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Abstract. Fault diagnostics for electrical machines is gy \difficult task because of the
non-stationarity of the input information. Also,ist mandatory to recognize the pre-
fault condition in order not to damage the mach®mwly techniques like the Principal
Component Analysis (PCA) and its neural variangsumed at this purpose, because of
their simplicity and speed. However, they are ladiby the fact they are linear. The
GCCA neural network addresses this problem; ibidinear, incremental and performs
simultaneously the data quantization and projedpmising the Curvilinear Compo-
nent Analysis (CCA), a distance-preserving reductiechnique. Using bridges and
seeds it is able to fast adapt and track changbe idata distribution. Analyzing bridge
length and density, it is able to detect a pretfaohdition. This paper presents an ap-
plication of GCCA to a real induction machine onietha time evolving stator fault in
one phase is simulated.

Keywords:. bridge; curvilinear component analysis; dimensitypaéduction; electri-
cal machine; fault detection; neural network; oalaigorithm; projection; seed; stator
current; vector quantization.

Introduction

Data mining is more and more facing the extractibmeaningful information from
big data (e.g. from internet), which is often veaigh dimensional. For both visualiza-
tion and automatic purposes, their dimensionaléyg to be reduced. This is also im-
portant in order to learn the data manifold, whiohgeneral, is lower dimensional than
the original data. Dimensionality reduction (DRY@hitigates the curse of dimension-
ality: e.g., it eases classification, analysis aoohpression of high-dimensional data.



Most DR techniques work offline, i.e. they requirestatic database (batch) of data,
whose dimensionality is reduced. They can be divitdo linear and nonlinear tech-
nigues, the latter being in general slower, butexamcurate in real world scenarios. See
[1] for an overview.

However, the possibility of using a DR techniquerkitog in real time is very im-
portant, because it allows not only having a prigacafter only the presentation of
few data (i.e. a very fast projection response},diso tracking non-stationary data
distributions (e.g. time-varying data manifoldshi§ can be applied, for example, to
all applications of real time pattern recognitisrhere the data reduction step plays a
very important role: fault diagnosis, novelty deime, intrusion detection for alarm
systems, speech, face and text recognition, compigien and scene analysis and so
on.

In recent years, research in the field of Faulgbissis (FD) and Condition Monitoring
(CM) of electrical machines has attracted reseaschk over the world. This because
of its involvement in an endless number of indastapplications. The concept of FD
and CM has always been a key issue for industriesnvit comes to maintaining the
assets, especially large motors or generators, ayhossible failures may pose serious
repercussions in both monetary terms and non-monegans.

Early identification of incipient faults results snquick maintenance and short down-
time for processes under consideration. An idealalR CM system must be able to
extract the required data and correctly detectéassify the fault incurred in the motor.
In the most recent years, there has been a lesefirch in the development of new CM
schemes for electrical machines and drives, overgabe downsides of the conven-
tional techniques.

According to the authors of [2-4], the quantityvadrking machines in the world was
expected to be around 16.1 billion in 2011, wittajpid development of 50% w.r.t. the
preceding five years. Among these machines, Iigludflachines (IMs) are the most
common ones and are widely used in the industris dérives from the fact that IMs
are rugged, cheap, reasonably portable, sensigly &ffective, and conform to the
available power supplies. They are reliable in apens, yet are liable to various sorts
of undesirable faults, which can be categorizefdlémys: mechanical faults, electrical
faults and outer motor drive faults. In view ofatihg magnetic field, the IMs are in-
credibly symmetrical electric systems, so any faatturrence changes its symmetrical
properties.

As per the statistics available from IEEE and ERIRImotor faults [5-7], stator-wind-
ing faults contribute to as much as 26% of thd taianber of failures in IMs. The stator
winding faults begin as an inter-turn short circuihich evolves over time into a short
circuit between coils and phase windings. Thuis fundamental that a diagnosis be
made able to track them in real-time [8, 9].

Working in real time requires a data stream, ainaous input for the DR algorithms,
which are defined as online or, sometimes, incréat¢synonym for non-batch). They
require, in general, data drawn from a stationasiribution. The fastest algorithms are
linear and use the Principal Component AnalysisAHCO]) by means of linear neural
networks, like the Generalized Hebbian AlgorithmH@& [11]) and the incremental
PCA (candid covariance-free CCIPCA [12]). NonlinB& techniques are not suitable



for online applications. Many efforts have beeedrin order to speed up these algo-
rithms: updating the structure information (graptew data prediction, embedding up-
dating. However, these incremental versions (¢ggative LLE, [13]) require too a
cumbersome computational burden and are uselegsalirtime applications. Neural
networks can also be used for data projectionelmecal, they are trained offline and
used in real time (recall phase). In this casey therk only for stationary data and can
be better considered as implicit models of the atdb®y. An example are the self-
organizing maps (SOM) [14] and their variants [1EB].

For data drawn from a non-stationary distributias,it is the case for fault and pre-
fault diagnosis and system modeling, the onlineviinear Component Analysis
(onCCA, [19]) and the growing Curvilinear Componémalysis (GCCA) have been
proposed in [20, 21]. They both track non-statigpdy using an incremental quanti-
zation synchronously with a fast projection basedhe Curvilinear Component Anal-
ysis (CCA, [22, 23)).

The purpose of this paper is the presentation afptication of GCCA to the stator-
winding fault problem previously described with thapose of detecting and following
in real-time the evolution of a fault in a phasdMf

After the presentation of GCCA in Sec. 2, Sec.@shthe results of a fault simulation
on a stator-winding on a real IM. Finally, Sec.régents the conclusions.

On-line Fault Diagnosis Procedure
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Fig. 1. Proposed Methodology



The Growing CCA (GCCA)

The growing CCA is an incremental supervised nenealvork whose number of
neurons is determined by the quantization of tipaitispace. Each neuron has associ-
ated two weight vectors: one in the input spacev@fght) and the other one in the
latent space (Y-weight) which yields the data petiygm. Each neuron is equipped with
a threshold which represents its Voronoi regiothandata space. It is computed as the
distance in the X-space between the neuron anfdritisest neighbor (neighbors are
defined by the edge graph) and is used for deténgnithe novelty of the input data. If
the input data passes the novelty-test a new ndasroreated, otherwise the closest-
neuron (the first-winner) in the X-space and itgghbors adjust their weight vectors
according to the soft competitive learning (SCL9,[20]).
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Fig. 2. Three Phase Current Signature of a Healthy IM

Neurons can be connected in two ways: through edgeish define the manifold to-
pology according to the Competitive Hebbian Leagn{iCHL, [24]), or through
bridges, which track a change in the input distidru(e.g. a jump). GCCA uses bridges
and seeds to understand how the input evolvestiower A bridge is a particular kind
of neurons link created to connect a new neurdhdalready existing network. It is a
directional link towards the new neuron. In thisise it points toward the change in
the input data. A seed is a pair of neurons made réuron and its doubled (whose
weight is computed using the hard competitive legynHCL, [19, 20]). Neuron-dou-
bling is performed each time the first-winner ig tiop of a bridge with the second-
close neuron (the second-winner). On the contibtie first-winner is the tail of the
bridge, that connection becomes an edge.
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Fig. 4. Fault evolution in IM from healthy to 30% statoteénturn fault

GCCA is incremental, it can increase or decrease(pg by age) the number of neu-

rons.

The projection algorithm is based on CCA. It usdsstance-preserving function which
aim to preserve in the Y-space distances whosd¢Hasdess thaf.
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Stator-winding Fault Experiment

Using model based techniques, a stator fault hes bedelled and the temporal-
evolution of its current has been compared withhisalthy case.
The dataset is generated for both the cases: heatth faulty conditions of a 3-phase
Squirrel cage IM which is of 1.1kW rating and coctegl to a 60Hz voltage supply. By
using a pre-processing based on the Tukey filber stgnal to noise ratio (SNR) is in-
creased from the acquired current signal. Thenedfte using statistical signal pro-
cessing, the frequencies of interest are extrasteel Fig. 1). Both the healthy and the
faulty IMs are dynamically modelled in MATLAB® arle current signature acquired.
The dataset consists of 35685 samples taken iaracseven seconds.
Fig. 2 and Fig. 3 show, respectively, the threesphaurrent of the IM and the space
vector representation (i.e. a two-phase curremisfoamation by means of direct and
quadrature currents) in the healthy case. Bothrdigjare characterized by an initial
transient (large oscillations in the current sigmatand corresponding decreasing spi-
rals in the space vector representation) followed bteady state (regular oscillation in
Fig. 2 and circles in Fig. 3).
The inter-turn short circuit fault is induced iretiM by introducing a variable resistor
in parallel with the phase A of the IM. The resista was varied to correspond to a
percentage of fault in the stator. From the stgrttr= 0), the IM is in healthy condition
for one second and after every second, the pegewtastator inter-turn fault rises by
5%. In particular, the current signature (see #)gn phase A rises every second, first
portraying a transient stage (a spike in curragatiure each second) and then moves
to a steady state. The other phases are alsoeffbgt a transient stage as the fault
severity changes as shown in Fig. 4.

Fig. 7. GCCA - Fault Evolution from 0-30% stator inter-tuauft — X Space Quantization

The interchange between transient and steady phiasdke fault evolution over time,
is also observed in the space vector representggemFig. 5 and its zoom in Fig. 6).
As in the previous case, the space vector trajestéollow the same loci as before but
with larger radii (they are larger and larger asfdult evolves).

GCCA has been applied to this problem. The parasetfeGCCA are the following:
0=0.01,A=0.5, 11=0.2, 0n=0.04, agrax=4, epochs=5. GCCA is trained with the phase



current information and evolves with it. It alsmjacts in the latent current space in
real time.

Fig. 7shows the quantization made by the first layer @iights of GCCA (connections
are not shown for clarity)

The trajectories have been modelled (tracked) ately; spirals and circles are visible.
Fig. 8, instead, illustrates the linking phasehaf heural network. The first transient is
represented by small edges and bridges, whichlsmeosthogonal to the true current
projection. This is due to the rapidity of the s@mt which does not allow their prun-
ing. However, they build a fine small size netwonkich is typical of self-organiza-
tion. As the transient evolves more and more bedgeck the changes in current, which
are represented by their density. Indeed, the appee of bridges detects the onset of
a non-stationarity. If the time change is abruptrerand more bridges are created in a
correlated way. This is the reason that the inaet @f the plot is denser and denser.
Unlike other neural networks which need constamtupeters in order to track non-
stationarity, GCCA does not only recognize the fardt situation, but also records the
whole story of the machine.
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Fig. 8. GCCA - Fault Evolution from 0-30% stator inter-tufault (edges in blue,
bridges in red)

CONCLUSIONS

Time signals extracted from a non-stationary distion, as in the case of the stator
phase current, which evolves in the same way asm#whine (faults and deterioration)
are not easy to handle, above all in real times Thuld have important applications,



as, for instance, the possibility to stop the mateil before the fault or for mainte-
nance. In the literature, only linear techniquesieged, because of their speed and sim-
plicity. Nonlinear techniques and neural networkes tao cumbersome and time con-
suming. The GCCA neural network is the only neanathod able to track a non-sta-
tionary input distribution and to project it in aner dimensional space. In a sense,
GCCA learns a time-varying manifold. It has beepliga in a difficult test, like the
tracking of evolutive faults on an electrical mawhi It has been shown that it learns
(and represents) the machine life, from the fietsient to the last fault. However, this
can be automatically exploited, by means of thdd®ilength and density estimation,
in order to stop working for avoiding damages. Feitwork will deal with the exploi-
tation of the stator current spectrum (by usinggtgms like MUSIC) and observing
the changes with respect to the stator currentspeof a healthy IM. Because of this
preprocessing step on the stator currents, GCCAldhperform a faster and more re-
liable fault detection. It will also help in faudtassification.
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