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On the condensational growth of droplets in
isotropic turbulence

Michele Iovieno and Maurizio Carbone

Abstract The role of thermal inertia of droplets in the broadening of the droplet size
distribution in homogeneous and isotropic turbulence is investigated. A new model
for the condensational growth of water droplets, which takes into account the finite
thermal relaxation time of droplets, is formulated. Results from direct numerical
simulations with vanishing mean supersaturation in the two-way coupling regime
show an increase of droplet size variance due to the increased fluctuations in the
supersaturation field seen by each particle, which produce a differentiation of the
growth conditions.

1 Introduction

Water droplets play a fundamental role in cloud dynamics, since the latent heat
released or absorbed through water vapour condensation or evaporation is one of
the main sources of energy which drives turbulent motions [1]. Since the paper by
Vaillancourt et al. [2], direct numerical simulations have been used to study the
small scale processes by numerically solving the interplay of small scale turbulent
motions with phase transition processes. In these studies, the Eulerian description
of the turbulent flow is coupled with the Lagrangian description of each individual
droplet to investigate a small portion of a cloud. By simulating the evolution of
droplets in a homogeneous and isotropic turbulent flow which resembles the well-
mixed interior of a cloud, many works focused on how the local non-uniformity in
the flow and in the droplet distribution can contribute to the broadening of the droplet
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size distribution and therefore to the enhancement of their growth by collisions (e.g.
[3, 4, 5]). Other studies have applied the same methodology to analyse interfacial
phenomena where the mixing between supersaturared and undersaturated regions
occurs, like the clear air entrainment at the lateral border (e.g. [6, 7, 8]) or at the
border of a rising plume ([9, 10]). All these works use the model introduced by [2],
who adapted the classical models for the condensational growth of a single droplet
in quiescent, uniform environment [11]. In this model, thermal equilibrium between
the droplet and the surrounding air is assumed: droplet temperature is determined
by the instantaneous balance between the heat released by condensation and heat
exchange with air. However, when the flow is turbulent the surrounding ambient
seen by each droplet changes with a timescale dictated by small-scale turbulent
eddies, so that local fluctuations of temperature and humidity occur on timescales
which are of the same order of the droplet relaxation time. In these conditions, the
finite thermal inertia of droplets cannot be neglected. Indeed, it has been shown that
thermal inertia of particles plays an important role in the heat transport, since inertial
particles in turbulent flows form clusters, which concentrate in the regions where the
advected scalar fields display sharp gradients [12]. Thus, the droplets are strongly
out of equilibrium with the surrounding fluid and large heat fluxes between fluid
and particles would take place. In this work we reformulate the point mass model
of droplets by considering a finite droplet thermal inertia. Results from simulations
in forced and isotropic turbulence, with two-way coupling between the droplets and
the fluid flow, are presented to assess the impact of the thermal inertia.

2 Model equations

Immediately following its formation through heterogeneous nucleation, a cloud
droplet grows by vapour diffusion and condensation. Let us consider a droplet with
radius R moving in humid air. Droplet radius is much smaller than the Kolmogorov
microscale η and droplets are diluted, so that each droplet can be considered in a
uniform environment. Since droplets are much denser than air and the Reynolds
number of the relative motion of the particle in the surrounding air is small, droplets
evolve subject to weight and Stokes drag,

dx
dt
= v,

dv
dt
=

u∞ − v
τu

+ g, (1)

where u∞ is the air velocity. Moreover, convection can be neglected and temperature
T and vapour density ρv around a droplet are described by the Fourier equations,

ρcp
∂T
∂t
= λ∇2T,

∂ρv
∂t
= κv∇

2ρv, (2)

where ρ, cp , and λ are the air density, specific heat at constant pressure and thermal
conductivity, respectively, and κv is water vapour diffusivity, assumed constant since
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T and ρv variations around the droplet are small. Analogously, the temperature in
the spherical droplet is given by

ρLcL
∂T
∂t
= λL∇

2T (3)

where ρL , cL , and λL are the liquid water density, specific heat and thermal con-
ductibility. Assuming spherical symmetry, all variables depend only on the radial
coordinate r and the time t. The boundary conditions for r → +∞ areT (r, t) → T∞(t)
and ρv (r, t) → ρv,∞(t), which represent the matching with the surrounding ambient
at r � R. At the droplet-humid air interface, r = R(t), the continuity of temperature
and of water mass flow imply that

ρL
dR
dt
= κv

∂ρv
∂r
(R+, t), T(R−, t) = T(R+, t). (4)

Moreover, the enthalpy variation due to condensation or evaporation should be equal
to the net heat flow, obtaining a Stefan-like condition

−ρLL
dR
dt
= −λL

∂T
∂r
(R−, t) + λ

∂T
∂r
(R+, t) (5)

where L is the latent heat of condensation. By integrating equation (3) in the droplet
volume and using (4), equation (5) can be rewritten as

Lκv
∂ρv
∂r
(R+, t) =

1
R2

∫ R

0
ρLcL

∂T
∂t

r2dr − λ
∂T
∂r
(R+, t). (6)

Now, by considering that the diffusion timescales are much smaller than both the
droplet growth timescale and the thermal relaxation timescale, the time derivatives
into (2) and (3) can be neglected and a quasi-steady solution can be used, that is,

ρv(r, t) = ρv,∞ − (ρv,∞ − ρvs(Td(t))
R(t)

r
(7)

T(r, t) =


Td(t) if r ≤ R(t)

T∞ − (T∞ − Td(t))
R(t)

r
if r ≥ R(t)

(8)

where Td(t) is the droplet surface temperature from (4). Introducing these solutions
into (4) and (6), the following equations for the time evolution of the droplet radius
and droplet temperature are obtained:

dR
dt
=
κv
ρL

ρv,∞ − ρvs(Td)

R
(9)

dTd

dt
=

T∞ − Td

τϑ
+

Lκv
λ

ρv,∞ − ρvs (Td)

τϑ
(10)
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where τϑ = (ρLcLR2)/(3λ). When a set of Nd droplets moving in a turbulent
flow is considered, u∞, T∞ and ρv,∞ are the local velocity, temperature and vapour
density in the fluid phase at each droplet position xm, that is u∞ = u(xm, t), T∞ =
T(xm, t), ρv,∞ = ρv(xm, t). In the absence of buoyancy, the flow is described by the
incompressible Navier-Stokes equations, while temperature and water vapour are
advected passive scalars,

∇ · u = 0 (11)
∂u
∂t
+ u · ∇u = −

1
ρ0
∇p + ν∇2u +

1
ρ0

Cu + fu (12)

∂T
∂t
+ u · ∇T = κ∇2T +

1
ρ0cp

CT + fT (13)

∂ρv
∂t
+ u · ∇ρv = κv∇

2ρv + Cd + fv (14)

where fu , fT and fv are external forcing terms and the source terms Cu , CT and Cd

are the particle feedback terms, that is the momentum, enthalpy and water vapour
transfer per unit volume and time from the droplets to the humid air phase. From
equations (9) and (10), the feedback terms are given by

Cu =

Np∑
m=1

mm
vm(t) − u(xm, t)

τu,m
δ(x − xm), (15)

CT =

Np∑
m=1

cLmm
Td,m(t) − T(xm, t)

τϑ,m
δ(x − xm), (16)

Cd =

Np∑
m=1

4πκvR2
m(ρvs(Td,m(t)) − ρv(xm, t))δ(x − xm). (17)

where mm = 4πR3
m/3 is the mass of the m-th droplet and vm its velocity.

3 Results and discussion

The evolution of initially monodisperse droplets with radius ranging from 15 to
25 µm in an isotropic turbulent flow with a Taylor microscale Reynolds number
equal to 88 is investigated. Equations (9-10) and (11-14) are numerically solved in
a triply periodic cubic domain by means of a 3/2 dealiased pseudo-spectral spatial
discretization, a second order exponential time integrator and fourth order spline
interpolation/reconstruction for the coupling terms [13]. Deterministic large-scale
forcing is implemented to maintain a constant dissipation rate ε = 5 · 10−3 m2/s3,
typical of warm clouds, and a variance of temperature and vapour density equal
to 0.25% their mean values. The reference mean temperature is T0 = 280 K and
the mean vapour density is chosen so that the mean supersaturation is equal to zero
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Fig. 1 Probability density functions (PDF) of the droplet relative size variation (R − R0)/R0, at
different times, for droplet initial radius R0 = 15µm (a), 20µm (b) and (c) 25µm. (d)Time evolution
of the droplet radius variance. PDF of the dimensionless particle radius rate of change (e) and of the
particle temperature fluctuations for R0 = 20µm (f). Time is rescaled with the integral timescale
τ` = `/u

′, where ` is the integral scale and u′ the root mean square of velocity fluctuations.

(〈ρv〉 = ρvs(T0)) as in [3], so that there is nomean growth.With this set of parameters,
Kolmogorov microscale η is equal to 1 mm, Kolmogorov timescale τη is 0.05 s, the
Stokes number τu/τη ranges from 0.06 to 0.16 and the thermal Stokes number τϑ/τη
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from 0.25 to 0.7. Droplet volume fraction is kept equal to 10−6 in all simulations.
Figures 1 (a-c) show the probability density function (PDF) of the droplet radii at
different times and for various initial radii R0. The inclusion of thermal inertia widens
the tails and produces a larger variance of R, as in Figure 1 (d). The variance of the
size of the smallest droplets tends to grow as t1/2 while larger droplets grow slower.
The novel model here proposed, which includes thermal inertia, always predicts a
faster droplet growth than the classic model [2]: a 10% larger variance is obtained
after a minute and the difference between the variances grows in time. Small droplets
grow or shrink faster than large droplets because of the R−1 factor in (9). On the
other hand, large droplets experience larger supersaturation variations since they are
affected by their path history. These two concurrent effects, when the variance of the
fields is imposed, lead to a non-monotonic dependence of the droplet size variance
on the droplet initial radius. The broadening due to the particle inertia increases with
the Stokes number, since the temperature differences experienced by the droplets
increase. Thus, the growth due to the lack of thermal equilibrium can be expected to
be particularly significant in the cloud regions with locally higher dissipation rates,
leading to a local broadening of size distribution which can accelerate the collisional
growth.Moreover, the broadening is also enhanced by the intermittency of the vapour
density and temperature fields which increases with the Reynolds number.
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