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Abstract. Fault diagnostics for electrical machines is a very difficult task because of the 
non-stationarity of the input information. Also, it is mandatory to recognize the pre-
fault condition in order not to damage the machine. Only techniques like the Principal 
Component Analysis (PCA) and its neural variants are used at this purpose, because of 
their simplicity and speed. However, they are limited by the fact they are linear. The 
GCCA neural network addresses this problem; it is nonlinear, incremental and performs 
simultaneously the data quantization and projection by using the Curvilinear Compo-
nent Analysis (CCA), a distance-preserving reduction technique. Using bridges and 
seeds it is able to fast adapt and track changes in the data distribution. Analyzing bridge 
length and density, it is able to detect a pre-fault condition. This paper presents an ap-
plication of GCCA to a real induction machine on which a time evolving stator fault in 
one phase is simulated. 

Keywords: bridge; curvilinear component analysis; dimensionality reduction; electri-
cal machine; fault detection; neural network; online algorithm; projection; seed; stator 
current; vector quantization. 

Introduction  

Data mining is more and more facing the extraction of meaningful information from 
big data (e.g. from internet), which is often very high dimensional. For both visualiza-
tion and automatic purposes, their dimensionality has to be reduced. This is also im-
portant in order to learn the data manifold, which, in general, is lower dimensional than 
the original data. Dimensionality reduction (DR) also mitigates the curse of dimension-
ality: e.g., it eases classification, analysis and compression of high-dimensional data.  



Most DR techniques work offline, i.e. they require a static database (batch) of data, 
whose dimensionality is reduced. They can be divided into linear and nonlinear tech-
niques, the latter being in general slower, but more accurate in real world scenarios. See 
[1] for an overview. 
However, the possibility of using a DR technique working in real time is very im-
portant, because it allows not only having a projection after only the presentation of 
few data (i.e. a very fast projection response), but also tracking non-stationary data 
distributions (e.g. time-varying data manifolds). This can be applied, for example, to 
all applications of real time pattern recognition, where the data reduction step plays a 
very important role: fault diagnosis, novelty detection, intrusion detection for alarm 
systems, speech, face and text recognition, computer vision and scene analysis and so 
on. 
In recent years, research in the field of Fault Diagnosis (FD) and Condition Monitoring 
(CM) of electrical machines has attracted researchers all over the world. This because 
of its involvement in an endless number of industrial applications. The concept of FD 
and CM has always been a key issue for industries when it comes to maintaining the 
assets, especially large motors or generators, whose possible failures may pose serious 
repercussions in both monetary terms and non-monetary terms. 
Early identification of incipient faults results in a quick maintenance and short down-
time for processes under consideration. An ideal FD and CM system must be able to 
extract the required data and correctly detect and classify the fault incurred in the motor. 
In the most recent years, there has been a lot of research in the development of new CM 
schemes for electrical machines and drives, overseeing the downsides of the conven-
tional techniques. 
According to the authors of [2-4], the quantity of working machines in the world was 
expected to be around 16.1 billion in 2011, with a rapid development of 50% w.r.t. the 
preceding five years.  Among these machines, Induction Machines (IMs) are the most 
common ones and are widely used in the industry. This derives from the fact that IMs 
are rugged, cheap, reasonably portable, sensibly high effective, and conform to the 
available power supplies. They are reliable in operations, yet are liable to various sorts 
of undesirable faults, which can be categorized as follows: mechanical faults, electrical 
faults and outer motor drive faults. In view of rotating magnetic field, the IMs are in-
credibly symmetrical electric systems, so any fault occurrence changes its symmetrical 
properties. 
As per the statistics available from IEEE and EPRI for motor faults [5-7], stator-wind-
ing faults contribute to as much as 26% of the total number of failures in IMs. The stator 
winding faults begin as an inter-turn short circuit, which evolves over time into a short 
circuit between coils and phase windings. Thus, it is fundamental that a diagnosis be 
made able to track them in real-time [8, 9]. 
Working in real time requires a data stream, a continuous input for the DR algorithms, 
which are defined as online or, sometimes, incremental (synonym for non-batch). They 
require, in general, data drawn from a stationary distribution. The fastest algorithms are 
linear and use the Principal Component Analysis (PCA, [10]) by means of linear neural 
networks, like the Generalized Hebbian Algorithm (GHA, [11]) and the incremental 
PCA (candid covariance-free CCIPCA [12]).  Nonlinear DR techniques are not suitable 



for online applications. Many efforts have been tried in order to speed up these algo-
rithms: updating the structure information (graph), new data prediction, embedding up-
dating. However, these incremental versions (e.g. iterative LLE, [13]) require too a 
cumbersome computational burden and are useless in real time applications. Neural 
networks can also be used for data projection. In general, they are trained offline and 
used in real time (recall phase). In this case, they work only for stationary data and can 
be better considered as implicit models of the embedding. An example are the self-
organizing maps (SOM) [14] and their variants [15 - 18].  
For data drawn from a non-stationary distribution, as it is the case for fault and pre-
fault diagnosis and system modeling, the online Curvilinear Component Analysis 
(onCCA, [19]) and the growing Curvilinear Component Analysis (GCCA) have been 
proposed in [20, 21].  They both track non-stationarity by using an incremental quanti-
zation synchronously with a fast projection based on the Curvilinear Component Anal-
ysis (CCA, [22, 23]).  
The purpose of this paper is the presentation of an application of GCCA to the stator-
winding fault problem previously described with the purpose of detecting and following 
in real-time the evolution of a fault in a phase of IM. 
After the presentation of GCCA in Sec. 2, Sec. 3 shows the results of a fault simulation 
on a stator-winding on a real IM. Finally, Sec. 4 presents the conclusions. 
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Fig. 1. Proposed Methodology 



The Growing CCA (GCCA) 

The growing CCA is an incremental supervised neural network whose number of 
neurons is determined by the quantization of the input space. Each neuron has associ-
ated two weight vectors: one in the input space (X-weight) and the other one in the 
latent space (Y-weight) which yields the data projection. Each neuron is equipped with 
a threshold which represents its Voronoi region in the data space. It is computed as the 
distance in the X-space between the neuron and its farthest neighbor (neighbors are 
defined by the edge graph) and is used for determining the novelty of the input data. If 
the input data passes the novelty-test a new neuron is created, otherwise the closest-
neuron (the first-winner) in the X-space and its neighbors adjust their weight vectors 
according to the soft competitive learning (SCL, [19, 20]). 

 

Fig. 2. Three Phase Current Signature of a Healthy IM 

Neurons can be connected in two ways: through edges, which define the manifold to-
pology according to the Competitive Hebbian Learning (CHL, [24]), or through 
bridges, which track a change in the input distribution (e.g. a jump). GCCA uses bridges 
and seeds to understand how the input evolves over time. A bridge is a particular kind 
of neurons link created to connect a new neuron to the already existing network. It is a 
directional link towards the new neuron. In this sense, it points toward the change in 
the input data. A seed is a pair of neurons made of a neuron and its doubled (whose 
weight is computed using the hard competitive learning, HCL, [19, 20]). Neuron-dou-
bling is performed each time the first-winner is the top of a bridge with the second-
close neuron (the second-winner). On the contrary, if the first-winner is the tail of the 
bridge, that connection becomes an edge. 



 
Fig. 3. Space vector loci of stator current for a Healthy IM 

 
Fig. 4. Fault evolution in IM from healthy to 30% stator inter-turn fault 

GCCA is incremental, it can increase or decrease (pruning by age) the number of neu-
rons.  
The projection algorithm is based on CCA. It uses a distance-preserving function which 
aim to preserve in the Y-space distances whose length is less than λ. 



 

Fig. 5. Space Vector Loci – Fault Evolution from 0-30% stator inter-turn fault 

 

Fig. 6. Fault Evolution from 0-30% stator inter-turn fault: zoom around the origin 



Stator-winding Fault Experiment 

Using model based techniques, a stator fault has been modelled and the temporal-
evolution of its current has been compared with the healthy case. 
The dataset is generated for both the cases: healthy and faulty conditions of a 3-phase 
Squirrel cage IM which is of 1.1kW rating and connected to a 60Hz voltage supply. By 
using a pre-processing based on the Tukey filter, the signal to noise ratio (SNR) is in-
creased from the acquired current signal. Thereafter, by using statistical signal pro-
cessing, the frequencies of interest are extracted (see Fig. 1). Both the healthy and the 
faulty IMs are dynamically modelled in MATLAB® and the current signature acquired. 
The dataset consists of 35685 samples taken in a span of seven seconds.  
Fig. 2 and Fig. 3 show, respectively, the three phase current of the IM and the space 
vector representation (i.e. a two-phase current transformation by means of direct and 
quadrature currents) in the healthy case. Both figures are characterized by an initial 
transient (large oscillations in the current signature and corresponding decreasing spi-
rals in the space vector representation) followed by a steady state (regular oscillation in 
Fig. 2 and circles in Fig. 3). 
The inter-turn short circuit fault is induced in the IM by introducing a variable resistor 
in parallel with the phase A of the IM. The resistance was varied to correspond to a 
percentage of fault in the stator. From the starting (t = 0), the IM is in healthy condition 
for one second and after every second, the percentage of stator inter-turn fault rises by 
5%. In particular, the current signature (see Fig. 4) in phase A rises every second, first 
portraying a transient stage (a spike in current signature each second) and then moves 
to a steady state. The other phases are also affected by a transient stage as the fault 
severity changes as shown in Fig. 4. 

 
Fig. 7. GCCA - Fault Evolution from 0-30% stator inter-turn fault – X Space Quantization 

 
The interchange between transient and steady phases, i.e. the fault evolution over time, 
is also observed in the space vector representation (see Fig. 5 and its zoom in Fig. 6). 
As in the previous case, the space vector trajectories follow the same loci as before but 
with larger radii (they are larger and larger as the fault evolves). 
GCCA has been applied to this problem. The parameters of GCCA are the following: 
α=0.01, λ=0.5, α1=0.2, αn=0.04, agemax=4, epochs=5. GCCA is trained with the phase 



current information and evolves with it. It also projects in the latent current space in 
real time. 
Fig. 7 shows the quantization made by the first layer of weights of GCCA (connections 
are not shown for clarity) 
The trajectories have been modelled (tracked) accurately, spirals and circles are visible. 
Fig. 8, instead, illustrates the linking phase of the neural network. The first transient is 
represented by small edges and bridges, which are also orthogonal to the true current 
projection. This is due to the rapidity of the transient which does not allow their prun-
ing. However, they build a fine small size network, which is typical of self-organiza-
tion. As the transient evolves more and more bridges track the changes in current, which 
are represented by their density. Indeed, the appearance of bridges detects the onset of 
a non-stationarity. If the time change is abrupt, more and more bridges are created in a 
correlated way. This is the reason that the inner part of the plot is denser and denser.  
Unlike other neural networks which need constant parameters in order to track non-
stationarity, GCCA does not only recognize the pre-fault situation, but also records the 
whole story of the machine. 

 

Fig. 8. GCCA - Fault Evolution from 0-30% stator inter-turn fault (edges in blue, 
bridges in red) 

 
 
CONCLUSIONS 
 
Time signals extracted from a non-stationary distribution, as in the case of the stator 

phase current, which evolves in the same way as the machine (faults and deterioration) 
are not easy to handle, above all in real time. This could have important applications, 



as, for instance, the possibility to stop the motor well before the fault or for mainte-
nance. In the literature, only linear techniques are used, because of their speed and sim-
plicity. Nonlinear techniques and neural networks are too cumbersome and time con-
suming. The GCCA neural network is the only neural method able to track a non-sta-
tionary input distribution and to project it in a lower dimensional space. In a sense, 
GCCA learns a time-varying manifold. It has been applied in a difficult test, like the 
tracking of evolutive faults on an electrical machine. It has been shown that it learns 
(and represents) the machine life, from the first transient to the last fault. However, this 
can be automatically exploited, by means of the bridge length and density estimation, 
in order to stop working for avoiding damages. Future work will deal with the exploi-
tation of the stator current spectrum (by using algorithms like MUSIC) and observing 
the changes with respect to the stator current spectrum of a healthy IM. Because of this 
preprocessing step on the stator currents, GCCA should perform a faster and more re-
liable fault detection. It will also help in fault classification. 
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