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Abstract. Parkinson’s is a disease of the central nervous system characterized by 

neuronal necrosis. Patients at the time of diagnosis have already lost up to 70% 

of the neurons. It is essential to define early detection techniques to promptly 

intervene with appropriate therapy. Handwriting analysis has been proven as a 

reliable method for Parkinson’s disease diagnose and monitoring. This paper pre-

sents an analysis of a Parkinson’s disease handwriting dataset in which neural 

networks are used as a tool for analyzing the problem space. The goal is to check 

the validity of the selected features. For estimating the data intrinsic dimension-

ality, a preliminary analysis based on PCA is performed. Then, a comparative 

analysis about the classification performances of a multilayer perceptron (MLP) 

has been conducted in order to determine the discriminative capabilities of the 

input features. Finally, fifteen temporal features, capable of a more meaningful 

discrimination, have been extracted and the classification performances of the 

MLP trained on these new datasets have been compared with the previous ones 

for selecting the best features.  

Keywords: Biplot, Feature Extraction, Handwriting, Intrinsic Dimensionality, 

MLP, Parkinson, PCA. 

1 Introduction 

Neurodegenerative diseases (NDD) [1] are a group of diseases of the central nervous 

system characterized by neuronal necrosis, which leads to an inevitable and irreversible 

damage of brain functions. The causes of the onset are still unclear [2]. For sure, several 

factors, such as genetic or environment, contribute to one another in giving rise to the 

pathology [3]. NDD follow a progressive course that is phenotypically highlighted 

when the anatomical brain damage is in an advanced stage: on average, the patient at 
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the time of diagnosis has already lost up to 70% of the neurons, thus reducing the pos-

sibility of therapeutic intervention effectively [4]. It is essential to define reliable early 

detection techniques to promptly intervene with appropriate therapy that can be more 

effective the more the neuronal destruction mechanism is in the early stages. The disa-

bling forms arising from NDD, such as Alzheimer's, Parkinson’s, Huntington's chorea 

and Amyotrophic Lateral Sclerosis (ALS), are characterized by the slow and progres-

sive loss of one or more functions of the nervous system. Parkinson's disease (PD) [5], 

[6] is a degenerative disease of the central nervous system that affects muscle control, 

and therefore can influence movement, speech and posture. It is often characterized by 

muscle stiffness, tremor, slowing of physical movement, and in extreme cases, loss of 

physical movement. From a pathological point of view, it does not exist a reliable 

method for an objective and quantitative diagnosis of Parkinson's disease. 

Human beings’ skills are strongly related to their state of health; indeed, cognitive 

functions are closely linked to aging processes. Particularly, calligraphy and speech are 

motor control tasks performed by our brain, therefore the degradation of these abilities 

implies a neurological deterioration. Handwriting signals are useful for diagnostic and 

disease monitoring applications. Several tests [7], e.g. house drawing, can be performed 

in order to check the status of an NDD disease. One of the most effective studies for 

Parkinson’s disease diagnosis concerns the analysis of patient calligraphy [8]. Indeed, it 

is usually characterized by the development of micrographia, which is a reduction in the 

size of the writing, and other deficits regarding geometry, kinematics, pressure patterns 

and air movement [9], [10]. 

Feature extraction and feature selection techniques have been used to process hand-

writing signals. A popular approach for PD detection from handwriting consists in ex-

tracting kinematic features, which can be either a single value or a sequence of values 

extracted through time [11]. On one side, feature transformation strategies, such as prin-

cipal component analysis (PCA) [12] and independent component analysis [13], involve 

a transformation of the original inputs and produce a set of new variables. On the other 

hand, feature selection approaches reduce the dimensionality of the input data, removing 

the irrelevant features and retaining the original interpretations of inputs. A comparative 

analysis of these techniques and their application to handwriting of people affected from 

Parkinson’s disease is presented in [14]. [15] proposes an experimental analysis of 

ANOVA ( [16]), which is a technique used to determine whether differences in two or 

more datasets are statistically significant. [17] suggests another feature selection ap-

proach based on Support Vector Machine (SVM), with Radial Basis Function (RBF) as 

kernel [18], which is used as a classifier to predict class labels, in particular to discrimi-

nate the task samples into two classes (PD and healthy). 

In classification applications, attributes selected from initial dataset are given as in-

put to the classification algorithms. According to [19] attributes that can better distin-

guish between classes (high-level attributes) are more important than the others in terms 

of performance. In the ReliefF algorithm [20], attributes are selected according to their 

suitability with target function; the principle is similar to the basic rules of k-NN algo-

rithm. [21] proposes a simple and fast feature selection algorithm, Sequential forward 

selection (SFS), based on a greedy search algorithm. It extracts the subset of features by 

maximizing the efficiency of the feature subset. 
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2 Experimental Setup 

The dataset has been built collecting data from 36 Parkinsonian subjects (18m and 18f, 

aged between 33 and 83 years old) and 10 healthy subjects (6m and 4f, aged between 

49 and 67 years old) recruited at the Matarò Hospital in Barcelona. Every sick person 

was observed before and after the daily drug (L-dopa COMT catecolo–metal transfer-

asi) administration. Unfortunately, we do not have access to patient clinical information 

such as Parkinson’s disease rating scale part III, levodopa equivalent daily dose, etc. 

All the patients were right-handed. 22 of these had attended primary school (21 PD/1 

Healthy), 17 secondary school (9 PD/8 Healthy), 6 University (5 PD/1 Healthy) and 

one had not attended any academic studies. Participants were individually tested in a 

laboratory free of auditory and visual disturbances.  

At the beginning of the experiment, the study was explained to the participants and 

then they underwent a task concerning the writing of the sentence “La casa de Barce-

lona es preciosa” (in Spanish, the native language of the participants). Handwriting 

collection and analysis has been performed using a digitizing tablet with an ink pen. 

This approach has an advantage over the classic method based on handwriting and pos-

terior scanning: the machine, actually, can record the pen pressure on the tablet and 

acquire the information even ‘‘in the air’’, that is, where there is no contact between 

the pen and the surface. The data acquisition was made by means of a tablet, specifically 

an Intuos Wacom digitizer, which acquired 100 samples per second (total number of 

samples amounts to around 244K). The acquired features are the same of [22]: X and 

Y pen positions (the spatial coordinates), Altitude (the angle between the pen and the 

tablet surface along the vertical), Azimuth (the horizontal angle between the pen and 

the tablet surface) and the pen pressure on the tablet surface. 

3 The Proposed Approach 

This paper presents an analysis of a Parkinson’s disease handwriting dataset in which 

neural networks are used to describe the problem. The goal is not the classification in 

itself, but the validity of the corresponding selected features. Indeed, it is assumed that 

the best description of the phenomenon should correspond to the best possible classifi-

cation. In this sense, it can be argued that neural networks are here used as a tool of 

exploratory data analysis. 

 This study requires a preliminary analysis (here based on a linear one), in order 

to have a first insight on the database and, particularly, on its intrinsic dimensionality. 

4 Linear Analysis of the Dataset 

The manifold of the proposed dataset has been deeply analyzed using the Principal 

Component Analysis (PCA) in order to understand its intrinsic dimensionality and se-

lect the best feature subset. The former has been studied using Pareto diagrams [23], 
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the latter with biplots [24]. The whole dataset (H-Pre-Post), i.e. healthy subjects to-

gether with sick patients before and after the drug treatment, has been projected using 

PCA. The corresponding Pareto diagram is shown in Fig. 1. It displays the explained 

data variance by the principal component (PC). The bars represent the associated sin-

gular values. Fig. 1 shows the importance of the first four components. They explain 

88.47% and suggest the intrinsic dimensionality of the manifold is around five. 

 
Fig. 1. Pareto diagram on whole dataset, H-Pre-Post. 

4.1 Biplots 

Additional information from the linear analysis of data can be retrieved from a biplot. 

It is a graphic representation which allows to display, at the same time, both samples 

and variables of a data matrix. By means of PCA, it is possible to show both the data 

projected into the principal component space together with the input variable directions. 

Fig. 2 shows the biplot computed on the whole dataset after being projected with PCA. 

Although data appear to be clustered along the third principal component, it is not clear 

which are the features that discriminate and explain the three clusters of data (healthy, 

pre-treatment, post-treatment). 

 

Fig. 2. Biplot on H-Pre-Post: healthy (red), pre-treatment (green), post-treatment (blue). 

In order to determine which is this subset of features, three new datasets have been 
created:  

1. H-Pre: Healthy and pre-treatment subjects. 

2. H-Post: Healthy and post-treatment subjects. 

3. Pre-Post: Pre-treatment and post-treatment subjects. 
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The former, H-Pre, has been analyzed in Fig. 3 (left). It can be noticed that the first 

two input variables (blue directions 1 and 2 in the figure) are nearly parallel to the first 

two axis, PC1 and PC2, while the rest is explained by the last principal component, 

PC3. This behavior can be clearly understood by looking at Fig. 3 (right), which is a 

zoom near the origin. Here, it is evident that the first two components of the PCA pro-

jection represent the first two input variables (X and Y pen positions); in fact, it is 

possible to directly read the original subject handwriting “La casa de Barcelona es pre-

ciosa”. Although the direction of maximum variance, i.e. PC1, obviously follows the 

X component (writing from left to right), the most significative feature is the Y pen 

position; indeed, as shown in Fig. 3, this direction clearly discriminates between the 

healthy and the pre-treatment clusters. 

 

Fig. 3. Biplot on H-Pre: healthy (red), pre-treatment (green): whole (left), zoom (right). 

Fig. 4 (left) shows the biplot for the second subset H-Post. The first two input fea-

tures behave as in the previous case, while, in this case, the remaining three are, also, 

meaningful for distinguishing between the clusters. Indeed, Fig. 4 (right), which is the 

Z-view of the same biplot, shows that the clusters are linearly separated along PC3.   

 

Fig. 4. Biplot on H-Post: healthy (red), post-treatment (green): whole (left), Z-view (right). 

The biplot for the last subset, Pre-Post, is shown in Fig. 5. As in the previous cases, 

the first feature (X pen position), is able to fully explain the clusters while along the 

second one (Y pen position) is possible to discriminate between the clusters. The main 

difference with the previous cases is that their directions are slightly rotated with regard 
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to the first two PCs; it can derive from the absence of the healthy cluster. The remaining 

features are quite useless because the manifold is nearly a hyperplane. 

 
Fig. 5. Biplot on Pre-Post: pre-treatment (red), post-treatment (green). 

In conclusion, it can be stated that the selected features represent only approximately 

the data manifold. The first two PCs roughly coincide with the X and Y pen positions, 

which is obvious because most variance in writing is in these two directions. Hence, 

the most meaningful information should stem from the other three components, which, 

as seen in Fig. 2 and Fig. 4, do not discriminate well enough. It can be argued that Y 

pen position ability to discriminate among clusters is related to vertical micrographia 

and with the activation of interphalangeal and metacarpophalangeal joints. This idea is 

worth to be further deepened and it will be explored in a future work. 

5 Neural Classification 

A comparative analysis about the classification performances of a multilayer percep-

tron (MLP) has been conducted in order to determine the discriminative capabilities of 

the input features. The MLP has been chosen because it is well-suited for pattern recog-

nition [23]. At this purpose, it has a single hidden layer, composed of twenty neurons, 

and output units equipped with the soft-max activation function [23]. Because of the 

use of the cross-entropy error function, they yield the probability of membership for the 

following classes: healthy, pre-treatment, post-treatment. The input layer is mapped 

one-to-one to the input features; hence, it is always composed of five neurons. The MLP 

has been trained, by using the Scaled Conjugated Gradient technique [23], both on the 

whole dataset (three-neurons output layer) and on three subsets (two-neurons output 

layer) defined in the previous section; then, for each of these training sets, fifteen sta-

tistical features, based on the temporal behavior, have been extracted and fed to other 

MLPs to check their classification performances. Due to the absence of clinical infor-

mation, in all the experiments, labels (healthy, pre-treatment, post-treatment) were used 

to split the input dataset into training, validation and test subsets such that their distri-

bution over the labels (healthy, pre-treatment, post-treatment) was always balanced.  



7 

5.1 Raw features  

The first experiment deals with data drawn directly from H-Pre-Post. Each record has 

been labelled according to the cluster it belongs: healthy, pre-treatment, post-treatment. 

The resulting set is a matrix made of five columns and as many rows as the number of 

samples (~ 244K). 70% of this set, i.e. the training set, has been fed to the MLP. The 

overall accuracy is 77.9%. 

The second experiment deals with data drawn from the H-Pre subset. Only two la-

bels have been used: healthy and pre-treatment. The input matrix has about 134K sam-

ples; as before, 70% is used for training and the rest is divided in equal parts between 

test and validation sets. An overall accuracy of 95.9% is reached. This classification is 

very accurate, which is obvious because healthy and sick patients have a significantly 

different motor control and, so, handwriting. 

The experimental setup for the MLP trained on the H-Post dataset (~129K exam-

ples) is the same as before: two output classes (healthy and post) and 15% of input data 

used, respectively, for testing and validating. Compared to the previous experiment, the 

overall test performance decrease to 95.0%. However, this is not a negative result; in-

deed, it suggests that, after drug treatment, some patients have recovered enough to be 

confused with the healthy ones.  

The last experiment regards the MLP trained on the Pre-Post subset. The dataset is 

made of around 224K records. Two class labels have been chosen: pre-treatment and 

post-treatment. The classification is worsened with regard to the previous methods 

(83.2%). Obviously, this is the most difficult pair of classes to be discriminated. All the 

patients are sick; as a consequence, their handwritings have similar characteristics.  Un-

fortunately, Parkinson’s disease treatments are not very effective yet, so, even after 

drug administration, improvements are quite limited especially when the pathology is, 

already, in an advanced stage. Another possible way of interpreting it, is that, maybe, 

patients are in early stages of PD, therefore the effect of levodopa is not so significant. 

Resuming, it can be observed that the healthy state is the easiest to classify, because 

it is based on very peculiar values of the features. It can be used as a basis for deter-

mining if the post-treatment state tends to an improvement for the patient, in the sense 

that data post drug administration yield values of the features closer to the healthy state 

ones.  

5.2 Temporal features  

The data manifold analysis in Sec. 4 and the previous subsection (5.1) have proven 

that the initial set of features was not able to distinguish properly the three clusters of 

subjects. Therefore, a new set of features, capable of a more meaningful discrimination 

have been proposed. The idea is to exploit their temporal content; fifteen temporal fea-

tures have been extracted from each record of the four previous datasets (H-Pre-Post, 

H-Pre, H-Post, Pre-Post). The selected features are the following: mean, max value, 

root mean square (RMS), square root mean (SRM), standard deviation, variance, shape 

factor (with RMS), shape factor (with SRM), crest factor, latitude factor, impulse fac-
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tor, skewness, kurtosis, normalized 5th central moment, normalized 6th central mo-

ment. Then, the comparative analysis about the classification performances of the mul-

tilayer perceptron has been repeated for each of the four new datasets: H-Pre-PostT, H-

PreT, H-PostT and Pre-PostT. 

For all the following experiments the chosen MLP has a single hidden layer, com-

posed of forty neurons and an input layer of fifteen units. The rest of the setup is the 

same as the previous section.  

The first experiment deals with data drawn directly from H-Pre-PostT. Each record 

has been labelled according to the cluster it belongs: healthy, pre-treatment, post-treat-

ment. The resulting set is a matrix made of five columns and as many rows as the num-

ber of samples (~ 244K). 70% of this set, i.e. the training set, has been fed to the MLP. 

The overall accuracy is 99.3%, that is an 27% increase. 

The second experiment deals with data drawn from the H-PreT subset. As before, 

only two labels have been used: healthy and pre-treatment. The input matrix has the 

same size of the raw case (H-Pre); again, 70% of data are used for training and the rest 

is divided in equal parts between test and validation sets. Despite this classification is 

more accurate (99.2%) than its corresponding raw case, the overall accuracy is not sig-

nificantly improved (3%). The considerations done for H-Pre also hold for this exper-

iment.  

In the third experiment, the MLP has been trained using the H-PostT dataset (~129K 

examples). The experimental setup is the same as before: two output classes (healthy 

and post) and 15% of input data used, respectively, for testing and validating. The over-

all test reaches its maximum (100%) with an increase of 5.3%. It is worth of notice that, 

in this case, the network does not confuse patients who have recovered with the healthy 

ones. It may suggest that even if the handwritings are closer to normality, the temporal 

features are now able to discriminate from the healthy case. 

The validity of the proposed approach is proved by the last experiment, which re-

gards the MLP trained on the Pre-PostT subset. Two class labels have been chosen: 

pre-treatment and post-treatment. A dataset hard to cluster (83.2% of accuracy) like 

Pre-Post, is now perfectly learnt (100% of accuracy) by the classifier, with an increase 

of performance of more than the 20%.  

TABLE I.  MLP PERFORMANCE AND CLASSIFICATION 

 # Epochs Final Error % Training % Test 

H-Pre-Post 990 0.18 77.8 77.9 

H-Pre-PostT 1000 0.01 99.3 99.3 

H-Pre 629 0.57 96.0 95.9 

H-PreT 831 0.013 99.3 99.2 

H-Post 497 0.07 94.8 95 

H-PostT 1000 0.0008 100 100 

Pre-Post 972 0.175 83.5 83.2 

Pre-PostT 1000 0.0004 100 100 

Some resuming considerations (see Table I) can be added. Considering that the in-

put layer requires fewer units in case of raw features and the neural network is fully 
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connected, the use of temporal features requires more epochs for training. However, 

the final training error is several orders of magnitude smaller than in the raw case. This 

observation is enforced by the classification rates and proves that the temporal model 

represents better the database (the cross-entropy error yields the correlation between 

data and model). Hence, the temporal features describe better the phenomenon. This 

approach justifies the medical consideration of the importance of the temporal behavior 

in the handwriting. 

6 Conclusions 

Parkinson’s disease is hard to diagnose timely. Indeed, when symptoms are evident, 

70% of neurons are already compromised. Techniques for early detection are essential 

to intervene with appropriate therapies. Handwriting analysis has proved to be a reliable 

tool for Parkinson’s disease diagnose. Starting from a Parkinson’s disease database col-

lected at Matarò Hospital in Barcelona, multiple features sets have been extracted and 

compared in order to select the best feature subset. The PCA-based analysis has shown 

that the dataset lays on a five-dimensional manifold and the raw features have been 

studied. Then, a comparative analysis based on an MLP has proved temporal features 

to be both a reliable model of the Parkinson’s disease dataset and more effective in 

discriminating the different sub-clusters, with an upper bound performance of 100% 

and a final training error of 0.0004. 

Future works will deal with a more accurate analysis of the post-treatment cluster, 

in order to assess the response of the patient. Also, a non-linear study can be performed 

for determining the shape of the cluster manifolds in a more accurate way. 
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