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Exact memory–constrained UPGMA

for large scale speaker clustering

Sandro Cumani∗, Pietro Laface

Dipartimento di Automatica e Informatica, Politecnico di Torino, Italy

Abstract

This work focuses on clustering large sets of utterances collected from an
unknown number of speakers. Since the number of speakers is unknown,
we focus on exact hierarchical agglomerative clustering, followed by auto-
matic selection of the number of clusters. Exact hierarchical clustering of
a large number of vectors, however, is a challenging task due to memory
constraints, which make it ineffective or unfeasible for large datasets. We
propose an exact memory–constrained and parallel implementation of aver-
age linkage clustering for large scale datasets, showing that its computational
complexity is approximately O(N2), but is much faster (up to 40 times in our
experiments), than the Reciprocal Nearest Neighbor chain algorithm, which
has O(N2) complexity. We also propose a very fast silhouette computation
procedure that, in linear time, determines the set of clusters. The computa-
tional efficiency of our approach is demonstrated on datasets including up to
4 million speaker vectors.

Keywords: Clustering, UPGMA, similarity measures, Reciprocal Nearest
Neighbor, PLDA, PSVM, silhouette, cluster quality measures.

1. Introduction

Clustering is a widely used unsupervised machine learning technique for
exploratory data analysis, which allows discovering groups of data items that
are similar [1, 2]. Clustering has a large scope of application in speaker
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recognition. Diarization of meetings [3], segmentation of multi–speaker con-
versations [4, 5, 6], and adaptation of a speaker recognition system to a new
domain [7] are successful examples of its usage. In these applications, the
number of different speakers and turns is relatively small. Clustering of large
number of speakers and speech segments is required, instead, by other ap-
plications. Examples of the latter are semi–supervised training of speaker
models, and speaker indexing in broadcast news. Clustering can also be use-
ful for the detection of serial fraudsters in speaker verification applications.
This type of fraudsters challenge the system performing many calls with dif-
ferent usernames just using their own voice, rather than using more difficult
techniques such as replying or synthesizing the target speaker voice.

In this work we focus on unsupervised clustering of a large set of ut-
terances collected from an unknown and large number of speakers. Among
the most widely used techniques for clustering, K–means [8] and spectral
clustering [9, 10] require the number of clusters to be predefined, whereas
mean-shift [11] relies on the selection of a bandwidth parameter, which can-
not be easily selected, or which is computationally expensive to estimate for
large datasets. Thus in this work we focused on Hierarchical Agglomerative
Clustering (HAC), a popular clustering technique, which discovers hierarchi-
cal relations between sets of clusters. HAC has been used since long time in
many different fields and applications, for example for vector quantization
[12], for document clustering [13], or for creating phylogenetic trees of bio-
logical data [14].
We aim at obtaining an exact hierarchical agglomerative solution, rather
than relying on approximate Nearest Neighbor (NN) clustering techniques,
or on other solutions that take local clustering decisions, based on predefined
parameters, without considering all current items and clusters. This allows
us deferring the estimation of the number of clusters at the end of the proce-
dure, exploiting an internal validity measure applied to each cluster set that
can be extracted from the hierarchy.

In particular, we focus on a computational efficient and memory–constrained
implementation of the so called Unweighted Pair Group Method with Arith-
metic Mean (UPGMA), which progressively merges clusters according to
their minimum average distance producing a dendrogram [15]. UPGMA,
or average linkage clustering, has been preferred to the single and complete
linkage because it gives better performance in terms of cluster and speaker
purity [16]. This has been confirmed by our preliminary experiments not
reported here due to space limitations.
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Comparison with other clustering approaches, requiring predefined parame-
ters, such as the number of clusters, or any kind of thresholds, is out of the
scope of this paper.

In the following, to avoid the distinction between similarity scores and
distances, we will mostly refer to similarity scores or simply to scores. The
considerations that apply to similarity scores are, of course, also valid for
distances or dissimilarity scores.

Exact UPGMA of a large number of vectors is a challenging task due to
memory and computational constraints. The standard UPGMA algorithm
receives as input a score matrix S over a set of N items, thus it requires
O(N2) memory, which is simply not available for large datasets. Its running
time is dominated by the time required for the selection of the cluster–pairs.
By keeping the entries of each row of S in a heap, UPGMA time complexity
reduces to O(N2 log(N)) [17, 18, 13]. It can be further reduced to O(N2) [18]
by using the Reciprocal Nearest Neighbor chain (RNN) algorithm [19, 20, 21],
which, given a score matrix S, iteratively builds a chain of nearest neighbor
clusters until it finds the nearest neighbor pair.
However, if N is large, we can only provide to RNN the items vectors, rather
than the score matrix that would require O(N2) memory. This solves the
memory problem, but since the search for the chain of the nearest neigh-
bor clusters is sequential, RNN cannot exploit massive parallel computation.
We will further comment on this, and propose an efficient implementation
of RNN, after introducing our fast and memory–constrained UPGMA algo-
rithm.

In this work we propose an exact and parallel memory–constrained UP-
GMA implementation for large scale speaker clustering. Our approach, which
will be referred to in the following as k–best UPGMA or K–UPGMA, per-
forms clustering in multiple iterations starting from the singleton clusters.
At each iteration, we precompute all the pairwise scores between the cur-
rent set of clusters. Precomputing blocks of scores in parallel by multiple
threads using vectorized dot-products, is much more efficient than searching
sequentially the nearest neighbor of a given cluster. We keep the k–best list
of cluster scores, obtained by means of a quick–select algorithm that has
linear time complexity even on the worst case [22]. An exact dendrogram is
grown by merging a subset of clusters up to a given level implicitly imposed
by the size of the k–best list of scores kept in memory. Thus, we trade, to
some extent, computations for memory by recomputing at every iteration
the subset of scores that did not contribute to the growth of the dendrogram
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in the previous iteration. Since this subset rapidly shrinks at every iteration,
we experimentally show that, for a large enough size of the k–best list, the
overall complexity remains almost quadratic in the number of vectors in the
dataset.
K–UPGMA is similar to the approach proposed in [14] because the clustering
process is performed in multiple rounds, but in [14] the matrix of dissimilar-
ities are computed and kept sorted on disk. This is reasonable only if the
number of items is not large, and if the complexity of the dissimilarity com-
putation is high, as it is possibly the case for clustering protein sequences.
This does not fit our case study.
Hierarchical clustering, up to a predefined level of the dendrogram, is also
proposed in [23], with the assumption that higher levels of the dendrogram
do not convey interesting information. In this approach, clustering is not
performed in multiple rounds because it is supposed that, given a predefined
level of the dendrogram, it is possible to store the matrix of precomputed
dissimilarities on the memory of different nodes of a cluster of computers.
In our case, however, the higher levels of the dendrogram convey interesting
information because, even if we cluster millions of utterances, the number of
speakers might be limited.

All these approaches, including ours, have at least quadratic complexity.
This is unavoidable because they use a global rather than a local clustering
decisions strategy, i.e., they compute all the pairwise scores between the cur-
rent clusters. However, thanks to efficient data structures and algorithms,
and exploiting the possibility of parallel computation of the similarity scores
between clusters, we show that K–UPGMA has approximately O(N2) com-
putational complexity, but is 40 times faster than RNN. Considering a real
use-case, K–UPGMA is able to cluster 900K 400–dimensional speaker vectors
in approximately 15 minutes running on a single machine.

Crucial for the clustering efficiency is the possibility of computing the
average score between two clusters without evaluating the pairwise distances
between all the items of the two clusters. This has been done for cosine
or Euclidean scoring functions [24, 25] by associating to each cluster the so
called “Clustering Features”, i.e., the number of vectors in the cluster, their
mean and variance. We extend the Clustering Features concept to a class
of scoring functions commonly used in speaker recognition and in statistical
classification. This is obtained by formalizing the scoring functions in terms
of dot–products.

Finally, by definition, UPGMA associates to each cluster, represented by
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a dendrogram entry, the average dissimilarity between its merged clusters.
We show that this information can be used for obtaining approximate, but
accurate, silhouette values [26, 27]. Using the Silhouette Width Criterion
(SWC) [27] we can determine with good accuracy the set of clusters in the
dataset, and evaluate their quality.

Summarizing, our novel contributions are:
• A fast, parallel, and exact implementation of UPGMA for large scale

vector clustering.
• An efficient similarity computation method, based on an extension of

the “Clustering Features” concept, for scoring functions commonly used
in speaker recognition and statistical classification.
• A fast approximate Silhouette Width Criterion for the selection of the

number of clusters.
The outline of the paper is as follows: Section 2 outlines our memory–

constrained K–UPGMA. The details of the main data structures and the
algorithm that we use are given in Section 3 together with the vector–valued
functions that allow speeding up pairwise similarity score computation. Sec-
tion 4 presents a detailed description of K–UPGMA. In Section 5 we give
several examples of commonly used scoring functions. Section 6 introduces
our fast technique for automatic selection of the number of clusters from the
dendrogram produced by UPGMA. Our experimental results are illustrated
in Section 7, in terms of running time of the algorithm, and of internal and
external cluster purity measures. Conclusions are given in Section 8.

2. K–UPGMA: outline

The outline of K–UPGMA, ignoring for the moment the details that make
it effective, is given in Algorithm 1. In order to fulfill memory constraints, K–
UPGMA receives as input a set of N vectors, and computes all their pairwise
similarity scores, but keeps in memory only the k–best scoring pairs. It then
loops selecting the current best scoring cluster pair (Ci, Cj), merging their
elements to cluster Cm, appending them to the dendrogram, and updating
the k–best list until it is empty. The update is performed by eliminating
from the k–best list the pairs that include either Ci or Cj, and inserting only
the pairs (Cm, Ck) whose score S(Cm, Ck) is better than the worst score Sw

in the k-best list. Fast selection of the pairs, and efficient computation of
these scores is detailed in Section 3.1. Once the k-best list is empty, these
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Algorithm 1 K–UPGMA: outline

Input: A set of vectors V, and the number k of scores that can been kept in
memory.
Output: A cluster hierarchy H over V.
Initialization: Initialize the cluster set C by defining a singleton cluster Ci =
{i} for every vector i ∈ V.
while |C| > 1 do

if k–best list is empty then
Refill k–best list: Compute the pairwise scores for each cluster pair
(Ci, Cj), with Ci, Cj ∈ C.
Keep only the k–best scores. Keep also the current worst score Sw among
the k–best.

end if
Cluster–pair selection: Get the best scoring cluster pair (Ci, Cj) from the
k–best list.
Cluster–pair merging: Merge its elements into cluster Cm.
Reduce the k–best list by discarding every cluster pair that includes an ele-
ment Ci or Cj .
Set C = (C \ {Ci, Cj}) ∪ {Cm}.
Append the pair (Ci, Cj) and its score to hierarchy H.
Update: For all Ck ⊆ C, compute score sk = S(Cm, Ck) (see Section 3.1)
if sk > Sw then

Append it, and the cluster identity, to the k–best list.
end if

end while

steps are iterated by refilling the list with the scores of the remaining cluster
pairs.

3. Data structures and scoring functions

Before presenting the details of the K–UPGMA algorithm, let us intro-
duce the main data structures and algorithms that we use. K–UPGMA com-
putes the pairwise similarity scores between N input vectors, corresponding
to the elements above the main diagonal of the score matrix. The computa-
tional complexity of this step is quadratic. This complexity is amortized by
dividing the score matrix into square blocks of size B. A set of T threads,
or processes, computes the pairwise scores for these blocks in parallel. Each
thread computes one block of the score matrix, and selects the k–best scores
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Figure 1: Heap arrays (green), BestHeap (orange), and Sparse matrix data struc-
ture.

of that block. After T blocks have been processed, the partial k–best scores
are merged, and the resulting k–best scores are retained. This procedure con-
tinues until all blocks have been scored, and the overall k–best scores selected.
For the sake of efficiency, each k–best list of cluster scores is obtained without
sorting the scores computed by each thread. We use, instead, a quick–select
algorithm, based on the median of medians selection (introselect), which has
linear time complexity even on the worst case [22]. Furthermore, by keeping
trace of the worst score in the k–best lists, most of the scores computed by
the threads can be eliminated before performing the selection.
The amount of memory that is required by this software architecture is
O(BT ) for the scores, and O(kT ) for storing the provisional k-best scores
computed by each thread.
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Fig. 1 illustrates the data structures that we use to perform the steps
of Algorithm 1 without requiring expensive search operations. Once the
k–best list of scores has been filled, we create for each entry in the list the
corresponding entry in the sparse matrix, in the heap arrays, and in BestHeap
array structures shown in figure as green and orange rectangles, respectively.
In particular, since we consider only cluster pairs (Ci, Cj) with j > i, we
devote a heap array for each cluster identifier Ci.
The BestHeap array stores the top element of each heap vector. In the
following, we will refer collectively to these structures simply as “heap”.
A heap array entry consists of a pointer, shown as a thick arrow, to an
element of the sparse matrix.
A sparse matrix entry includes the cluster pair identifiers, Ci and Cj, their
similarity score S(Ci, Cj), and an index to the corresponding heap vector,
shown as a thin arrow in Fig. 1. This index allows eliminating a single entry
of a heap vector without search. The sparse matrix is implemented as two
arrays of asymmetric double linked lists. The entries in each row (or column)
are not sorted, they appear ordered in the figure just for the sake of clarity.
Using this data structure it is easy discarding an entry, or an entire row
or column of the sparse matrix, and inserting new cluster pairs both in the
matrix and in the heap. Furthermore, when a row or column of the sparse
matrix is discarded, it is also immediate to release the corresponding heap
vector.
An entry of the BestHeap array consists of a structure including the pointer
to an entry in the sparse matrix [Ci, Cj, S(Ci, Cj)], and the index in the
BestHeap array where the top value of the corresponding heap array is stored.
This information is necessary to update the BestHeap array if an entry is
removed from, or inserted at, the top of a heap array. Indeed, the new value
at the top of a heap array must replace the old one in the BestHeap, possibly
requiring reordering the BestHeap array.
In Fig. 1, cluster C34 is the current best scoring cluster because it is the top
element of the BestHeap array, and of the third heap vector. The index for
the current BestHeap value and the corresponding heap array are represented
by the thin and dashed line, respectively.

Please notice that using a single or multiple heaps is a natural solution
for speeding–up nearest neighbor search [17, 18, 12, 13, 28]. In our approach,
their usage is tightly integrated with the k–best list management.
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3.1. Heap management

In the “Update” step of the algorithm, it is necessary to compute the
similarity of the new cluster with respect to all current clusters. Since this
operation is essentially sequential, K–UPGMA would not perform better than
the standard RNN approach without a strategy that is able to greatly reduce
the number of the computed scores.

This section details the subset of the scores that are computed in the
“Update” step of K–UPGMA Algorithm 1, how these scores are computed,
and in which case they are inserted in the heap.

Let xi be the i–th vector of a set X = x1,x2, . . . ,xN . Let S(xi,xj) be a
scoring function for the pair of vectors (xi,xj). Denoting by Ck the set of
vectors in cluster k, the average pairwise score of all vectors in Ca and in Cb

is:

S(Ca, Cb) =
1

NaNb

∑
i∈Ca

∑
j∈Cb

S(xi,xj) , (1)

where Na and Nb is the number of vectors in the corresponding cluster.
After merging clusters Ca and Cb into a new cluster Cm, K–UPGMA must
remove all clusters (Ca, Cx) and (Cb, Cy) currently in the heap, and has to
compute the average score between cluster Cm and every other cluster Ck in
the heap. This score is the weighted-by-cardinality average of the scores of
the merged clusters:

S(Cm, Ck) =
1

Na +Nb

[NaS(Ca, Ck) +NbS(Cb, Ck)] . (2)

According to the reducibility property [29], only a subset of the clusters in
the heap must be considered. Let us illustrate the three possible scenarios
induced by the set of clusters currently in the heap.

3.1.1. S(Ca, Ck) and S(Cb, Ck) are not in the heap

If both scores S(Ca, Ck) and S(Cb, Ck) are less than the worst score in
the heap Sw, the score of the new cluster would be:

S(Cm, Ck) =
1

Na +Nb

[NaS(Ca, Ck) +NbS(Cb, Ck)]

≤ Na

Na +Nb

Sw +
Nb

Na +Nb

Sw ≤ Sw . (3)

Since S(Cm, Ck) would not be better than Sw, we can avoid computing it.
Thus, the clusters in the heap that require the computation of a new cluster
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score, and possibly its insertion in the heap, is limited to the cases, illustrated
in the next two subsections, where either S(Ca, Ck) or S(Cb, Ck), or both,
appears in the heap.

3.1.2. S(Ca, Ck) and S(Cb, Ck) are both in the heap

The computation of the new cluster score S(Cm, Ck) is straightforward.
Since S(Ca, Ck) and S(Cb, Ck) are both available, average score s = S(Cm, Ck)
can be easily computed by means of equation (2), and inserted in the heap
because score s is at least equal to Sw.

3.1.3. Only S(Ca, Ck) is in the heap

If one of the scores, say S(Ca, Ck), is in the heap but the other is not, the
average score S(Cm, Ck) cannot simply obtained by using equation (2).
For a generic score function S(., .) it would be necessary to compute all
pairwise scores between each vector in Cb and each vector in Ck. Since
the number of these pairs is potentially huge, the proposed approach would
be not effective, or even unfeasible. For this reason, we rely on a class of
scoring functions that allow obtaining S(Cm, Ck) as a function of the average
of two representation vectors, each associated to the corresponding cluster.
This leads to a much more effective computation of S(Cm, Ck). Only if
S(Cm, Ck) ≥ Sw, the new score is inserted in the heap. Our scoring functions
generalize what was proposed in [24, 25] for Euclidean distance scoring.

3.2. Scoring functions

Extending the Clustering Feature [24] concept, we consider the class of
scoring functions defined by the product of two vector–valued functions:

S(xi,xj) = f(xi)
Tg(xj) . (4)

Since a scoring function must be symmetric, it is also necessary that f(xi)
Tg(xj) =

g(xi)
T f(xj).

From (1), the average merging score of two clusters Ca and Cb, in terms
of the vectors associated to each cluster, f(xi) and g(xj), respectively, is:

S(Ca, Cb) =
1

NaNb

∑
i∈Ca

∑
j∈Cb

f(xi)
Tg(xj) =

[
1

Na

∑
i∈Ca

f(xi)

]T [
1

Nb

∑
j∈Cb

g(xj)

]
.

(5)
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This approach allows computing the score of the new cluster by means of the
dot–product of the average of two transformed vectors. Thus, we associate
to each cluster two average transformed vectors, one for each function:

xf,Ck
=

1

Nk

∑
i∈Ck

f(xi) , xg,Ck
=

1

Nk

∑
i∈Ck

g(xi) , (6)

where Nk is the number of vectors in cluster Ck. If two clusters Ca and
Cb merge into cluster Cm, the new transformed vector xf,Cm can be easily
obtained from the vectors xf,Ca and xf,Cb

as their weighted average:

xf,Cm =
1

Na +Nb

∑
i∈Cm

f(xi) =
1

Na +Nb

[∑
i∈Ca

f(xi) +
∑
i∈Cb

f(xi)

]

=
[Naxf,Ca +Nbxf,Cb

]

Na +Nb

. (7)

The new transformed vector xg,Cm can be similarly computed.
The average score of the new cluster Cm with respect to another cluster Ck

can then be computed as the dot–product of the two vectors:

S(Cm, Ck) = xT
f,Cm

xg,Ck
. (8)

Thus, the average of all pairwise scores between two clusters can be effectively
computed by means of a single dot–product, rather than by averaging all the
inter–cluster pairwise scores.

We will show in Section 5 that, for a set of commonly used scoring func-
tions, the dimensions of xf,Ck

and xg,Ck
are similar to the ones of the original

item vectors.

4. K–UPGMA detailed steps

The detailed steps of K–UPGMA are summarized in Algorithm 2. Each
singleton cluster is associated with a representation vector initialized accord-
ing to Section 5. T threads (or processes) are created in a single node, or
in multiple computation nodes, to compute in concurrency all the pairwise
scores of the vector set. Each thread computes the scores of a block B of
vectors, and quick–selects the k–best scores for that block. The T individ-
ual k–best lists are then merged (using again quick–select) also keeping the

11



Algorithm 2 K–UPGMA: detailed

Input: A set of vectors V, and the number k of scores that can been kept in
memory.
Output: A cluster hierarchy H over V.
Initialization: Initialize the cluster set C by defining a singleton cluster Ci =
{i} for every vector i ∈ V.
Initialize the appropriate representation vector for each cluster Ci according to
Section 3.2.
Creates a fixed number T of threads devoted to the computation of the pairwise
scores
while |C| > 1 do

if BestHeap is empty then
Refill the k–best list: The pairwise scores for the set of clusters C is
divided into blocks of maximum dimension B.
repeat

Process T blocks in parallel.
Each thread selects the k–best clusters for its block.
The T k–best lists are then merged, keeping the worst score Sw.

until All pairwise scores computed
Create for each entry in k–best list the corresponding entry in the heap
vector, sparse matrix, and BestHeap structures illustrated in Fig. 1

end if
Cluster–pair selection: Get the best scoring cluster pair (Ci, Cj) from the
BestHeap.
Cluster–pair merging: Merge its elements into cluster Cm.
Compute the representation vectors associated to cluster Cm (7).
Discard every entry referring to clusters Ci or Cj from the sparse matrix, and
from the corresponding heap vector, possibly updating BestHeap.
Set C = (C \ {Ci, Cj}) ∪ {Cm}.
Append the pair (Ci, Cj) and the corresponding score to hierarchy H.
Update:
for Ck ∈ C do

Compute the score S(Cm, Ck) according to the rules given in Sections 3.1
and 3.2
if S(Cm, Ck) > Sw then

Insert this information in the sparse matrix, and in the corresponding
heap vector, possibly updating BestHeap.

end if
end for

end while
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current worst score Sw. Keeping the worst score allows reducing the com-
putation burden of the quick–select. When the final k–best list of clusters
has been collected, its entries are used for creating the heap vectors, sparse
matrix, and BestHeap structures. The procedure then loops selecting the
best cluster pair (Ci, Cj), found at the top of the BestHeap, until it remains
empty.
The pair (Ci, Cj), and the corresponding merging score is appended to the
dendrogram. The representation vector associated to this new cluster is com-
puted. All the entries in the heap referring to cluster Ci and Cj are discarded,
and the heap is updated inserting new entries according to the rules given
in Sections 3.1, with associated representation vector computed according to
(7).
Since the number of elements in the heap decreases as the dendrogram grows,
the heap shrinks until it remains empty. The dimension of the k–best list,
thus, determines an implicit score threshold that defines the maximum height
of the hierarchy tree for the current iteration. Having the possibility of al-
locating a huge k–best list in memory would allow the dendrogram to be
completed in a single iteration, but for a large dataset and reasonable k–best
list size, the algorithm must iterate until the dendrogram is completed. When
the k-best list is empty, it is refilled with the k–best scores of the current
cluster pairs, which can be effectively computed from their representation
vectors.

Let us consider, for comparison, the RNN approach, which iteratively
builds nearest neighbor chains. Each chain consists of an initial randomly
selected vector, followed by its NN, which is followed by its NN among the
remaining clusters, and so on. The distances between adjacent vectors in
the NN chain are monotonically decreasing, and the last pair of nodes are
Reciprocal Nearest Neighbors. Since searching the NN is sequential, RNN
cannot exploit massive parallel computation. Indeed, each RNN iteration
must compute the score of a single cluster with respect to all other clusters.
This operation can be performed by means of a vector–matrix product. Our
approach, instead, relies on much more effective matrix–matrix product com-
putations, and it is worth noting that the computation of the scores and of
the partial k–best lists can be distributed among different computer nodes.
A comparison of the running times for the two approaches is given in Table
1 of Section 7.

RNN can exploit massive parallel computation only if it precomputes a
set of distances, i.e., if it uses the same approach that we are proposing.

13



In particular, our heap structure can be used for a fast implementation of
the RNN algorithm that builds the dendrogram up to the implicit threshold
defined by the heap size. The complete dendrogram can be obtained by
iteratively refilling the heap with an approach similar to the one described
for K–UPGMA.

5. Examples of scoring functions

An equivalent formulation of the scoring function (4) is:

S(xi,xj) = f(xi)
Tg(xj) + h(xi) + h(xj) (9)

where h is a scalar–valued function. By setting:

f = f , g = g , h(x) = 0 , (10)

(9) becomes (4), and by setting:

f(xi) = [f(xi) , h(xi) , 1]T , g(xj) = [g(xj) , 1 , h(xj)]
T (11)

their product (4) is equivalent to (9).
We here show that scoring functions commonly used for clustering can

be represented according to (9), and that the size of the functions f(x) and
g(x) is equal or close to the original vector size.

We first formulate as in (9) the most popular scoring functions in clus-
tering: cosine similarity scoring and Squared Euclidean distance. We then
extend the formulation to the similarity scores produced by Probabilistic Lin-
ear Discriminant Analysis (PLDA) [30, 31], by its non–linear extension [32],
and by the Pairwise Support Vector Machine (PSVM) [33, 34]. Finally, we
show that we can also deal with calibrated and normalized scores, and with
sets of scores of different classifiers that are linearly combined to improve
system accuracy.

5.1. Cosine similarity scoring
Since the definition of the cosine similarity score is:

S(x1,x2) =
xT
1 x2

‖x1‖ ‖x2‖
, (12)

the corresponding functions f(x), g(x), and h(x) of (9) can be set as:

f(x) = g(x) =
x

‖x‖
, h(x) = 0 . (13)

Clustering, thus, can be performed using pre–normalized vectors.
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5.2. Squared Euclidean distance

The scoring function for the squared Euclidean distance is:

S(x1,x2) = −1

2
‖x1 − x2‖2 = xT

1 x2 −
1

2
xT
1 x1 −

1

2
xT
2 x2 . (14)

This leads to defining:

f(x) = g(x) = x , h(x) = −1

2
‖x‖2 . (15)

Score computation requires, thus, that for each item vector x, also h(x) is
pre–computed and stored in memory. The increase of memory and compu-
tation costs, however, is minimal because h(x) is a scalar.

It is worth noting that keeping the mean and variance of the clusters to
speed up the computation of the similarities between clusters was proposed
in [24, 25] for clustering based on the Euclidean distance. We here show that
Squared Euclidean distance is just a particular case of the more general class
of score functions which allow efficient computation of cluster average scores.

Cosine and Euclidean scoring do not rely on prior information about the
distribution of the item vectors. We can expect, however, better clustering
performance if this information is available in terms of a statistical model. In
the next subsections we recall the PLDA model and its fast scoring formula-
tion that allows obtaining the pairwise similarity between two representation
vectors. A similar formulation can be used for PSVM scoring.

5.3. PLDA scoring

Probabilistic Linear Discriminant Analysis is one of the most effective
models for speaker recognition. It can be used in combination with different
types of compact representations of a speech segment, such as i–vectors [35],
e–vectors [36], or speaker embeddings [37].
Given a pair of vectors, a PLDA classifier allows computing the log–likelihood
ratio between the hypotheses that they belong to the same speaker or to
different speakers. The Gaussian PLDA model is defined as:

x = m + Uy + ε (16)

where m is the mean vector of the vectors estimated in training from the
utterances of a large number of speakers, y represents the speaker factors
corresponding to a given utterance, which are assumed to obey a Normal prior
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distribution y ∼ N (0, I), U represents the trained speaker factor loading
matrix, and ε is a residual term, with prior distribution ε ∼ N (0,Λ−1).

Given these assumptions, the PLDA log–likelihood ratio between the
“same speaker” hypothesis HS, and the “different speaker” hypothesis HD,
is given by:

S(x1,x2) = log
P (x1,x2|HS)

P (x1,x2|HD)

= log
P (x1,x2|y)P (y)

P (y|x1,x2)

P (y|x1)

P (x1|y)P (y)

P (y|x2)

P (x2|y)P (y)

= log
P (y|x1)P (y|x2)

P (y|x1,x2)P (y)
(17)

In [33] it is shown that this speaker verification score can be computed as
the quadratic function of the speaker vector pair:

S(x1,x2) = xT
1 Ax1 + xT

2 Ax2 + xT
1 Bx2 + xT

1 c + xT
2 c + k1 , (18)

where the square symmetric matrices A and B, vector c, and the constant
term k1, are functions of the parameters of the PLDA model (16). UPGMA
clustering can be performed, using PLDA scores, by defining the functions
f(x), g(x), and h(x) of equation (9) as:

f(x) = x , g(x) = Bx , h(x) = xTAx + xTc +
k1
2
. (19)

Score computation requires that an array, Bx, and a scalar h(x) are pre–
computed and stored in memory in addition to the item vector. Again,
this has low impact on memory and computation costs. Furthermore, since
matrix B is positive definite, the additional storage can be reduced by using
the equivalent set of functions:

f(x) = g(x) = B
1
2 x , h(x) = xTAx + xTc +

k1
2
, (20)

i.e., just storing a single transformed vector B
1
2 x.

5.4. Non–Linear PLDA scoring

Non–linear PLDA (NLPLDA) [38, 32] introduces a non–linear transfor-
mation of vectors aimed at better fitting the Gaussian assumptions of PLDA.
The model can be described as:

F(x) = m + Uy + ε , (21)
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where F is a parametric invertible function. In [38, 32] it was shown that,
once the model has been trained, NLPLDA scoring can be obtained as the
standard PLDA scoring just using the transformed vectors F(x).

5.5. PSVM scoring

A successful alternative to the generative PLDA model has been presented
in [33, 34]. where a single pairwise SVM (PSVM) is trained to classify a pair
of vectors as belonging to the “same speaker”, or to the “ different speaker”
class. The PSVM model is trained to estimate the parameters of a symmetric
quadratic function approximating a log–likelihood ratio score [33]. Thus, the
scoring function can be computed similarly to (18), of course using different
parameters A, B, c, and k1. However, since it cannot be assumed that matrix
B is positive definite, for PSVM scores we cannot rely on (20), but we must
store not only vector x, but also the array Bx.

5.6. Score calibration

The scores obtained by a classifier cannot always be interpreted as the
likelihood-ratio between the “same speaker” and “different speaker” hypothe-
ses. However, the parameters of a linear score mapping can be estimated on
a held–out development dataset, and applied to map the original scores to
new scores that can be used as calibrated log–likelihood ratios [39]. Linear
score calibration can be embedded, without additional costs, in our scoring
functions.
Let Su(x1,x2) be an uncalibrated score, the corresponding linearly calibrated
score is given by:

S(x1,x2) = αSu(x1,x2) + β , (22)

where α and β are scalars estimated on the development dataset. According
to (9) the calibrated scores are given by:

S(x1,x2) = αfu(x1)
Tgu(x2) + αhu(x1) + αhu(x2) . (23)

Thus, UPGMA clustering can be performed using the calibrated scores by
setting in (9) :

f(x) = αfu(x) , g(x) = gu(x) , h(x) = αhu(x) +
β

2
. (24)

Since parameter α is typically positive, f and g can be replaced by:

f(x) = α
1
2 fu(x) , g(x) = α

1
2 gu(x) . (25)

17



If fu = gu, this allows keeping in memory just one array.

All the scoring functions presented so far keep the dimensions of the
original item vectors, plus one for the scalar h.

5.7. Score normalization

In addition to score calibration, score normalization allows the designer
of a classifier to select a constant decision threshold in spite of possible mis-
matches between the development and test conditions.
Among the techniques proposed for score normalization, the so called sym-
metric normalization, or S–norm, is one of the most effective both in term of
performance and computation costs [31, 40].

Given an unnormalized score Su(x1,x2), S–norm score is defined as:

S(x1,x2) =
Su(x1,x2)− µ(x1)

2σ(x1)
+
Su(x1,x2)− µ(x2)

2σ(x2)
, (26)

where µ(x) and σ(x) denote the mean and standard deviation of the scores
computed comparing a vector x with respect to an held–out set of different
speaker vectors.
Rewriting (26) in terms of the functions fu, gu and hu, we obtain:

S(x1,x2) =
fu(x1)

Tgu(x2) + hu(x1) + hu(x2)− µ(x1)

2σ(x1)

+
fu(x1)

Tgu(x2) + hu(x1) + hu(x2)− µ(x2)

2σ(x2)
. (27)

The S–norm score S(x1,x2) can, thus, be computed by setting:

f(x) =

[
fu(x)

2σ(x)
,

1

2σ(x)
, fu(x), hu(x)

]T
, g(x) =

[
gu(x) , hu(x),

gu(x)

2σ(x)
,

1

2σ(x)

]T
h(x) =

hu(x)− µ(x)

2σ(x)
. (28)

Clustering using S–normalized scores requires keeping in memory, for each
item vector, two precomputed arrays f(x) and g(x), and a scalar h(x), the
former having double dimension with respect to the item vector.
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5.8. Score combination

It is well known that the combination of the scores of a set of classifiers
that use different models or features increases the performance of a speaker
recognition system. The linear combination of the scores of K different clas-
sifiers is given by:

S(x1,x2) =
K∑
k=1

αkS
k
u(xk

1,x
k
2) + β (29)

where Sk
u is the score produced by the k–th classifier for the k-th pair of

vectors xk
1,x

k
2. As for calibration, equation (29) can be rewritten as:

S(x1,x2) =
K∑
k=1

Sk(xk
1,x

k
2) , (30)

where

Sk(x1,x2) = αkS
k
u(xk

1,x
k
2) +

β

K
. (31)

The scoring functions fk, gk and hk corresponding to each score Sk can
be computed from the corresponding functions fku,, gk

u and hku, as shown in
Section 5.6.
Since the combination score is obtained as the sum of the scores Sk, it can
be computed by setting, for each item vector:

f(x) =
[
f1(x), · · · , fK(x)

]T
, g(x) =

[
g1(x), · · · ,gK(x)

]T
, h(x) =

K∑
k=1

hk(x)

(32)
The dimension of the arrays f(x) and g(x) is the sum of the dimensions of
the representation vectors of each classifier, thus, the score computation time
in clustering increases as a function of the number of classifiers scores that
are combined.

6. Silhouette Width Criterion

A further advantage of using UPGMA is that it is possible to devise a fast
technique for computing an approximate Silhouette Width Criterion (SWC)
curve [27], which allows estimating the number of speakers in large datasets,
and evaluating the quality of the corresponding clusters.
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SWC was selected based on the results of the comparison of 40 internal
clustering validity measures performed in [27], which shows that SWC is not
only one of the few best techniques in relative terms, but it is also the most
robust when used in different scenarios. Silhouette was also among the best
cluster validity measure compared in [41].

The silhouette value is a measure of how similar a vector xi is to its own
cluster (tightness) compared to other clusters (separation) [26], formally:

sxi
=

bxi
− axi

max(axi
, bxi

)
, (33)

where axi
is the average distance between vector xi and the other vectors

within the same cluster, and bxi
is the average distance between xi and the

vectors in its closest cluster. The denominator is just a normalization term,
and sxi

= 0 if xi belongs to a singleton cluster.
The Silhouette Width Criterion (SWC) [27] is defined as the average

silhouette over all the item vectors:

sw =
1

N

N∑
1

sxi
. (34)

The best clustering structure, characterized, at the same time, by maximum
compactness and separation, is expected to be found for the set of clusters
that lead to the maximum value of sw.

Unfortunately, the computation of the sw value for a single set of clusters
has complexity O(N2) [27]. The complexity becomes cubic if we need to find
the maximum of the SWC curve, i.e., the average silhouette value for the set
of clusters obtained by cutting the dendrogram at decreasing levels of score
similarity. Cubic time complexity makes automatic selection of the number
of clusters unfeasible even for small size dataset.

However, since UPGMA merges the clusters according to their average
similarity, an approximate but extremely fast computation of the sw values
can be obtained exploiting the value bp associated to each dendrogram entry
p, consisting of the triple {Ci, Cj, bp}, where the subscript p refer to the
parent entry merging clusters Ci and Cj. By definition of UPGMA, bp is the
average dissimilarity between these clusters. Thus, given a vector xi assigned
to cluster Ci, we can take bp as an approximation of bxi

in (33).
The average dissimilarity wi between each vector xi and all the other vectors
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Algorithm 3 Fast Silhouette Width Criterion

Input: A dendrogram array structure H of size N − 1. Each entry of H,
representing a cluster, includes the left and right clusters that are merged, the
average dissimilarity between these clusters, the number of leaves stemming from
it, and its parent index.
Output: An array of sw values as a function of the number of clusters.
i = 1
while i < N do

if has more than two leaves(i) then
Compute w[i] according to (35).
s[i] = (b[p[i]] - w[i]) / max (b[p[i]], w[i])

else
w[i] = b[i]
s[i] = 0

end if
sw[i+1] = sw[i] - s[left child[i]] - s[right child[i]] + s[i]
i = i + 1

end while

within cluster Ci, can be computed as:

wi =
bili1li2 +

wi1li1(li1 − 1)

2
+
wi2li2(li2 − 1)

2

li1li2 +
li1(li1 − 1)

2
+
li2(li2 − 1)

2

=
2bili1li2 + wi1li1(li1 − 1) + wi2li2(li2 − 1)

(li1 + li2)(li1 + li2 − 1)
, (35)

where li1 and li2 are the number of leaves of the two children of cluster Ci

in the dendrogram, wi1 and wi2 are their within cluster average dissimilarity,
and wi = bi for clusters including only two vectors.
Considering all vectors in cluster Ci, their approximate silhouette value can
be obtained as:

si = li ·
bp − wi

max(bp, wi)
. (36)

To avoid division by 0, si = 0 if bp = 0, i.e., if Cp merges clusters that include
identical vectors only.

Our fast procedure for obtaining the UPGMA approximate sw is summa-
rized in Algorithm 3. The values of wi and of swi are computed iteratively as
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a function of the number of clusters obtained by cutting the dendrogram at
decreasing similarity levels. Starting from the leaves of the hierarchy, which
have null silhouette value, we proceed towards the root of the tree by com-
puting the average within cluster dissimilarity wi of the current dendrogram
entry i, the silhouette value si, and the silhouette width value swi for the
corresponding set of clusters. The cluster structure changes, at each itera-
tion, only because two clusters are merged, thus, the sw value can be simply
updated by subtracting the silhouette value of the clusters that are merged,
and by adding the silhouette value of the merged cluster.

Since the dendrogram bp values produced by UPGMA clustering using
the PLDA or PSVM are approximate average log–likelihood ratio scores, we
transform these values to the dissimilarity scores that are needed for comput-
ing the Silhouette Width Criterion curve. The transformation is performed
according to:

b̂ = exp(−b/b∗) , (37)

where b∗ = 3 · σ, and σ is the standard deviation of the Gaussian fitting
the distribution of the bp values in the dendrogram. This transformation
normalizes and compresses the range of the b values in the dendrogram so
that these similarity scores are projected to a dissimilarity “linear” scale.

7. Experiments

This section presents the results of a set of experiments performed on
Nuance servers, on a set of pre-extracted e–vectors [36] coming from an
anonymized text-dependent dataset of passphrases from phone calls that last
5 seconds on average. All speakers pronounce the same passphrase. This
dataset includes 900K length–normalized e–vectors of dimension d = 400.
A subset of these vectors, consisting of 350K vectors from 83123 speakers, are
labeled. The average number of utterance per speaker for the 350K dataset
is 4.2, with standard deviation 5.2. Speakers with more than 50 vectors could
be potential fraudsters.
For this subset we can compute some external measures to validate the qual-
ity of the clusters produced by K–UPGMA, either considering a priori known
the number of speakers, or automatically detecting their number by means
of the Silhouette Width Criterion.
The complete set of 900K vectors has been used, instead, for testing the
scalability of the K–UPGMA approach, using a fixed size for the k–best list.
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Figure 2: Percentage of scores computed by K–UPGMA using cosine and PSVM
scores, as a function of the number of merged clusters for three sets of item vectors.
100% corresponds to N∗(N−1)

2 scores. The abscissa of a filled circle in the graph
represents the number of clusters merged at each refill of the k–best scores.

A held–out set of 59862 e–vectors from 6000 speakers, not used in testing,
has been used for PLDA and PSVM training.
All the experiments have been performed on a single server equipped with a
24 core Intel(R) Xeon(R) E5-2680 v3 2.50GHz, and 128GB of main memory.

7.1. K–UPGMA computational costs

Fig. 2 shows the percentage of scores computed by K–UPGMA, in addi-
tion to the standard N∗(N−1)

2
scores, using either cosine or PSVM scores, as

a function of the number of merged vectors for three different dataset size:
350K, 600K, and 900K, respectively. The abscissa of a filled circle in the
graph represents the total number of vectors merged after each K–UPGMA
iteration. These results were obtained keeping fixed the k–best list size, equal
to 2 millions elements. Examining these plots, it can be observed that more
than a half of the clusters are merged after the first iteration, i.e., after 100%
of the scores have been computed.

In the worst case, clustering 900K items using cosine scoring requires
approximately 40% additional score computations. This percentage of ad-
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Figure 3: Elapsed time of K–UPGMA using the PSVM similarity scores as a
function of the number of dataset utterances, and the corresponding quadratic
and cubic polynomial fitting functions.

ditional computations decreases for smaller datasets. It is also interesting
noting that the percentage of additional computations is always smaller for
PSVM scores than for cosine scores. Indeed, using the prior information
provided by the model makes the clustering task easier because it improves
the discrimination among same speaker and different speakers vectors. This
helps keeping in the heap the clusters that contribute to growing the den-
drogram, discarding the ones scoring worse than the worsts score Sw. Since
successive iterations recompute the scores of a smaller and smaller subset
of the original item set, the overall time complexity of K-UPGMA remains
almost quadratic in the number of item vectors. This is shown in Fig. 3,
which compares the elapsed time of K–UPGMA using the PSVM similarity
scores as a function of the number of clustered vectors, with respect to the
quadratic and cubic polynomial fitting functions. These functions were es-
timated using the elapsed times for an increasing number of item vectors in
the interval [50K − 300K]. The elapsed time curve of K–UPGMA is much
closer to the quadratic than to the cubic fitting function.

The same trend can be observed for different similarity scores, as shown
in Fig. 4. PSVM scores allow obtaining the fastest clustering time, whereas
the elapsed time increases using cosine similarity scores due to their inferior
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Figure 4: Elapsed time of K–UPGMA using different similarity scores, as a function
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discrimination capability. Clustering with the combination of the scores of
the PSVM and NLPLDA system (label NLPLDA+PSVM in figure) is much
slower because, although the system is more accurate, the representation
vectors double their dimensions.

To further assess the scaling capabilities of K–UPGMA, we performed
a set of experiments artificially generating new vectors. In particular, the
new vectors were sampled according to the PLDA model (16), and added to
our labeled dataset consisting of 350K vectors. We considered augmented
datasets including 1, 2, and 4 million vectors. The latter is the maximum
number supported by our current implementation without exceeding our sys-
tem memory. The results, using PSVM scores, are shown in the first part of
Table 1, for different sizes of the k–best list, in terms of running time, and
of percentage of score computations with respect to N∗(N−1)

2
.

As expected, increasing the number of vectors in the dataset, but keep-
ing fixed the size of the k–best list, adversely affects the running time of
K–UPGMA. This happens because the size of the k–best list becomes in-
sufficient to accommodate most of the same–speaker scores, which are by
definition the best ones, thus, more refill operation are required. However,
we get similar percentage of score computations by doubling the dimension
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Table 1: Top: Run time, in [hh:]mm:ss, and percentage of score computations with
respect to N2 for datasets including 350K, 1M, 2M, and 4M vectors, respectively,
using an increasing size of the k–best list. Bottom: Corresponding run time for
standard RNN.

k–best list size
Number of vectors in the dataset

350K 1M 2M 4M

2M 3:03 112.7% 18:24 124.8% 1:42:24 152.0% 7:04:03 199.9%
4M 3:39 109.0% 18:23 113.3% 1:11:00 122.1% 5:24:04 149.1%
8M 4:34 106.8% 20:57 109.7% 1:14:37 113.6% 4:47:52 122.5%
16M 6:44 105.3% 24:05 107.7% 1:16:13 110.2% 4:50:39 115.0%

RNN 1:36:00 12:40:00 50:52:00 204:20:00

of the dataset, but also doubling the k–best list size. Using linearly–growing
k–best list and dataset size allows keeping approximately quadratic time
complexity, as shown by the bold percentage values in the table. It is worth
noting that scaling up the dimension of the k–best list is not a problem be-
cause it memory costs are order of magnitudes smaller with respect to the
ones necessary for storing the 400–dimensional representation vectors. It is
possible to compare the running time of standard RNN for clustering the
same datasets at the bottom of Table 1. K–UPGMA is from 30 to 40 times
faster than RNN.1 As stated in Section 4, our heap structure can be used
for a fast implementation of the RNN algorithm. This implementation of
RNN requires multiple heaps to be managed, as in K–UPGMA. However,
the vast majority of the computational costs for both algorithms remains
the evaluation and selection of the similarity scores, whereas the search and
merge steps are not expensive (less than 10% and 4% for our method with
the 1M and 4M items datasets, respectively), thus, the running times of the
two algorithms would be very close.

1 Another memory efficient algorithm, proposed in [12], is fast Pairwise Nearest Neigh-
bor (fPNN), which has O(τN2) computational complexity, because after each merge it
finds the nearest neighbor of τ clusters on average. However, RNN has a per–merge
complexity that is less or equal to 3N , thus for τ > 3 it is more efficient than fPNN.
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Figure 5: True and approximate Silhouette Width Criterion value computed on
the dendrogram produced by UPGMA clustering 1000 e–vectors of 190 speakers,
using cosine similarity.

7.2. Cluster validation by means of SWC

We first performed an experiment to assess the quality of the approxi-
mate Silhouette Width Criterion. In particular, we compared the true and
the approximate silhouette sw values obtained by clustering 1000 e–vectors
belonging to 190 speakers, using cosine similarity. The number of vectors was
limited to 1000 because obtaining the SWC values for larger datasets is too
expensive having cubic complexity.2 The two curves, shown in in Fig. 5, are
similar and attain their maximum value approximately for the same num-
ber of clusters. As shown in Table 2, SWC underestimates the number of
clusters both using the true and the approximate SWC curve. Both values,
however, are not far from the true number of speakers. Furthermore, three
standard external cluster evaluation measures confirm that the performance
of the two methods is similar. The first measure is the Adjusted Rand Index
(ARI) [42, 43, 27], which represents the number of pairs of vectors that are

2The elapsed time, in hh:mm:ss, for producing the silhouettes of all clusters of 100,
200, 400, 1000 vectors, using the standard Python silhouette score function, is 00:00:4,
00:00:34, 00:05:18, and 1:34:57, respectively. The computation of our approximate SWC
is, instead, extremely fast because Algorithm 4 has linear complexity.
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Table 2: Cluster purity measures for the number of speaker estimated by using the
true and approximate SWC, on 1000 e–vectors of 190 speakers.

SWC True Approximate Known number

Estim. number of clusters 165 171 190
ARI 0.97 0.97 0.98
Cimp 2.6% 2.5% 3.2%
Simp 5.0% 3.8% 2.8%

Table 3: The SWC from the dendrograms produced by K–UPGMA using different
similarity measures.

Number of Number of Estimated numer of clusters

vectors speakers Cosine PLDA NLPLDA PSVM

10000 2233 1794 1829 1963 1856
30000 6481 5549 5110 5349 5276
50000 10793 9706 9213 8824 8796
100000 21350 21108 18864 18469 18722
200000 44537 51790 44722 46007 44336
350000 83123 97612 88321 86543 85411

either in the same cluster or in different clusters in the reference and in the
obtained partition, divided by the total number of pairs of vectors. The other
two measures are the Cluster and Speaker impurity [44, 45], labeled as Cimp

and Simp in the table. Cimp gives the percentage of vectors from different
speakers in a cluster, whereas Simp corresponds to the percentage of same
speakers vectors that are distributed among the clusters.

Table 3 compares the true number of speakers and the number of clusters
estimated by means of the Silhouette Width Criterion from the dendrograms
produced by K–UPGMA using different similarity measures. The location
of maximum of the SWC curve is a good predictor of the number of true
speakers in the dataset, even if it underestimate approximately by 20% the
number of true speakers for small datasets. For large datasets, instead, the
number of speakers is slightly overestimated.

28



Table 4: Cluster performance measures of K–UPGMA using different similarity
scores on 350000 e–vectors of 82123 speakers. Columns 3–6 refer to different
scoring models (see Section VI). Last column refers to the combination of the
scores of the last two models.

Similarity
Number of

Cosine PLDA NPLDA PSVM
NLPLDA+

Speakers PSVM

ARI 0.43 0.80 0.86 0.88 0.89
Cimp Known 16.2% 10.7% 9.1% 8.7% 8.3%
Simp Known 16.3% 10.4% 8.6% 8.5% 7.8%
Cimp Est. 18.9% 11.7% 9.7% 9.1% 8.7%
Simp Est. 11.2% 8.6% 7.4% 7.5% 7.0%
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Figure 6: Cluster and speaker impurity trade–off plot obtained by clustering 350000
item vectors using cosine scoring or the scores produced by different models. The
filled circle in each curve marks the performance that can be obtained knowing the
number of speakers in the dataset, whereas the squares indicate the performance
obtained by using SWC for automatic selection of the number of clusters.
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Table 4 summarizes the evaluation measures applied to clusters obtained
by K–UPGMA on 350000 e–vectors of 82123 speakers, using cosine scoring
or the scores produced by a set of classifiers. The results for the classifiers
illustrated in Section 5, PLDA, PSVM, NLPLDA, are given in columns 3–6.
Last column refers to the combination of the scores of the last two models.
Since we obtain similar Cimp and Simp values for known and estimated number
of speakers, we conclude that approximate SWC scales well, also considering
that speaker discrimination becomes more difficult increasing the number of
speakers.
Fig. 6 shows the cluster and speaker impurity trade–off plot for the same
dataset. The filled circles and the squares in each curve mark the performance
that can be obtained by cutting the dendrogram generated by K–UPGMA
knowing the number of speakers or according to the approximate Silhouette
Width Criterion, respectively. It is interesting noting that, looking at the
plots from the right to the left, the more accurate the similarity measure
is, the better is clustering performance, and the accuracy of the estimated
number of clusters, as also shown in the last row of Table 3.

8. Conclusions

We introduced a fast and exact implementation of UPGMA for large scale
vector clustering, and a fast approximate Silhouette Width Criterion, which
allows us estimating with good accuracy the number of clusters in a large
dataset.
We also described a class of scoring functions that allow obtaining the similar-
ity score of two clusters by means of a single dot–product of the representation
vectors associated to the clusters.

A large set of experiments has been performed to evaluate the scalability
of our K–UPGMA implementation, showing that the elapsed time of our
approach remains almost quadratic with the size of the dataset. Thanks
to efficient data structures and algorithms, and exploiting the possibility
of parallel computation of the similarity scores between clusters, we have
shown that we can perform exact UPGMA clustering of millions of vectors
more than 40 times faster than RNN. Our framework can also be used for an
efficient implementation of the UPGMA algorithm based on the RNN chain
algorithm.

We also assessed the accuracy of the fast approximate Silhouette Width
Criterion using an increasing number of vectors. The external cluster vali-
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dation measures obtained with the estimated number of cluster on a 350K
vectors dataset are in good accordance with the ones obtained by a priori
knowing the true number of speakers in the dataset.

For huge datasets only approximate clustering solutions are appropriate,
not only because the quadratic complexity of the algorithms considered in
this work makes them too slow, but also because it is impossible to store in
memory the dataset vectors.

We plan to investigate approximate solutions in a future work.
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