhances the local reduction of cooling effectiveness in presence of shocks. 

 

 
(a) x/D = -0.5 

 
(b) x/D = 0.0 

 
(c) x/D = 0.5 

 

 
(d) x/D = 1.0 

 
(e) x/D = 1.5 

 

Figure 4: Non-dimensional temperature maps and streamlines in the hole/shock region 
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A detailed analysis of the local interaction between the main-flow and the cooling flow is 

reported in Figure 4, where a series of slices perpendicular to the end-wall are reported considering 

a region between the hole and the shock impingement position. For reference purposes, it is useful 

to know that the hole trailing edge is positioned at x/D = -1.5 and that the images in Figure 4 

include the region between x/D = -0.5 and x/D = 1.5. Streamlines are superimposed on the non-

dimensional temperature profiles (with respect to the main-flow inlet total temperature) to visualize 

the local vortex formation and the cooling flow redistribution. As can be observed, the cooling flow 

is initially positioned next to the end-wall (x/D = -0.5, Figure 4a) and a strong recirculation vortex 

(that comes from inside of the hole itself) is present. That vortex is responsible for the rapid 

movement of the coolant flow far from the wall. Then, the vortical structure moves far from the 

wall while main-flow is mixed with coolant until the latter is detached from the end-wall until a 

complete mixing is obtained at x/D = 1.5 (Figure 4e). Flow structures are close to what is usually 

shown in literature and do not seem to be affected by the presence of the shock impingement. 

STATISTICAL APPROACH 

A non-intrusive statistical approach has been used to assess the effect of geometry deviation on 

film cooling performance in presence of shocks. It is based on a polynomial description of the 

stochastic variation. Polynomial Chaos (PC) expansions are a computationally very efficient 

approach to quantify model variation for a small number of input uncertainties. An extensive review 

for such methods is available in Montomoli et al. (2015). Carnevale et al. (2013) applied a subclass 

of these methods (Probabilistic Collocation Methods, PCM) based on Hermite’s polynomials, for 

heat transfer predictions for internal cooling devices. However, PCM techniques, such as all purely 

continuous polynomial expansions, are not suitable when a discontinuity is present in the system 

response. 

In shock dominated problems (such as the present case study) the most suitable is the Padè 

approximation as introduced by Chantrasmi et al. (2009). The Padè approximation is a 

generalisation of Polynomial Chaos where a discontinuous response surface is described by a ratio 

of PC expansions. As this expansion can have poles, it can describe discontinuities. Numerator and 

denominator of the rational function are determined through finite sums of orthogonal basis 

polynomials whose coefficients can be calculated from the function values at a predefined set of 

points. Examples of this include Padè-Jacobi, Padè-Chebischev and Padè-Legendre approximants. 

Padè-Legendre (PL) approximants are used in the present work as described by Hesthaven et al. 

(2006) and Chantrasmi et al. (2009). 

A complete basis of Legendre polynomials is defined by: 

 

〈𝑃𝑛, 𝑃𝑚〉 =
1

𝑛 + 1/2
𝛿𝑛,𝑚    𝑤𝑖𝑡ℎ     𝑛, 𝑚 ∈ ℕ ∪ {0} (4) 

 

Polynomials are defined uniquely as (1, 𝑥, 1
2⁄ (3𝑥2 − 1), … ) and the expansion can be 

continued to any desired order. Every function 𝑢 can be defined as a linear combination of 

Legendre’s basis: 

 

𝑢 = ∑ �̂�𝑛𝑃𝑛

∞

𝑛=0

 (5) 

 

The coefficients �̂�𝑛 in the 𝑛𝑡ℎ Legendre coefficient of 𝑢 are defined as follows: 

 

�̂�𝑛 = 〈𝑢, 𝑃𝑛〉 〈𝑃𝑛, 𝑃𝑛〉⁄  (6) 
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The function is known in specific discrete points and the Gaussian quadrature provides the 

discrete formulation where each scalar product in Eq. 6 is defined as follow: 

 

〈𝑃𝑛, 𝑃𝑚〉𝑁 = ∑ 𝑃𝑛(𝑥𝑗)𝑃𝑚(𝑥𝑗)

𝑁

𝑗=0

𝜔𝑗     𝑤𝑖𝑡ℎ     𝜔𝑗 =
2

𝑁(𝑁 + 1)[𝑃𝑁(𝑥𝑗)]
2 (7) 

 

The nodes 𝑥𝑗 in Eq. 7 are the quadrature points and 𝜔𝑗 are the quadrature weights of the Gauss-

Lobatto quadrature rule as described by Abramowitz and Stegun (1965). The nodes are given as the 

roots of 𝑃𝑁+1(𝑥). Consequently, the (𝑁 − 1) nodes are chosen as the roots of the polynomial 

𝑃𝑁
′ (𝑥). Gauss-Lobatto is chosen because it requires less function evaluations than standard Gauss 

quadrature. Given two integers M and L, a Padè-Legendre approximation of a function 𝑢 is the ratio 

of two approximating polynomials 𝒫𝑀 and 𝒬𝐿 based on the Legendre basis. The overall order of the 

reconstruction is 𝑁 = (𝑀 + 𝐿 + 1). Once the polynomial representation of the underlying function 

is obtained, it is possible to obtain mean �̃� and variance �̃� directly from the function 𝑢: 

 

�̃� = ∫ 𝑢(𝑥, 𝜔)𝑓𝜔𝑑𝜔

𝐷

    𝑎𝑛𝑑     �̃� = ∫ 𝑢(𝑥, 𝜔)2𝑓𝜔𝑑𝜔

𝐷

− [∫ 𝑢(𝑥, 𝜔)𝑓𝜔𝑑𝜔

𝐷

]

2

 (8) 

 

In Eq. 8, 𝜔 is the random parameter associated to the Probability Density Function 𝑓𝜔, 𝐷 

represents the domain of the random parameters and 𝑥 is the physical space. 

UNCERTAINTY QUANTIFICATION RESULTS 

The aim of this section is to evaluate how manufacturing deviations affect the film cooling 

effectiveness distribution of a cooling device. The uncertainty quantification analysis has been 

performed by considering both the diameters of the TE and the diameter of the coolant channel as 

independent random variables. Both deviations are considered to obtain a uniform distribution. Film 

cooling effectiveness has been extracted on the centreline of the passage and compared with 

corresponding experimental data provided by Ochs et al. (2007) for the baseline configuration. The 

deviations related to the geometrical parameters has been assumed as 10% of the nominal value for 

the coolant diameter and 20% for the trailing edge diameter. The test matrix of the simulated cases 

is summarized in Table 1, where also the BR values obtained by CFD are reported. As a first result 

of the UQ activity, it can be observed that blowing ratio seems to be independent from the deviation 

of the trailing edge dimension, but is considerably affected by the diameter of the coolant. 

 

Table 1: Test matrix configuration, TE and coolant diameter 

 DTE,ND [-] DC,ND [-] BRCFD [-] 

Grid 1 1.2 0.9 0.97 

Grid 2 1.2 1.0 0.77 

Grid 3 1.2 1.1 0.68 

Grid 4 1.0 0.9 1.04 

(Baseline) Grid 5  1.0 1.0 0.83 

Grid 6 1.0 1.1 0.69 

Grid 7 0.8 0.9 1.01 

Grid 8 0.8 1.0 0.82 

Grid 9 0.8 1.1 0.70 
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The presence of the shock induces a nonlinear behaviour of the deviation of film cooling 

effectiveness with respect to the deviation of geometrical parameters. Figure 5 shows the centreline 

adiabatic effectiveness predicted considering all the simulations. As previously reported, the shock 

position is determined in correspondence of a non-negligible variation of the centreline film cooling 

adiabatic effectiveness. Numerical data suggest that the shock impingement position is located 

approximately at x/D = 5.0 for all the investigated cases, while the experiments would suggest x/D 

= 8.0. It can be also observed that a small (but not negligible) variation in the slope appears x/D = 

8.0 for the simulations (mainly Grid 2 and Grid 8, that differ by the TE diameter), while 

experiments show a limited slope change at x/D = 5.0. Furthermore, looking at Figure 1b and Figure 

3b, it is clearly visible that, in the impingement region, the shock tends to change from oblique to 

normal, with increased intensity and impact on boundary layer thickness. It can be concluded that 

experimental and numerical data show that the shock effect is not confined to a certain position, but 

modifies the cooling performance in a region between x/D = 5.0 and x/D = 8.0. Furthermore, 

numerical data are affected by geometrical uncertainties, then a direct comparison between 

deterministic CFD and experimental data could provide incorrect information about local 

interaction. For these reasons, UQ methodologies have been used to reconstruct the centreline 

adiabatic effectiveness distribution based on the available CFD data. 

 
Figure 5: Centerline adiabatic film cooling effectiveness for the analysed cases 

Figure 6 and Figure 7 show the statistical analysis of the effect of the diameter of the coolant and 

of the diameter of the trailing edge, respectively. The reconstructed distribution and the second 

moment of the distribution are shown. Comparing the standard deviations of Figure 6 and Figure 7, 

the stronger effect is related to the diameter of the hole. More consideration can be done by dividing 

the domain in three regions: upstream of the shock region, the shock region itself and downstream 

of the shock region. Looking at the standard deviation distributions it can be observed that the 

shock impingement region is confined between x/D = 5.0 and x/D = 8.0, coherently with the 

comments above. Furthermore, the distribution of the film cooling effectiveness in the location 

upstream of the shock is characterized by a high 𝜎 value for the case where the coolant diameter is 

changing (Figure 7). Lower values of 𝜎 characterize the case with TE deviation (Figure 6). A 

possible explanation for that behaviour is that upstream of the shock, the main effect is due to the 

jet penetration that is strongly perturbed by the variation of the coolant diameter, which affects also 

the shock position (for the blockage induced by the coolant) and consequently the film cooling 
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effectiveness. The impact of the trailing edge diameter could be underestimated by the fact that 

calculations are steady, and then the impact of modification of the plate vortex shedding is 

neglected. 

The slope changes that are visible for both the reconstructed distribution (and delimit the shock 

region) have a double impact in terms of standard deviations. In correspondence of the shock the 

cooling flow is suddenly pushed towards the wall and this corresponds to the minimum value of 𝜎. 

The subsequent adverse pressure gradient creates the already described lift-off mechanism, which is 

characterized by the presence of high vorticity. These vortices alter the surface coverage and the 

adiabatic effectiveness, and consequently the distribution has high value of 𝜎. The shock region is 

greatly affected by the uncertainty due to the variation of the shock location, which deviates more 

for the case in Figure 6 because of the variation of the channel dimension. 

 

   
Figure 6: Statistics related to the influence of the diameter of the cooling hole 

   
Figure 7: Statistics related to the influence of the deviation of TE diameter 



 

11 

 

 

CONCLUSIONS 

This work provides a detailed insight of a film cooling jet interacting with a shock that impinges 

on a contoured plate. Results obtained by CFD highlight complex structures due to vorticity 

development inside of the coolant channel and to the subsequent interaction with the shock in the 

supersonic region. Deterministic calculations show that the coolant flow is detached from the end-

wall in correspondence of the shock impingement. Kidney vortices are responsible for the reduction 

of cooling efficacy starting from the region upstream of the shock, then the local interaction with 

the shock and the generation of tornado-like vortices causes a further deterioration of film cooling 

performance. The flow structures occurring in the shock region are expected to be strongly 

dependent on geometrical parameters. The impact of manufacturing deviations altering the size of 

the hole and the trailing edge diameter is accounted for. Deterministic calculations performed by 

varying those parameters show that the impact of the shock is not limited to a certain location, but is 

responsible for a double slope change of centreline effectiveness in a region large about three 

nominal hole diameters. That result is supported also by the available experimental data. Looking at 

the deterministic data, it can be concluded that steady RANS calculation can individuate the region 

of influence of the shock, although this is obtained without the correct evaluation of shock intensity 

due to missing nonlinear, unsteady stress terms. 

The complete numerical campaign consists in nine calculations and has been used to perform 

uncertainty quantification of cooling efficacy. The selected statistical approach is suitable for 

investigation of shock dominated flows. The results show different level of uncertainty in different 

zones of the domain. The zone upstream the shock is insensitive to the deviation of the trailing edge 

but it is strongly affected by the cooling flow penetration which is strictly related to cooling 

diameter. The shock generates an increase in the boundary layer height, which evolves in a lift 

mechanism that increases the uncertainty in the evaluation of adiabatic effectiveness. Furthermore, 

the deviation of the diameter of the coolant has a greater effect on the uncertainty of the shock 

location and strength with respect to the deviation of the dimension of the trailing edge of the 

shaped plate. As a general conclusion, the proposed uncertainty quantification methodology 

demonstrated to be a useful tool to understand the flow phenomena occurring in presence of film 

cooling devices and impinging shocks. 

ACKNOWLEDGMENTS 

The authors acknowledge the European Commission and the TATEF2 project consortium for 

support provided. The authors are also grateful to Prof. Francesco Martelli from the Department of 

Industrial Engineering of the University of Florence for his valuable contribution. 

REFERENCES 

Abramowitz, M., Stegun, I.A., 1964. Handbook of Mathematical Functions with Formulas, 

Graphs, and Mathematical Tables. Chapter 25.4: Integration, Dover Publications, Inc., New York, 

ISBN 0-486-61272-4 

Acharya, S., Leedom, D.H., 2012. Large Eddy Simulations of Discrete Hole Film Cooling with 

Plenum Inflow Orientation Effects. J. Heat Transfer 135(1), 011010 (12 pages)  

[DOI:10.1115/1.4007667] 

Andreopulos, J., Rodi, W., 1984. Experimental Investigation of Jets in a Crossflow. J. Fluid 

Mechanics 138, pp. 93-127 [DOI:10.1017/S0022112084000057] 

Carnevale, M., Montomoli, F., D’Ammaro, A., Salvadori, S., Martelli, F., 2013. Uncertainty 

Quantification: A Stochastic Method for Heat Transfer Prediction using LES. ASME J. 

Turbomachinery 135(5), 051021 (8 pages) [DOI:10.1115/1.4007836] 

Carnevale, M., D’Ammaro, A., Montomoli, F., Salvadori, S., 2014. Film Cooling and Shock 

Interaction: An Uncertainty Quantification Analysis with Transonic Flows. Proc. of the ASME 

http://en.wikipedia.org/wiki/Abramowitz_and_Stegun
http://dx.doi.org/10.1115/1.4007667
https://dx.doi.org/10.1017/S0022112084000057
http://dx.doi.org/10.1115/1.4007836


 

12 

 

 

Turbo Expo 2014, Dusseldorf, Germany, June 16-20, Volume 5B: Heat Transfer, V05BT13A001 (8 

pages) [DOI:10.1115/GT2014-25024] 

Chantrasmi, T., Doostan, A., Iaccarino, G., 2009. Padè-Legendre Approximants for Uncertainty 

Analysis with Discontinuous Response Surface. J. Computational Physics 228, pp. 7159-7180 

[DOI:10.1016/j.jcp.2009.06.024] 

Chen, C.P., Blackwelder, R.F., 1978. Large-Scale Motion in a Turbulent Boundary Layer: A 

Study using Temperature Contamination. J. Fluid Mechanics 89(1), pp. 1-31 

[DOI:10.1017/S0022112078002438] 

Garg, V.K., Rigby, D.L., 1998. Heat Transfer on a Film-Cooled Blade – Effect of Hole Physics. 

International J. Heat Fluid Flow 20(1), pp. 10–25 [DOI:10.1016/S0142-727X(98)10048-6] 

Hagen, J.P., Kurosaka, M., 1993. Corewise Cross-Flow Transport in Hairpin Vortices – The 

“Tornado Effect”. Physics of Fluids, 5(12): pp. 3167-3174 [DOI:10.1063/1.858673] 

He, L., 2003. Unsteady Flow and Aeroelasticity. Chapter 5, Handbook of Turbomachinery, CRC 

Press, ISBN 978-0-824-70995-2 

Hesthaven, J.S., Kaber S.M., Lurati L., 2006. Padè-Legendre Interpolants for Gibbs 

reconstruction. J. Scientific Computing 28(2/3), pp. 337-359 [DOI:10.1007/s10915-006-9085-9] 

Lamyaa, A.E.-G., Heidmann, J.D., 2013. Numerical Study on the Sensitivity of Film Cooling 

CFD Results to Experimental and Numerical Uncertainties. International J. Computational Methods 

Engineering Science Mechanics, 14(4), pp. 317-328 [DOI:10.1080/15502287.2012.756953] 

Launder, B.E., Reece, G.J., Rodi, W., 1975. Progress in the Development of a Reynolds-Stress 

Turbulence Closure. J. Fluid Mechanics 68(3), pp. 537–566 [DOI:10.1017/S0022112075001814] 

Leboeuf, F., Sgarzi, O., 2001. The Detailed Structure and Behavior of Discrete Cooling Jets in a 

Turbine. Annals New York Academy of Sciences 934, pp-95-109 

Ligrani, P.M., Saumweber, C., Schulz, A., Wittig, S., 2001. Shock Wave–Film Cooling 

Interactions in Transonic Flows. ASME J. Turbomachinery 123(4), pp. 788-797 

[DOI:10.1115/1.1397305] 

Montis, M., Ciorciari, R., Salvadori, S., Carnevale, M., Niehuis, R., 2014. Numerical Prediction 

of Cooling Losses in a High-Pressure Gas Turbine Airfoil. Proc. of IMechE, Part A: J. Power 

Energy 228(8), pp. 903–923 [DOI:10.1177/0957650914542630] 

Montomoli, F., Massini, M., Salvadori, S., Martelli, F., 2012. Geometrical Uncertainty and Film 

Cooling: Fillet Radii. ASME J. Turbomachinery 134(1), 011019 (8 pages) 

[DOI:10.1115/1.4003287] 

Montomoli, F., Carnevale, M., D’Ammaro, A., Massini, M., Salvadori, S., 2015. Uncertainty 

Quantification in Computational Fluid Dynamics and Aircraft Engines. Springer International 

Publishing, ISBN 978-3-319-14680-5 

Ochs, M., Schulz, A., Bauer, H.-J., 2007. Investigation of the Influence of Trailing Edge Shock 

Waves on Film Cooling Performance of Gas Turbine Airfoils. Proc. of the ASME Turbo Expo 2007, 

Montreal, Canada, May 14–17, Volume 4: Turbo Expo 2007, Parts A and B, pp. 465-474 

[DOI:10.1115/GT2007-27482] 

Salvadori, S., Montomoli, F., Martelli, F., Adami, P., Chana, K.S., Castillon, L., 2011. 

Aerothermal Study of the Unsteady Flow Field in a Transonic Gas Turbine with Inlet Temperature 

Distortions. ASME J. Turbomachinery 133(3), 031030 (13 pages) [DOI:10.1115/1.4002421] 

Salvadori, S., Montomoli, F., Martelli, F., 2013. Film Cooling Performance in Supersonic 

Flows: Effect of Shock Impingement. Proc. of IMechE, Part A: J. Power Energy 227(3), pp. 295-305 

[DOI:10.1177/0957650912474444] 

Wilcox, D.C., 1994. Simulation of Transition with a Two-Equation Turbulence Model. AIAA 

Journal 32(2), pp. 247-255 [DOI:10.2514/3.59994] 

http://dx.doi.org/10.1115/GT2014-25024
http://dx.doi.org/10.1016/j.jcp.2009.06.024
https://dx.doi.org/10.1017/S0022112078002438
http://dx.doi.org/10.1016/S0142-727X(98)10048-6
http://dx.doi.org/10.1063/1.858673
http://dx.doi.org/10.1007/s10915-006-9085-9
http://dx.doi.org/10.1080/15502287.2012.756953
https://dx.doi.org/10.1017/S0022112075001814
http://dx.doi.org/10.1115/1.1397305
http://dx.doi.org/10.1177/0957650914542630
http://dx.doi.org/10.1115/1.4003287
http://dx.doi.org/10.1115/GT2007-27482
http://dx.doi.org/10.1115/1.4002421
http://dx.doi.org/10.1177/0957650912474444
http://dx.doi.org/10.2514/3.59994

