
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Flexible, Protocol-agnostic Latency Measurement Platform / Raviglione, Francesco; Malinverno, Marco; Casetti,
CLAUDIO ETTORE. - ELETTRONICO. - (2019). (Intervento presentato al convegno VTC2019-Fall tenutosi a Honolulu
(USA) nel September 22-25, 2019) [10.1109/VTCFall.2019.8891076].

Original

A Flexible, Protocol-agnostic Latency Measurement Platform

Publisher:

Published
DOI:10.1109/VTCFall.2019.8891076

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2759952 since: 2019-10-11T15:15:35Z

IEEE

A Flexible, Protocol-agnostic
Latency Measurement Platform

Francesco Raviglione
CNIT - Politecnico di Torino

Torino, Italy
francesco.raviglione@studenti.polito.it

Marco Malinverno
CNIT - Politecnico di Torino

Torino, Italy
marco.malinverno@polito.it

Claudio Casetti
CNIT - Politecnico di Torino

Torino, Italy
claudio.casetti@polito.it

Abstract—Latency is one of the key parameters of any net-
worked system, from vehicular networks to real time video
streaming. Being capable of measuring such a parameter can be
very important in assessing the performances of devices under
test. In this paper, we discuss how we designed a lightweight,
flexible, custom latency measurement protocol, LaMP, completely
agnostic of lower-layer protocols. We also present the first open
source tool leveraging LaMP, called LaTe, running on any Linux-
based device, which has been validated through several tests,
both involving general purpose laptops and embedded devices for
vehicular communications, for which the most important results
are presented.

Index Terms—802.11, 802.11p, latency measurements, applica-
tion layer protocol, LaMP, LaTe

I. INTRODUCTION

Network latency measurement tools play a crucial role in the
provisioning of reliable and efficient networked services, such
as video streaming, online gaming, and social networking. Fur-
thermore, the upcoming vehicular communication networks
are going to heavily increase the demand for ultra-Reliable
Low-Latency Communication (uRLLC), one of the tenets of
5G networks, bringing attention to the need of innovative
tools and protocols capable of targeting the new network
architectures.

In the literature, it is possible to find several examples of
tools and protocols to measure the latency between endpoints,
the most notable being the ICMP protocol, in particular for
what the “Echo Reply” and “Echo Request” packets are
concerned. Every IP compliant system should be able to
reply to ICMP requests coming from another node in the
network. This mechanism is exploited by tools like ping and,
thanks to timestamps which are embedded in such packets or
stored inside the application, latency measurements are made
possible. Another example is Metherxis [1], a system leverag-
ing Virtualized Network Measurements Functions (VNMFs)
to measure network device latency with micro-second grade
accuracy. The idea at the base is to use Linux Containers
(LXC) to create a range of VNMFs, under a single Linux
host, some of them instantiating a packet generator, others a
packet analyzer. Other specifically targeted protocols, such as
the recently proposed Two-Way Active Measurement Protocol
(TWAMP) [2], works over a client/server architecture allowing
one or two way delay measurements. Finally, a dedicated
IP Timestamp Option, that can be used to determine the

latency between single links, is also available, as highlighted
by Sherry in [3]. After identifying the above solutions as the
most common for this kind of measurements, we remark that
they have two main drawbacks. Firstly, ping relies on ICMP.
Even though it can be very practical to leverage something that
is implemented inside almost every networking system (i.e.,
the ICMP echo reply mechanism), only ICMP can actually
be used to transport the timestamp data needed to compute
the latency between nodes. Moreover, by using ICMP, it is
possible to more precisely compute the network latency, but
tools like ping do not provide the user with a clear estimate
on the latency experienced at the application level. Secondly,
Metherxis, TWAMP, and other specific protocols, even though
very precise in giving the desired measurement values, all
require the tested device to be compliant to specific standards
(or to specific options, such as in the IP case) and possibly
need some additional capabilities to be implemented, which
may not be the case for all the network nodes.

For these reasons, we introduce the Latency Measurement
Protocol (LaMP), an application-layer protocol which can be
encapsulated inside any lower-layer protocol.

The protocol addresses the need for a lightweight framework
which encapsulates the basic information needed to perform
accurate latency measurements that are completely agnos-
tic of the communication sublayers. In addition, this paper
introduces an open-source tool leveraging LaMP, i.e., LaTe
(Latency Tester), a flexible client-server application that cur-
rently supports LaMP over UDP/IP to perform measurements
under different conditions. In particular, we validated the LaTe
functionalities through several tests deploying different com-
munication protocols and physical media, such as Ethernet,
802.11a and 802.11p in Outside Context of BSS (OCB) mode.

The remainder of this paper is organized as follows: in
Section II, the LaMP protocol is described in detail, Section
III is devoted to the description of LaTe in all its components
and, finally, Section IV shows the validation results.

II. LAMP PROTOCOL DESCRIPTION

LaMP has been developed as a flexible application layer
protocol, which can be encapsulated inside any lower layer
protocol, and it is designed to be as much self-contained
as possible. For instance, it can be encapsulated, without
requiring any modification to its rules and packet format,

Byte 0 1 2 3 4 5 6 7

0 Reserved
Control

LaMP ID Sequence Number
Payload length

or
INIT typeRes. Pkt Type

8 Sec Timestamp

16 uSec Timestamp

Fig. 1. Structure of the custom Latency Measurement Protocol header.

inside UDP over IPv4, or directly inside a local network
raw Ethernet packet, or, to make an example related to
the vehicular networking world, inside Wave Short Message
Protocol (WSMP) packets which are transmitted over 802.11p.

The protocol works with a client-server paradigm: LaMP
requests are sent by a client and received by a server, which
replies back to the client. Then, in a typical scenario, LaMP
computes the latency or Round Trip Time (RTT) as the time
difference between “send timestamps” and “receive times-
tamps”, which are managed by the applications participating
in the measurement session. Typically, the “send timestamp”
is inserted inside the LaMP packet by the client sending a
request and the “receive timestamp” is instead gathered by the
client when a reply, containing a copy of the “send timestamp”
from the corresponding request, is correctly parsed. Before any
session is started, a connection initialization packet is sent by
the client and properly acknowledged by the server, in order
to ensure that the measurements can start and the connection
is stable enough.

Additional modes are also defined, including an experimen-
tal unidirectional mode, in which the client only sends requests
to the server, which will be responsible for computing the
latency and returning it to the client at the end of the test.
This mode enables the computation of one-way latency, but,
as of now, requires the clocks of the different devices to be
precisely synchronized through the Precision Time Protocol
(PTP) or through the Network Time Protocol (NTP).

The header size is equal to 24B, accounting for the need of
a lightweight protocol but including all the necessary data, as
shown in Figure 1. Every LaMP packet starts with a reserved
header field, which is used by the nodes to identify if the
application layer data is really a LaMP SDU, and with a
control field, which is set depending on the LaMP packet type
(e.g., a request, a reply, an acknowledgment, a connection
initialization). The latter is further divided into a reserved
sub-field and one indicating the packet type, accounting for
a maximum of 16 packet types but increasing the length of
the overall reserved field, making the LaMP packet detection
more robust. All the 12 reserved bits are made of alternating
1 and 0. Then, a 16 bit-long field is carried, containing an
identification number which is used to identify each LaMP
client-server measurement session, allowing a server to reply
only to the client which sent the requests. This mechanism
can be used as a basic system to identify each LaMP session
and can be integrated, if necessary, with other protocol-specific

session identification mechanisms, such as ports when UDP is
used, or the Provider Service ID (PSID) when WSMP is used.
A sequence number is then carried, enabling the association
between each request and reply. The following 16 bit-long
field is instead used to store the optional payload size or, if the
packet is a connection initialization one, the type of connection
which should be established (unidirectional or bidirectional).
Finally, LaMP is designed to embed, together with two 64-bit
precise second and microsecond timestamps, any additional
payload, up to 65535 bytes, in which, if desired, other data
and possibly other user-defined protocols can be encapsulated.

As each measurement session is completed, the client should
gather some mandatory and possibly additional optional statis-
tics and report them to the user. In the one-way mode instead,
the server is responsible for the latency computation and for
returning the report to the client.

The custom protocol specifications are open and we pub-
lished them on the project website, hosted on GitHub [4].

III. LATE TOOL DESCRIPTION

LaMP has been used as a base to develop a flexible,
custom, client-server command line tool to measure the latency
between different devices running Linux, connected by means
of wireless and/or wired physical media. This tool was written
in C and released as open source software under the GPLv2
license [4].

LaTe (Latency Tester) follows all the LaMP specifica-
tions mentioned before and it currently supports tests over
a LaMP/UDP/IPv4 protocol stack. Nevertheless, additional
protocols are going to be supported and we plan to insert
new features as well, such as a way to measure latency in
broadcast flooding situations, which can be of interest in
the vehicular networking context. LaTe can measure different
kinds of latency: in the current version two types of RTT (or
one-way latency) measurements are supported. The first one
(User-to-user) gathers a receive timestamp, to compute the
latency, as the receiving entity (typically, a client receiving a
reply) has completely processed the LaMP packet. The second
one (which we called KRT, i.e., Kernel Reception Timestamp)
instead obtains the reception timestamp as the time when the
LaMP packet is being passed from the hardware to the kernel
stack, thanks to the Linux kernel capability of generating
packet timestamps.

This tool tries to exploit the philosophy at the base of LaMP,
offering a flexible Linux tool in which various options can be
specified by the user, such as the possibility to:

• Choose a transport protocol (although, as mentioned
before, only UDP is supported at the time of this writing).

• Choose and compare raw sockets [5] and non-raw sock-
ets, for supported transport protocols, such as UDP.

• Test over a specific interface (wired or wireless, including
loopback).

• Select an Enhanced Distributed Channel Access (EDCA)
traffic class to be used in both the client and the server.
This choice can be of relevance in the vehicular use case,
which uses EDCA in combination with the OCB mode
and some specific EDCA parameters [6]. It is currently
supported only when a patched kernel is available (such
as the one included in the OpenC2X-Embedded platform
[7] or in OpenWrt-V2X [8]).

• Choose the frequency and amount of request packets.
• Specify custom LaMP payload sizes and compare them.
• Use the experimental unidirectional mode supported by

LaMP.
All the useful data can be logged onto a separate .csv file for
further manipulation.

Furthermore, our tool can automatically compute the 90%,
95% and 99% confidence intervals, according to the Student’s
t-distribution, around the point average. This statistic is re-
ported over the packets that are sent and received in a single
test session, using a lookup table approach to increase the
performance in low end devices.

As detailed below, our tests have proved, on the one hand,
how LaTe can be used to measure the latency in distributed
embedded Linux systems. On the other, that LaTe can be
used as a basic measurement tool to characterize vehicular
networking systems.

IV. PROTOCOL AND TOOL VALIDATION AND
MEASUREMENTS

The tests we performed, summarized below, involved two
different benchmarking setups. In the first one, we used
two laptops, one mounting an Intel Dual Band Wireless-AC
NIC and the other one a Qualcomm Atheros AR9460 NIC.
The connectivity between the laptops was realized with the
following options: (i) directly connected through an Ethernet
crossover cable; (ii) connected through Ethernet with an 8-
port 10BASE-2/T hub in between; (iii) connected through a
100 Mbit/s switch; (iv) communicating over Wi-Fi with a
5 GHz 802.11a access point in between, using a 20 MHz-
wide channel, after verifying the absence of interference1. In
the second test, we used two PC Engines APU1D embedded
boards, mounting UNEX DHXA-222 WNICs and Realtek
RTL8111 Ethernet Controller Cards, to recreate the same
scenarios as before, with the following additional connectivity
setups. (i) Directly communicating with 802.11p, over a 10
MHz wide channel and using OCB mode, as required by the
standard [6]. Three physical data rates have been selected: 3
Mbit/s, 6 Mbit/s and 12 Mbit/s. Tests were performed both

1Tests were performed both by leaving the Linux rate adaptation algorithm
as is (i.e., not trying to force any specific bitrate) and by selecting a data rate
of 6 Mbit/s.

0 500 1000 1500

LaMP payload length (B)

0

1

2

3

4

5

6

7

8

9

La
Te

 a
ve

ra
ge

 la
te

nc
y

(m
s)

Direct link
10BASE-2/T hub in between
100 Mbit switch in between
Wi-Fi with 802.11a AP (rate adapt. on)
Wi-Fi with 802.11a AP @ 6 Mbit/s

Fig. 2. Average user-to-user latency (RTT), using UDP and
“SOCK_DGRAM” sockets, over direct Ethernet link, 10BASE-2/T
hub, 100 Mbit switch and 802.11a, on the two laptops.

at a fixed distance, inside a laboratory, and outdoors, by
varying the distance between the boards, from 0 m (i.e. the
boards being placed very close to each other) to 190 m, using
a transmission power of 18 dBm. (ii) Communicating with
802.11p, in OCB mode, selecting a LaMP payload size of 1448
B and using different EDCA Access Categories (ACs), with
a parallel interfering traffic, generated by means of a patched
version of the iPerf tool [8], capable of sending packets over
different ACs. iPerf was set to generate a sizable interfering
traffic, pushing data at 60% of the selected physical data rate.

The laptops were running Linux Mint 19.1, while the
APU1D boards were instead executing a patched build of
OpenWrt 18.06.1 [8] [9], in order to enable the communica-
tions over 802.11p. Every single test lasted for 60 seconds,
over which the average, minimum and maximum latency
values reported by LaTe were collected. The same measure-
ment session was then repeated for different values of LaMP
payload sizes, up to 1448 B, which is the maximum currently
supported by LaTe, in order to never exceed the Ethernet
MTU. As periodicity, we decided to send a request packet
every 100 ms for the whole test duration (thus with a total
of 600 packets for each test), which is also the maximum
Cooperative Awareness Message (CAM) frequency foreseen
by the ETSI standards for ITS-G5 [10]. The most important
results are reported in Figures 2, 3, 4, 5 and 6.

Figure 2 and Figure 3 report some results we mainly used
for validation purposes. In particular, the curves obtained
for the latency tests involving the laptops are depicted in
Figure 2. The values reported on the x axis represent the
LaMP payload size: therefore, in order to obtain the full UDP
payload size, 24 B have to be added, which represents the
length of the LaMP protocol header. As expected, the higher
is the transmitted payload, the higher is the observed RTT,
because of the increase in transmission time. The increase is

0 500 1000 1500

LaMP payload length (B)

0

1

2

3

4

5

6

7

8

9

10

La
Te

 a
ve

ra
ge

 la
te

nc
y

(m
s)

802.11p @ 3 Mbit/s (OCB)
802.11p @ 6 Mbit/s (OCB)
802.11p @ 12 Mbit/s (OCB)
802.11a @ 6 Mbit/s (STA)
802.11a (rade adapt. on, STA)

Fig. 3. Average user-to-user latency (RTT), using UDP and
“SOCK_DGRAM” sockets, over 802.11p and 802.11a, on the two
APU1D boards.

quite low when using a fast channel, i.e., a direct Ethernet
connection or a 100 Mbit/s switch. Conversely, it is more
evident, for instance, when using a 10BASE-2/T hub, which
limits the maximum transmission speed over a shared medium.
Finally, the results show how communicating over a wireless,
contention-based, medium causes the latency to be higher.

Figure 3 compares the average user-to-user latency (RTT)
measured with the APU1D boards under different configu-
rations, when communicating over 802.112. In particular, two
scenarios have been considered: infrastructured IEEE 802.11a,
in which the boards act as clients stations, with an additional
Access Point (AP) to which they are connected, and its ve-
hicular evolution, IEEE 802.11p, in which the boards directly
exchange packets in OCB mode [6]. The LaMP payload size
is shown on the x axis and the measured latency values, in
milliseconds, are depicted on the y axis. The results are in
line with expectations: starting from similar latency values for
low payload sizes, its value increases linearly with the payload
length, proportionally to the data rate associated with each
modulation.

The collected data show the greater performance, in terms of
latency, of 802.11p with respect to 802.11a, when similar data
rates are used: this is evident when comparing the 802.11p
curve at 6 Mbit/s with the 802.11a one, at the same data
rate; having a direct communication reduces the measured
latency, due to the fact that each packet can directly reach
its destination, without the need of an additional hop through
the AP. Interestingly, the 6 Mbit/s 802.11a curve proved to
be very similar to the one related to 802.11p at 3 Mbit/s,
i.e., half of the data rate. This is correct, since each request
and reply, when using 802.11a, has to pass through the AP,
doubling the device-to-device transmissions. The difference
between the two can be interpreted as the AP computation
time, showing how latency measurements can also be used to
estimate internal network delays.

2The use of different hardware with respect to results in Figure 2 explain
why homologous curves do not exactly match.

AC_BK AC_BE AC_VI AC_VO

LaTe AC

0

2

4

6

8

10

12

La
Te

 a
ve

ra
ge

 la
te

nc
y

(m
s)

AC_BK (interfering)
AC_BE (interfering)
AC_VI (interfering)
AC_VO (interfering)

Fig. 4. Average user-to-user latency (RTT), using UDP and
“SOCK_DGRAM” sockets, over 802.11p and different Access Categories,
with a parallel interfering traffic, over a certain AC, generated by iPerf.

Figure 4 depicts the values obtained for the latency tests
involving the communication over different EDCA traffic
classes, using 802.11p at 12 Mbit/s. LaTe is set to send LaMP
packets with 1448 B of payload, while iPerf sends 1470 B-long
UDP datagrams. In this plot the average user-to-user latency
(RTT), in milliseconds, is reported on the y axis for each AC
used by LaTe. Every section of the bar plot is then divided into
four distinct bars, each showing the traffic class used by iPerf
to generate the parallel interfering traffic. Each single test,
providing the average latency over 600 packets, was performed
15 times. The average value among these attempts was then
considered as reference. The 95% confidence intervals around
the average value are shown using error bars, even though they
are quite small, as all the tests provided similar results.

The values we obtained are coherent with the theory,
showing how increasing the interfering traffic AC causes the
measured latency to increase as well, for each AC used by
LaTe. Additionally, it is possible to highlight how using a high
priority AC, such as AC_VO or AC_VI, allows the sending
device to experience a lower latency as opposed to when
AC_BK or AC_BE are selected. When using AC_BK, it was
possible, however, to highlight a marginal decreasing trend, as
iPerf was transmitting an interfering traffic over the Video and
Voice traffic classes. This can be explained by observing that
the channel usage is quite unbalanced towards iPerf, which
generates a higher amount of prioritized traffic than LaTe.

Figure 5 shows instead the results we obtained when using
LaTe to test the RTT (“user-to-user latency”) between the
two PC Engines boards, as they were placed at increasing
distances, keeping them in line-of-sight. Each single 1 minute-
long test was repeated 10 times, with a pause of 10 seconds
between each test, and the resulting values were then averaged,
computing also the 90% confidence intervals. The results show
that the embedded boards can communicate at least until
190 m, with all the selected data rates, and with nearly a
0% packet loss in all the cases, as reported by LaTe. As
the distance is increased, however, it is possible to notice

0 50 100 140 170 190
0

5

10

La
Te

 a
ve

ra
ge

 la
te

nc
y

(m
s)

0 50 100 140 170 190

Distance (m)

0

100

200

300

400

A
vg

 #
 o

f T
x

R
et

rie
s

3 Mbit/s
6 Mbit/s
12 Mbit/s

Fig. 5. Average user-to-user latency (RTT) and number of retransmissions,
measured on the PC Engines boards, averaged over 10 tests, using UDP and
“SOCK_DGRAM” sockets, over 802.11p and at different distances between
them (outdoor tests). 90% confidence intervals are represented too.

an increase in the measured values, due to more frequent
retransmissions caused by a lower received signal level. This
is evident when looking at the Tx Retries curves, showing a
correlation between the average number of retransmissions and
the increased latency.

One additional test was then performed to compare the
results obtained by means of ping with the ones gathered
through our tool and by a cross-compiled version of twping,
an open source implementation of TWAMP included in the
perfSONAR project [11], as shown in Figure 6. The boards,
communicating over 802.11p at a physical rate of 3 Mbit/s,
were used. As mentioned in Section I, it is possible to notice
how ping always reports a lower latency than LaTe, giving
a more precise estimate of the network latency, but not of
the application layer one, which is the latency a user would
really experience when using UDP to communicate with a
given application. Furthermore, this plot also compares the
two latency types provided by LaTe, showing how using a
KRT latency normally results in lower measured values, as
the client-side time needed by the kernel (and then by LaTe
itself) to handle each reply is not considered.

TWAMP instead provides comparable results with respect
to the ones yielded by our tool, when the KRT latency is
considered. This comparison can actually be performed as
TWAMP test packets are encapsulated inside UDP, which is
also the case of the LaMP packets managed by LaTe.

V. CONCLUSIONS

Network latency measurement tools are extremely important
in the provisioning of reliable networked services.

In this paper we presented a new application layer pro-
tocol, LaMP (Latency Measurement Protocol), and the first
application developed on top of it, i.e., LaTe (Latency Tester).

50 60 70 80 90 100 110 120 130 140 150
Payload length (B)

2.4

2.6

2.8

3

3.2

3.4

A
ve

ra
ge

 la
te

nc
y

(m
s)

LaTe (User-to-user)
LaTe (KRT)
ping
TWAMP (twping)

Fig. 6. Average user-to-user latency (RTT), measured on the PC Engines
boards, averaged over 20 tests, using UDP and “SOCK_DGRAM” sockets,
over 802.11p at 3 Mbit/s. 95% confidence intervals are represented too.

LaMP addresses the need of a simple protocol, completely
agnostic of the communication sublayers, capable of carrying
information useful to perform latency measurements. LaTe is
a flexible client-server application relying on LaMP, that can
be used to measure network latency in almost every linux-
based communication system. LaMP and LaTe have been
successfully tested with different setups and the results of the
tests validated our tools by showing coherent results in every
scenario, with a linear dependency between the packet payload
length and the user-to-user latency.

ACKNOWLEDGMENT

This work has been performed in the framework of the
EU Horizon 2020 project 5G-CARMEN co-funded by the
EU under grant agreement No. 825012. The views expressed
are those of the authors and do not necessarily represent the
project. The Commission is not liable for any use that may be
made of any of the information contained therein.

REFERENCES

[1] D. Rossi Mafioletti et al., “Metherxis: Virtualized Network Functions for
Micro-second Grade Latency Measurements,” in ACM LANCOMM’16,
August 2016, pp. 22–24.

[2] K. Hedayat et al., “A Two-Way Active Measurement Protocol
(TWAMP),” Internet Requests for Comments, RFC Editor, RFC
5357, October 2018. [Online]. Available: https://www.rfc-editor.org/rfc/
rfc5357.txt

[3] J. Sherry, “Applications of the IP Timestamp Option to Internet Mea-
surement,” December 2010.

[4] LaTe + LaMP home page. [Online]. Available: https:
//francescoraves483.github.io/LaMP_LaTe/

[5] Linux programmer’s manual. [Online]. Available: http://man7.org/linux/
man-pages/man7/packet.7.html

[6] IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012), pp. 1–3534,
December 2016.

[7] S. Laux et al., “Demo: OpenC2X - An open source experimental and
prototyping platform supporting ETSI ITS-G5,” in 2016 IEEE Vehicular
Networking Conference (VNC), December 2016, pp. 1–2.

[8] GitHub - francescoraves483/openwrt-v2x. [Online]. Available: https:
//github.com/francescoraves483/OpenWrt-V2X

[9] F. Raviglione et al., “Characterization and Performance Evaluation
of IEEE 802.11P NICs,” in Proceedings of the 1st ACM MobiHoc
Workshop on Technologies, mOdels, and Protocols for Cooperative
Connected Cars, ser. TOP-Cars ’19. ACM, July 2019, pp. 13–18.
[Online]. Available: http://doi.acm.org/10.1145/3331054.3331548

[10] “Intelligent Transport Systems (ITS); Vehicular Communications; Part
2: Specification of Cooperative Awareness Basic Service,” ETSI EN 302
637-2 V1.3.2 (2014-11), pp. 1–44, November 2014.

[11] perfSONAR Home. [Online]. Available: https://www.perfsonar.net/

