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Abstract 
In this paper, we describe an algorithm that performs automatic detection 
and tracking of astral microtubules in fluorescence confocal images. This 
sub-population of microtubules only exists during and immediately before 
mitosis and aids in the spindle orientation by connecting it to the cell cortex. 
Anomalies in their dynamic behaviour play a causal role in many diseases, 
such as development disorders and cancer. The main novelty of the proposed 
algorithm lies in the fact it provides a fully automated estimation of parameters 
related to microtubule dynamic instability (growth velocity, track length and 
track lifetime), and helps in understanding the effects of intermediate drug 
concentrations. Its performance has been objectively assessed using publicly 
available synthetic data and largely employed metrics. Moreover, we present 
experiments addressing cell cultures doped with different concentrations of 
taxol and nocodazole. Such drugs are known to suppress the microtubule dy-
namic instability, but their effects at intermediate concentrations are not com-
pletely assessed. The algorithm has been compared with other state-of-the-art 
approaches, tested on consistent real datasets. The results are encouraging in 
terms of performance, robustness and simplicity of use, and the algorithm is 
now routinely employed in our Department of Molecular Biotechnology. 
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1. Introduction 

This paper is focused on the estimation of dynamic instability of astral microtu-
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bules (MT) in in vivo fluorescence microscopy images. MTs are highly dynamic 
cytoskeleton polymers playing a pivotal regulatory role in several biological 
functions: intracellular trafficking in interphase cells, formation of the mitotic 
spindle, establishment and maintenance of cell morphology and motility [1]. 

The structural elements of MTs are heterodimers composed of two kinds of 
globular polypeptides, α- and β-tubulin. Dimers polymerize into linear pro-
to-filaments; 13 of them, arranged around a hollow core into head-to-tail arrays, 
make up the MT. 

The intracellular pool of heterodimer subunits and the MT polymers are in 
a complex, dynamic equilibrium. Polymerization (or growing) occurs by a nuc-
leation-elongation mechanism; free heterodimers are incorporated at the ends 
of a MT nucleus, thanks to non-covalent bonds enabled by the GTP (Guano-
sine-5’-triphosphate) hydrolysis. On the other hand, the polymerized structure 
releases heterodimers into the soluble tubulin pool (shrinking). As MTs are po-
larized elements, a plus-end and a minus-end can be recognized. The plus-end is 
characterized by a faster growth speed, hence the MT growth mainly happen at 
plus-ends. 

Two main processes describe the MT dynamics: treadmilling, i.e. simultane-
ous growth at one MT end and shortening at the opposite end, and dynamic in-
stability. This latter represents the spontaneous switching between sustained 
growth and rapid shortening (catastrophe). In a third possible state, the pause, 
the MT stops growing but does not depolymerize; the factors that regulate this 
state are still not fully clear. The MT dynamic behaviour is regulated by the con-
centration of free tubulin and chemical mediators such as calcium and magne-
sium ions. Moreover, microtubule-associated proteins (MAPs) play a regulatory 
role, as well as different tubulin isotypes (e.g. γ-tubulin [2]), post-translational 
modifications, and tubulin mutations, responsible for several disorders. 

Three types of MTs are recognized [1]. Kinetochore MTs contribute to the 
mitotic spindle assembly by linking to the chromosomes via a particular protein, 
the kinetochore. Astral MTs interface with the cellular cortex and are involved in 
several functions, including the spindle orientation. They exist during mitosis 
and in interphase cells about to enter mitosis. Their MT minus-end is linked to 
the cell centrosome (also defined Microtubule Organizing Center), a membran-
ous structure located near the nucleus in interphase cells, while the plus-ends 
extend towards the cell cortex. Non-kinetochore MTs provide stability to the 
spindle. 

The frequency of catastrophe events and the MT growth rate affect the effec-
tiveness of the spindle assembly [1]. When the mitotic spindle is not correctly 
oriented, abnormal chromosome segregation can occur, and pathologies can 
arise, such as the human primary microcephaly [3], a disorder of the neu-
ro-development in which the patients are affected by a reduced head circumfe-
rence with different degrees of intellectual disability. 

MTs represent the target for many cancer chemotherapy drugs, the Microtu-
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bule Targeting Agents (MTA). In 1990s, paclitaxel (taxol) was a first-line drug 
for the treatment of many cancers, even though its application was hampered by 
heavy toxicity and resistance phenomena. Since then, several other MTAs, cha-
racterized by better toxicity profiles, were introduced in the clinical practice. 

The general MTA mechanism is to perturb MT dynamics, so interfering with 
the mitotic spindle formation, arresting the cell cycle in mitosis, and possibly 
promoting apoptosis. They can be broadly grouped in MT stabilizing and desta-
bilizing agents. Generally speaking, both these actions lead to a reduction of the 
MT dynamics. However, recent in vitro experiments have shown that, in the 
presence of given End-Binding (EB) proteins, low doses of MTAs can increase 
the MT dynamic instability instead. In any case, the MTA effects are highly con-
centration-dependent. In [4], a mathematical model describing MT dynamics is 
proposed, and applied to estimate the catastrophe frequencies in the presence of 
several molecules. The model shows that MTAs and EBs are likely to interact in 
modifying the MT dynamic instability; however, the MT response to interme-
diate MTA concentrations is not completely clarified. 

Subcellular components such as MTs, as well as their dynamic behaviour, can 
be analyzed in vivo using confocal laser scanning microscopy (CLSM). Thanks 
to a point illumination source and a pinhole in an optically conjugate plane in 
front of the detector, it is able to suppress the out-of-focus signal, achieving an 
optical resolution much better than in wide-field microscopy. This comes at the 
expenses of decreased image intensity, as a large percentage of light is blocked at 
the pinhole; actually, long exposure times are often required. As CLSM focuses a 
narrow light beam at a specific depth level, it achieves an extremely precise 
depth of focus. Multiple images at different depths in a sample can be captured, 
so enabling the reconstruction of three-dimensional structures (optical section-
ing). The focal plane thickness is directly proportional to the light wavelength, 
and inversely proportional to the numerical aperture of the objective lens, but 
also depends on the optical properties of the specimen. 

A major step forward in CLSM is related to the discovery of a naturally fluo-
rescent protein in living organisms, the green fluorescent protein (GFP) [5]. 
Numerous other markers, with different spectral properties, have been engi-
neered for labelling various types of proteins and cellular structures. Moreover, 
transgenic techniques can create organisms that produce their own fluorescent 
chimeric molecules, allowing biologists to detect specific genes, evaluate their 
kinetic parameters, and quantify the interactions among molecules [6]. 

Nevertheless, CLSM is affected by limitations due to both instrumentation 
and samples [5]. The resolution of the system is limited to about 100 nm, even 
though it can be improved using an immersion layer (e.g. oil) between the lens 
and the sample [5]. Other phenomena that degrade images, namely low sig-
nal-to-noise ratio, variability of the biological samples, photo-bleaching, au-
to-fluorescence and photo-toxicity, will be discussed in Sect. 3. 

MT dynamic features are usually studied in time-lapse images employing 
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tracers built up with tubulin covalently linked to fluorophores: the fluorescent-
ly-tagged End Binding Proteins (EB-EGFP) [7]. In many experiments, Type 1 
and Type 3 EGFP (EB1-EGFP and EB3-EGFP) are employed. Since the available 
binding sites for free tubulin heterodimers decrease exponentially along the MT, 
the fluorescence profile appears in the images as a comet-shaped object [7]. The 
cell cultures addressed in this paper are treated with EB3-tdTomato, a microtu-
bule plus-end tracking protein (+TIPs) selective for the MTs plus-ends in the 
assembly phase. Such a marker allows one to visualize only the growing MT 
phase. Other phenomena such as shrinkages and pauses cannot be directly ob-
served but only be inferred. 

Although, in the last years, several tools have been proposed for MT tracking, 
due to the variability in the experimental conditions [5] the biologists still review 
the samples manually in many cases. Since the number of particles to be detected 
can be as large as several hundred, such a manual analysis is extremely time- 
consuming, hardly reproducible, strongly affected by inter- and intra-observer 
variability. 

The objective of our method is to achieve a fully automated characterization 
of the dynamic behaviour of astral MTs, taking as input fluorescence confocal 
microscopy image stacks, in terms of MT growth velocity, track length and track 
lifetime. A major novelty aspect is that the algorithm is conceived to be an 
easy-to-use, practical tool to be employed in the daily activities of a biotechnol-
ogy lab, yielding a reliability comparable to that of manual stack analysis, and 
requiring little or no intervention by the end-user. Moreover, we want to assess 
the effects of different concentrations of MTAs on cell cultures. In the experi-
ments presented in this paper, we address two specific MTAs, namely taxol and 
nocodazole. The goal of this selection is twofold. From one hand, it allows to as-
sess the algorithm performance, as the effects of taxol and nocodazole are well 
known at high concentrations. On the other hand, the results obtained at inter-
mediate drug concentrations can help in the interpretation of the biological ef-
fects of such drugs. The effects of other MTAs can be similarly assessed. 

This paper is organized as follows. In Section 2, an overview of the available 
approaches for detecting and tracking MTs in time-lapse images is discussed. In 
Section 3, the dataset used in this work is presented. Section 4 describes the de-
veloped algorithm. In Section 5, the obtained results are presented, and in Sec-
tion 6 conclusions are drawn. 

2. MTs Detection and Tracking: State of the Art 

The detection and tracking of different kinds of particles (including MT) in 
time-lapse fluorescence image sequences have been addressed in many studies. 
Nevertheless, at present, there is no standard protocol to follow [8] [9]. The 
main reasons can be found in the extreme variability of the biological processes 
and the equipment used to acquire the image sequences. Moreover, even though 
many proposals aim at achieving flexibility as for the kind of particles to be 
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tracked (e.g., MTs, vesicles, viruses), the extremely different nature of both the 
particles themselves and the motion they are expected to exhibit, makes this task 
even more challenging. 

Most proposed algorithms are divided into four steps [6]: 
1) Image data pre-processing, mainly devoted to noise reduction. 
2) Particle detection, which consists in recognizing and sealing off the objects 

of interest from the background on a frame-by-frame basis. 
3) Particle linkage for time-tracking of the previously identified objects. 
4) Post-processing of the results, in order to provide quantitative information 

about the biological phenomenon at hand. 
Regardless of the adopted solution, the performance of any algorithm in terms 

of accuracy, robustness and precision gets dramatically impaired when the signal 
to noise ratio (SNR) drops at very low levels [8] [9]. Moreover, the dominant 
noise that corrupts images is not additive. Other problems to tackle are the low 
contrast of the images, the auto-fluorescent background [10], and the fact that 
objects might exit the focal plane during the experiments. 

Some methods exploit a Bayesian approach by designing a filter aiming to 
predict the particle positions from a series of measurements. The filter design 
embeds both the dynamic (representing the spatial-temporal particle behaviour) 
and the actual measurement model. The Kalman filter is addressed [10], which is 
the optimal estimator of the state of a linear system when the noise and the error 
affecting the models are zero-mean, normally distributed, statistically indepen-
dent random variables. However, it achieves good performance even if these 
conditions are not exactly fulfilled. The piecewise-stationary motion model 
smoother (PMMS) algorithm [11] aims at tracking several kinds of molecules 
subject to rapid motion changes in high-density scenarios. A stochastic smooth-
ing stage detects the particles of interest on a frame-by-frame basis using an iter-
ative approach and assuming a Gaussian intensity model. As for tracking and 
trajectory reconstruction, an update of the publicly available u-track software 
[11] is addressed, including further motion models besides the linear and Brow-
nian one. PMMS is suitable for the detection of objects characterized by hetero-
geneous or jerky motion, in images acquired with a reduced frame rate. Howev-
er, the MT dynamic behaviour is well described as a linear motion, and embed-
ding such information in a tracking algorithm seems more efficient. 

In [12], an automatic tracker employing a Bayesian probabilistic framework is 
proposed and evaluated using simulated sequences, for which ground truth was 
available. However, its usefulness in practical situations cannot be assessed. 

In [13], a non-parametric regression method for denoising fluorescence mi-
croscopy image sequences corrupted by Poisson-Gaussian noise is proposed. A 
global energy functional is minimized, involving spatial-temporal image charac-
teristics. The algorithm performance, evaluated on both synthetic and real image 
sequences, is heavily dependent on a number of design parameters. 

Other authors choose to locate particles through enhancing techniques, and 
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reconstruct trajectories by means of a nearest-neighbour criterion [10] [14]. 
Most approaches implement a search strategy exploiting peak intensities [15]. 

Balzarini et al. [14] use thresholding to detect particle positions, using little a 
priori knowledge of the motion regime; this makes the procedure less expensive 
from a computational standpoint. As the approach is affected by a large false 
positive rate, a position refinement strategy is implemented. Once the particle 
positions are estimated, they are linked to build up the trajectories with a near-
est-neighbour criterion. Let us assume that p is a particle belonging to the i-th 
frame of a stack, and q a particle belonging to the successive j-th frame of the 
stack, with 1j i= + . Let ( ),p px y  and ( ),q qx y  be the spatial coordinates of 
particles p and q. The linking of particles through two consecutive frames is 
based on the minimization of a cost function that takes into account both spatial 
displacement and intensity information: 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2
0 0 2 2p q p qx x y y m p m q m p m qΦ = − + − + − + −          (1) 

where ( )0m ⋅  and ( )2m ⋅  represent the moments of zero-th and second order 
respectively of intensity of pixel p and q (see [14] for further details on the em-
ployed cost function and its rationale). This method provides good results and is 
quite efficient from the computational point of view. This is the reason why it 
has been taken as a starting point in several works, such as [16] and also in this 
paper. However, its performance is suboptimal when the images exhibit low 
quality and high particle density. 

Mahemuti et al. [17] investigate the MT dynamics using morphological in-
formation for detection and a probabilistic data association (PDA) filter for 
tracking. Moreover, the authors perform an object decomposition in order to 
detect single particles making up compound structures. Once the MT positions 
are estimated, the tracks are identified via a probabilistic approach. Elements 
into consecutive frames are considered as belonging to the same MT if the 
measured and estimated positions are similar in direction and movement. Again, 
the PDA algorithm is based on the Kalman filter for data association and track 
updating. The technique exhibits good accuracy in environments with low den-
sity of particles, indeed the performance impairs in high-density video. 

In [18], a multiple-stage algorithm is described, whose main feature is the use 
of morphological transformations in the detection step in order to limit the ef-
fects of noise on the subsequent segmentation. This technique has been com-
pared with a preliminary version of our algorithm, using the same set of real da-
ta. The two algorithms yielded comparable results as for mean velocity and track 
length, but [18] is subject to a larger number of false positives. 

Recently, and specifically for the MT scenario, some authors have addressed 
the issue of very low SNR. In [19] an approach based on a Gaussian Process Re-
gression (GPR) is addressed to perform an estimation of MT dynamic parame-
ters (namely, speed, track length, lifetime). The GPR model heavily relies on 
prior knowledge on the MT motion model, so trading precision with generality. 
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The method has been tested on both synthetic and real data. 
In [20], a robust MT tracking method is proposed, whose main feature is that 

the particle coordinates over the frames are treated jointly and not as indepen-
dent items. This reduces the likelihood that tracks showing an unexpected 
jagged pattern are selected. The task is performed implementing an adaptive 
hierarchical energy-based trajectory smoothing approach. 

In [21], an improved robust MT detection method is presented, based on few 
assumptions at the object-level. As MTs appear as filaments in microscopy fluo-
rescence images, the authors model each particle with three connected points 
standing for the two spindle pole bodies and the plus-end. Moreover, they focus 
on the effects of photo-bleaching, and provide a model incorporated into a par-
ticle filter employed to track spots. 

As a general comment, we point out that, even though several methods have 
been proposed, they have often been validated on different datasets, and/or us-
ing different metrics. As a consequence, it is difficult to objectively compare 
their performance. This is the rationale behind the International Competition 
described in [9], where a common (publicly available) dataset was provided to 
the participants. Attendees proposed their own algorithm to detect and track 
different kinds of particles (including MTs) in a number of simulated scenarios. 
Performance was evaluated using commonly defined metrics. The competition 
confirmed that a single best method for multi-particle tracking does not exist, as 
each algorithm has crucial parameters to be tuned specifically on the available 
dataset [9] [16] [22]. It is worth noticing that the complexity of real experimental 
data is so high that simulated images cannot be assumed to be fully representa-
tive; hence, the algorithm ranking obtained with such data cannot be expected to 
be exactly reproducible in a real experimental set up. Nevertheless, the data em-
ployed in the International Competition still remain the best ground truth to 
compare with, in order to assess any algorithm performance. 

Finally, we briefly discuss machine learning-based approaches. Machine 
learning is a powerful tool that requires little or no a priori knowledge on the 
particles to analyze. Nevertheless, an efficient method for MT detection and 
tracking has not been validated yet. The main reason can be found in the fact 
that getting an appropriate (real-data) training set is difficult, because of the di-
verse nature of the objects of interest [22]. Cellular imaging is affected by many 
aspects that are difficult to finely control (e.g. temperature), so that each experi-
ment exhibits features that are difficult to generalize. Moreover, a ground truth 
to use for the training stage is seldom available in case of real data. On the other 
hand, in order to build a simulated data set representative of real experiments, a 
comprehensive study of the physical and motion model of the particles at hand 
would be needed, using detailed information about the experiment, with high 
cost and little generalization potential (see also [23] [24]). This explains why, 
despite the huge potential of machine learning, at present approaches that ex-
ploit available a priori information are still adopted in most cases. Nevertheless, 
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some authors have recently proposed deep learning-based approaches. In [22] a 
convolutional neural network is used to detect sub-micro-scale particles, in or-
der to optimize tracking procedures. The method is based on predefined tuned 
parameters and was tested on both synthetic and real data. Unfortunately, the 
approach is not suitable for the detection of filaments, such as MTs. Yao et al. 
[25] aimed at improving the accuracy of the tracking phase via a proper tuning 
of the initial algorithm parameters. Their approach is based on a recurrent neur-
al network that learns and models the object behaviour, given a training set. 
However, this network has been validated on synthetic data only, and the per-
formance in real scenarios cannot be assessed. 

As a conclusion, despite a large number of proposals, at present, there is no 
detection and tracking algorithm whose performance fits every scenario, in 
terms of particle class and density, noise levels and types. From these considera-
tions stems the novel approach of this present proposal, i.e. to abandon any 
claim of generality and to focus on a very sensible method, making use of all the 
available a priori pieces of information on MT dynamics, and set up on real ex-
perimental data acquired with the instrumentation available in loco. 

3. Dataset Description 

In our experiments, a dataset of 40 time-lapse sequences has been produced. The 
images have been acquired with a Leica TCS SP5-AOBS 5-channel confocal sys-
tem, equipped with a 561 nm DPSS laser. 

A HeLa-K (HeLa Kyoto) cell line expressing EB3-td Tomato, was chosen to 
carry out the experiments. This cell line is largely employed in the scientific 
research, and is the first human cancer cell line immortalized in tissue culture. 
It is named after Henrietta Lacks, a woman to which the scientific community 
owes a lot, as cells were extracted with a biopsy of the adenocarcinoma of the 
cervix she was affected by [26]. The cell culture has been maintained in DMEM- 
GlutaMAX (Invitrogen) medium supplemented with 10% fetal bovine serum, 
100 U∙ml−1 penicillin, 100 μg∙ml−1 streptomycin, 200 μg∙ml−1 geneticin (Sigma) 
and 0.5 μg∙ml−1 puromycin. 

Our experiments were included in a larger study involving astral MTs, and 
aiming at clarifying their role in the mitotic spindle orientation. Hence, we have 
addressed interphase cells, treated with different concentrations of nocodazole 
and taxol: 0 nM (control), 0.1 nM (taxol only), 1 nM (nocodazole only), 10 nM 
and 100 nM. Nocodazole is a MT destabilizer, whereas taxol acts as a MT stabi-
lizer. Despite their actions are opposite, at high concentrations the neat effect of 
both drugs is an inhibition of MT dynamic instability. Hence, in these scenarios, 
we expect to detect a drastic suppression of MT dynamics, and this can be ex-
ploited to validate the effectiveness of our tool. On the other hand, these experi-
ments may help to get some insight on the drug effects at intermediate concen-
trations, and replicated using different MTAs. 

After one-hour incubation, videos of astral MTs were acquired using the al-
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ready mentioned Leica TCS SP5-AOBS confocal system. During the acquisition, 
cells were stored in the microscope incubator at 37˚C with CO2 5%. For each 
dosage, in both cases, five stacks have been acquired and saved in TIFF format. 
The main characteristics of the image stacks are summarized in Table 1. 

Noise Characterization 

Fluorescence confocal microscopy images are affected by numerous noise sources. 
First of all, photon shot noise, caused by the random emission of photons [5], 
becomes relevant when the number of photons is so small that the uncertainty 
related to the Poisson distribution cannot longer be neglected [27]. In the case of 
fluorescence images, the source intensity has to be kept very low for several rea-
sons. First of all, excessive light intensity can affect the living cell behaviour (if 
not the life itself). Then, photo-bleaching must be avoided, i.e. the fact that 
markers lose their capability to fluoresce over time to an extent related to light 
intensity and exposure time [5]. Finally, the achieved spatial resolution is related 
to the pinhole detector as follows [6]: 

N
σ

=
 

where σ  is the standard deviation of the instrument point spread function and 
N is the average number of photons detected in the exposure time [27]. Hence, it 
could be improved by choosing a small pinhole diameter detector, but this fur-
ther limits the signal intensity and impairs the shot noise. Unfortunately, photon 
shot noise can be limited only augmenting the light intensity, hence it is un-
avoidable in practical applications on living cells. 

Speckle noise is a multiplicative noise process that degrades images making 
them look grainy. It becomes relevant when coherent imaging systems are em-
ployed, such as laser in confocal microscopy, and is caused by random interfe-
rences between the coherent returns. The effect on grayscale images is an in-
crease of mean intensity in a local area [27]. Other noise sources are autofluo-
rescence, i.e. the property of some molecules to naturally fluoresce at wave-
lengths in the range of visible spectrum, overlapping with the fluorophore; 
background noise, caused by the ambient radiations; dark current, due to the 
thermal agitation of particles at high temperature inside the detector, which leads 
to spontaneous emissions; quantization noise of the digital output; scattering of  

 
Table 1. Main characteristics of employed image stacks. 

Description Value 

Frame size 256 × 256 pixels 

Frame rate 2 fps 

Number of frames per stack 120 

Pixel resolution 64 nm 

Bit depth 8 
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light, which occurs when the object dimensions are comparable with wavelength 
size [5]. 

It is generally agreed that, if the SNR (defined as in [10]) drops below 4 dB, 
the performance of virtually any algorithm is drastically impaired [9] [10]. Table 
2 reports SNR values evaluated for the image stacks considered in this paper. It 
can been noticed that, even though the datasets exhibit some variability, most 
stacks are affected by noise levels below or very close to this critical threshold. 
Hence, it is crucial to implement an effective denoising, focusing on those noise 
sources (e.g. speckle) that can be effectively faced. 

4. AMicro: The Proposed Algorithm 

In this section, we describe our algorithm for MT detection and tracking, which 
will be labelled AMicro in the following. The main objective is to achieve reliable 
estimates of a few parameters of interest, namely average and standard deviation 
of: 
• MT growth velocity. 
• MT track length. 
• MT track lifetime. 

These are the same parameters that the expert biologists evaluate manually. In  
 

Table 2. SNR values (dB) of the stacks belonging to the addressed dataset. 

NOCODAZOLE TAXOL 

Dose Stack ID SNR Dose Stack ID SNR 

0 nM 

1 

2 

3 

4 

5 

4.47 

3.80 

6.90 

6.23 

4.31 

0 nM 

1 

2 

3 

4 

5 

2.46 

3.58 

3.52 

3.94 

3.36 

1 nM 

1 

2 

3 

4 

5 

1.14 

3.52 

5.31 

4.76 

4.76 

0.1 nM 

1 

2 

3 

4 

5 

2.28 

4.07 

3.58 

5.29 

6.48 

10 nM 

1 

2 

3 

4 

5 

5.31 

4.62 

1.55 

3.22 

1.96 

10 nM 

1 

2 

3 

4 

5 

6.47 

1.67 

3.16 

3.60 

1.37 

100 nM 

1 

2 

3 

4 

5 

2.58 

4.01 

3.96 

2.01 

5.31 

100 nM 

1 

2 

3 

4 

5 

2.30 

1.88 

3.01 

1.24 

0.49 

https://doi.org/10.4236/ami.2019.94009


M. Varrecchia et al. 
 

 

DOI: 10.4236/ami.2019.94009 70 Advances in Molecular Imaging 
 

the control stacks analyzed to monitor astral MTs, they are able to effectively 
identify some dozens of tracks, used to work out the average metrics of interest. 
As a consequence, we have set up our algorithm so as to achieve a number of 
tracked MTs comparable with that of manual analysis. We trade a possibly 
higher False Negative Rate (FNR) with a lower False Positive Rate (FPR). In fact, 
as we are interested to measure average parameters, we want the selected tracks 
to be very reliable, even at the expenses of disregarding a number of true tracks. 

With respect to state-of-the art methods, we have devoted particular attention 
to the following aspects. 
• Robustness. The experimental conditions yield very noisy images. Hence, we 

focus on effective denoising, taking into account the statistical properties of 
the main noise sources, and focusing on those that can be more effectively 
limited. 

• Ease of use. As it is designed to be routinely used by the biologists, we have 
privileged a solution with few or no parameter to be manually set. 

• Computational efficiency. The method is expected to manage huge amounts of 
data every day. Hence, the computational complexity should not be excessive. 

These features have been traded off with generality. In fact, our algorithm is 
only suitable for astral MT detection and is not efficient in tracking other types 
of particles. We have exploited all the possible a priori information of MT dy-
namic behaviour. Also, in order to enable a simple and efficient use of the tool, 
we have selected parameters to match typical experimental conditions, i.e.: de-
tection of MTs in interphase cells, and medium MT density (about 100 MTs per 
field). 

The main feature that differentiates between our algorithm and the previously 
proposed ones, is the fact that it is tuned on a specific application, conceived for 
easy everyday use by biologists, aiming at achieving performance comparable 
with those obtained by manual analysis. 

AMicro has been developed in Matlab 2017a, and, following a typical ap-
proach, is divided into three main steps: enhancement, detection and tracking. 

4.1. Enhancement 

Our experimental data are affected by high levels of Poisson and speckle noise. 
As discussed, Poisson noise can only be limited by augmenting the light intensi-
ty, which is not feasible in in vivo experiments. In order to reduce the speckle 
noise, we have devised a simple heuristic procedure called the LOG-Wiener 
Transform. First, we apply a logarithmic operator to the image in order to map 
multiplicative noise into an additive one. Then, we process frames with a Wiener 
filter with a neighbourhood 3 × 3 wide, based on the working assumptions that 
noise and signal are not correlated, and the noise process is additive in the 
transformed domain. Finally, the filtered image is subject to inverse logarithmic 
transform. This process is very effective to limit speckle noise and has proven to 
provide smooth background, making the subsequent particle identification easi-
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er. However, we stress the fact that the selection of this procedure is driven by 
heuristic considerations, and the assumption of additive Gaussian noise in the 
transformed domain is not theoretically guaranteed. 

4.2. Detection 

This step is devoted to the detection of comets in single images of the stack. 
Calibration: In order to limit the FPR, and to automatically match proper 

parameters with the image stack at hand, the algorithm encompasses a calibra-
tion phase. We know that astral MTs stem from the centrosome towards the cell 
cortex. Hence, it is relatively easy to select a portion of a sample frame not con-
taining MTs, representative of the background, and a portion centred around 
the centrosome, hence representative of the signal-containing area. In the cali-
bration phase, for each stack, the user is asked to select two regions of a sample 
image, respectively including and not including the centrosome. Then, the algo-
rithm estimates the sample distribution of pixel intensities in this area, and, in 
particular: 
• the mean value bI  and the standard deviation bσ  of the background; 
• the mean value oI  and the standard deviation of the intensity of the objects 

of interest (i.e., the astral MT plus-ends). 
It is worth noticing that the same information is used to work out the SNR 

[9]: 

SNR 10log o b

b

I I
σ
−

=                       (2) 

Once these parameters are estimated, we set a threshold hT  on the amplitude 
of an object to be considered a MT plus-end. It must exceed the average ampli-
tude level by a factor that depends on the object standard deviation. From an 
experimental evaluation on several images (not reported for brevity), the sample 
distribution of comet plus-end amplitudes exhibits a rather small standard devi-
ation. Hence, we have set h oT I= . Variations of the threshold with respect to 
this value provide different trade-off between FPR and FNR. 

We assume that the parameters estimated on a sample image of the stack 
(typically the first one) hold valid for the whole stack at hand. This is not exactly 
true, due to photo-bleaching. However, this choice is dictated by simplicity is-
sues, and has proven to be rather robust. 

Comet Detection: Once the threshold hT  is defined, the actual detection of 
comets is based on a local maxima search over the frame. The search is carried 
out locally, employing a squared scrolling window whose side is about 400 nm 
(after [16]) applied to the enhanced image. Within the k-th window in the t-th 
frame, a local maximum ,k tM  at spatial coordinates ( ),x y  is considered as a 
comet plus-end if and only if its intensity exceeds hT : 

( ), ,k t hM x y T>                          (3) 

The comet positions are then refined as in [16], by centering the squared 
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window on the local maxima previously detected, and recalculating the peak in-
tensity exploring the newly selected neighbourhood; this limits the problem of 
recognizing as split two objects actually belonging to the same MT. 

A visual representation of the detection results is shown in Figure 1. 

4.3. Tracking 

Tracking is based on the assumption that MTs exhibit a uniform linear motion 
during their growth phase (i.e., the only one directly detectable). First, the coor-
dinates of the particles identified in the previous step are linked in order to build 
up partial trajectories. To this purpose, plus-end positions are connected frame- 
by-frame minimizing a simple cost functional, where only the contribution due 
to particle displacement has been kept (as the intensity contributions have re-
vealed to be little significant in our experiments due to the narrow distribution 
of the comet intensity): 

( ) ( )2 2
p q p qx x y yΦ = − + −                     (4) 

The maximum displacement allowed between two particles in order to link 
them is determined as follows. Let us assume that F is the frame rate (in frames/s) 
and maxV  is the maximum expected velocity of growing plus-ends (in nm/s). 
Hence, the maximum displacement (in nm) that can be expected from a growing 
plus-end between two subsequent frames is 

max
max

V
S

F
=                           (5) 

In our experiments, we have fra2 mes sF = . From studies in literature and 
thanks to the expertise of the expert biologists, we set max 55 m minV = µ  (this  

 

 
Figure 1. Cumulative MTs detected at increasing time instants, corresponding to differ-
ent frames of the same stack. 
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value has also been validated a posteriori—see Sect. 5). Hence, we have worked 
out an upper bound max 450 nm frameS ≈ , corresponding to a window 7 7×  
pixel-wide in the present experiments. 

This step yields partial tracks, because a track may be temporarily lost due to 
the MT entering a pause state. Hence, as a common practice, once the partial 
tracks are available, the algorithm provides for their linking. Two partial tracks 

nT , mT  are connected if and only if: 

( ) max,n md T T S≤                         (6a) 

( ) max,n mt T T T≤                         (6b) 

where ( ),d ⋅ ⋅  is an operator that measures the spatial displacement between the 
last pixel of nT  and the first pixel of mT , and ( ),t ⋅ ⋅  is an operator measuring 
the time displacement (in seconds) between the two partial tracks. According to 
Equation (6a), the linking occurs if and only if the end of the first track and the 
beginning of the second one have a maximum displacement of maxS  as eva-
luated in Equation (5). The rationale behind this choice is that, in case a MT has 
entered a pause and then it recovers, it is reasonable to search for its plus-end 
within a window dictated by the maximum expected displacement between adja-
cent frames. This choice does not take into account the case of the track being 
fragmented because its plus-end has temporarily got out of the focus plane. How-
ever, the expert biologists deem the pause far more likely than this latter event. As 
for the parameter maxT  in Equation (6b), it has been set to 2.5 s, as this is consi-
dered representative of typical pause events in the experiments at hand. 

As a refinement, tracks are fitted with a second-degree polynomial. Finally, in 
accordance with biologists, we have decided to discard tracks shorter than 2.5 s. 
This allows one to remove non-reliable tracks exhibiting Brownian motion, 
which does not meet the assumed linear motion model. 

5. Results 

In this section, we present the results achieved by AMicro. First of all, we pro-
vide an assessment of its performance, referring to synthetic, publicly available 
data used for the International Competition described in [8]. Then, we test our 
method on real data, and evaluate the mean MT velocity mv , track length mλ , 
track lifetime mτ , and their standard deviations vσ , λσ , τσ , for both taxol- 
and nocodazole-doped cell cultures. The achieved results are compared with 
those yielded by similar algorithms. In case the related software is released, we 
have run it on the same data stacks. Otherwise, we refer to published results, 
worked out on data comparable to that addressed in our experiments. Finally, 
AMicro has been compared with the results achieved by the manual processing 
performed by the biologists. 

5.1. Algorithm Assessment with Standard Synthetic Data 

In order to objectively assess the AMicro performance, we have run the algo-
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rithm on the same synthetic data and employing the same metrics as in the In-
ternational Competition [8]. As the tool is not devised for tracking miscellane-
ous particles (e.g. also viruses, vesicles), its validation has been carried out on 
data related to the microtubule scenario. We have considered four increasing 
SNR levels (1, 2, 4, 7 dB) and the mid-density case. The synthetic data for this 
scenario foresee about 500 tracks per video, hence can be considered as rather 
demanding for AMicro, which has been designed to manage about a hundred 
tracks per video. 

The performance has been expressed in terms of the average α  and β  
measures and Jaccard similarity coefficient JSC. These metrics evaluate the 
closeness between the selected tracks and the ground truth (i.e., the tracks ac-
tually simulated); the reader is referred to [8] for more details. The obtained re-
sults are reported in Figure 2; the average values are reported to enable compar-
ison with different algorithms. The performance of AMicro turns out to be 
comparable with other state-of-art algorithms [8]. 

We stress that our tool, by construction, is heavily dependent on some as-
sumptions specific of the experimental conditions at hand: 
• Astral MT detection in interphase cells, hence linear motion of MT stem-

ming from the centrosome and directed towards the cell cortex. 
• Moderate MT concentration. 
• Presence of speckle noise, besides Poisson and additive Gaussian one. 

The simulated data are not fully representative of these assumptions, as both 
the motion model and the multiplicative noise are sub-optimally represented in 
these data. 

It is worth also discussing our technique performance related to false-positive 
and false-negative rates. The performance of virtually any algorithm in terms of 
α , β  and JSC are known to be more sensitive to FNR than FPR [15]. On the 
other hand, by construction, we have privileged low FPR, even at the expenses of 
a higher FNR, in order to measure parameters related to very reliable tracks. 
When tested on the simulated data, AMicro achieves an average FPR of about 
15% and FNR in excess of 22%. These values, considered jointly with the α , β  
and JSC metrics reported in Figure 2, allow us to conclude that the performance 
of our algorithm is in line with other state-of-the-art methods (refer to [15] for 
more details). 

5.2. Results: Nocodazole-Doped Cells 

In a first set of experiments, AMicro has been tested on cell cultures doped with 
nocodazole 0, 1, 10, 100 nM. In this preliminary validation phase, a limited 
number of drug concentrations have been considered, although spamming a 
large range, due to limited resources. The average and standard deviations of 
growth velocity (μm/min), track length (μm) and duration (s) of the detected as-
tral MT tracks are reported in Table 3. Zero values denote that no track matching 
the linear motion model has been identified in the stack at hand, due to the  
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Figure 2. Performance of AMicro in terms of average α , β  and Jaccard similarity coefficient. 
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Table 3. Nocodazole-doped cells: results. 

NOCODAZOLE 

Dose Stack mv  vσ  mλ  λσ  mτ  τσ  

0 nM 

1 

2 

3 

4 

5 

12.24 

15.36 

15.84 

14.98 

16.58 

6.18 

7.75 

8.91 

6.80 

9.77 

1.25 

1.02 

1.03 

1.33 

1.87 

0.70 

0.69 

0.57 

0.74 

1.11 

5.71 

4.33 

4.03 

5.09 

5.43 

2.59 

2.00 

1.14 

2.62 

2.76 

 Mean 15.00 7.88 1.30 0.76 4.91 2.22 

1 nM 

1 

2 

3 

4 

5 

13.34 

14.00 

16.92 

17.26 

11.97 

0.35 

8.04 

9.12 

8.74 

8.73 

1.17 

1.25 

1.21 

1.19 

1.00 

0.05 

0.59 

0.55 

0.42 

0.46 

5.25 

4.57 

3.96 

4.03 

3.75 

0.35 

2.01 

1.88 

1.65 

0.82 

 Mean 14.70 6.99 1.20 0.41 4.31 1.34 

10 nM 

1 

2 

3 

4 

5 

18.65 

0 

17.87 

0 

15.59 

8.18 

0 

7.30 

0 

7.52 

1.47 

0 

0.96 

0 

1.10 

0.79 

0 

0.39 

0 

0.68 

4.76 

0 

4.22 

0 

3.88 

2.09 

0 

0.91 

0 

1.09 

 Mean 17.37 7.67 1.17 0.62 4.28 1.36 

100 nM 

1 

2 

3 

4 

5 

0 

0 

0 

0 

12.82 

0 

0 

0 

0 

7.46 

0 

0 

0 

0 

1.07 

0 

0 

0 

0 

0.57 

0 

0 

0 

0 

4.61 

0 

0 

0 

0 

1.54 

 Mean 12.82 7.46 1.07 0.57 4.61 1.54 

 
suppression of MT dynamics. Actually, as the drug concentration increases, 
fewer and fewer tracks are detected: from an average of about 100 in controls to 
a dozen at 100 nM. At concentration as high as 100 nM, in most movies all MTs 
are disassembled. 

The average growth velocity increases significantly at 10 nM, and then de-
creases again, reaching its minimum at 100 nM concentration. This behaviour 
represents an interesting outcome of our work. A finer analysis of the velocity 
trend in cell cultures doped with more nocodazole concentrations is left to fu-
ture developments. For the sake of clarity, the growth velocity boxplots are dis-
played in Figure 3. 

Due to the decision to discard particles not matching the uniform linear mo-
tion model, most tracks are longer than 1 μm. Mean lifetime exhibits a trend 
similar to length, namely it decreases at 1 nM, although a small increase occurs 
at 100 nM. However, at that concentration only one stack is evaluated, hence this 
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result is not statistically sound. 
Figure 4 reports the sample distributions of velocity, length and lifetime in  

 

 
Figure 3. Boxplots of growth velocity at different nocodazole concentrations. 

 

 
Figure 4. Nocodazole-doped cells: sample distributions of velocity, speed and lifetime. Median and mean values nu-
merically evaluated on the sample distribution. 
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control stacks (similar results can be obtained for other drug concentrations). 
The sample distribution of velocity is approximatively normal, whereas both 
length and lifetime exhibit an exponential decay. The mean and median values 
exhibit little difference, meaning that outliers have not a significant impact on 
the algorithm performance. It can be noticed that the velocity values are well 
below max 55 m minV = µ  addressed in Equation (5). 

5.3. Results: Taxol-Doped Cells 

Taxol is a MTs stabilizer, so it increases the polymer mass and suppresses MT 
dynamic instability. In Table 4, the average and standard deviation of growth 
velocity (μm/min), track length (μm) and duration (s) of the detected astral MT 
tracks are reported. 

The number of detected tracks ranges from about 100 (control stacks) to 19 at 
the highest drug concentration addressed. Comparing the nocodazole and taxol 
results in control stacks (where actually no drug is employed), we can notice that  

 
Table 4. Taxol-doped cells: results. 

TAXOL 

Dose Stack mv  vσ  mλ  λσ  mτ  τσ  

0 nM 

1 

2 

3 

4 

5 

21.32 

22.61 

19.01 

21.14 

19.76 

9.05 

10.49 

10.55 

9.07 

11.42 

1.65 

1.42 

1.24 

1.11 

1.36 

1.06 

0.72 

0.79 

0.71 

0.84 

4.19 

4.14 

4.32 

3.77 

3.81 

1.39 

1.63 

1.54 

0.96 

1.35 

 Mean 20.77 10.12 1.36 0.82 4.05 1.37 

0.1 nM 

1 

2 

3 

4 

5 

15.42 

13.55 

15.47 

15.71 

17.34 

8.08 

7.30 

9.03 

8.13 

8.64 

1.47 

1.16 

1.59 

1.48 

1.51 

0.90 

0.66 

1.66 

0.90 

0.73 

4.54 

4.60 

5.01 

4.35 

4.47 

2.11 

1.83 

3.14 

1.64 

1.68 

 Mean 15.91 8.34 1.44 0.96 4.63 2.08 

10 nM 

1 

2 

3 

5 

13.26 

13.27 

12.09 

14.24 

5.67 

7.08 

5.77 

6.98 

1.33 

0.86 

1.38 

1.46 

0.70 

0.48 

0.81 

0.76 

5.52 

3.75 

5.19 

4.85 

2.56 

0.50 

2.83 

1.84 

 Mean 13.46 6.17 1.14 0.61 4.59 1.74 

100 nM 

1 

2 

3 

4 

5 

13.61 

14.44 

21.51 

11.51 

7.68 

5.78 

3.52 

0.00 

6.18 

0.00 

0.92 

1.54 

1.08 

0.99 

0.38 

0.55 

0.60 

0.00 

0.56 

0.00 

4.27 

6.31 

3.00 

5.25 

3.00 

1.41 

1.93 

0.00 

2.62 

0.00 

 Mean 13.75 3.10 0.98 0.34 4.36 1.19 
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in the second case molecules exhibit higher mean velocity. This cannot be ex-
plained in terms of drug effects, since cells have not been doped in either case. 
This points into evidence the extreme variability and complexity of the problem, 
since cell functions are altered not only by drugs, but also by environmental fac-
tors (e.g. temperature) very difficult to finely control. 

Velocity mean values exhibit a uniformly decreasing trend; this is coherent 
with the theoretical knowledge of the taxol effect on MT dynamic behaviour. 
The growth velocity boxplots are reported in Figure 5. 

Figure 6 shows the sample distributions of speed, length and lifetime for a 
taxol concentration of 0.1 nM. Considerations similar to those related to Figure 
4 still hold true in this case. 

5.4. Statistical Data Analysis 

In order to assess the statistical reliability of the obtained results, the standard 
error of the mean (SEM) has been worked out for velocity, length and lifetime. 
SEM is an indicator of the value variability among different experiments, and it 
is defined as: 

SEM
M
σ

=
 

where σ  is the standard deviation of the distribution of the parameter at hand, 
and M is the sample size. In this work, for each drug concentration, the sample 
standard deviation has been employed, whereas M is the cumulative number of 
tracks detected in each stack. Table 5 reports the SEM for the three parameters 
taken into account for both taxol and nocodazole-doped cells. The SEM values 
are reasonably low, hence we can conclude that the obtained values at each con-
centration, are sound from the statistical point of view. 

Finally, even though the three features of interest, namely velocity, length and 
 

 
Figure 5. Boxplots of growth velocity at different taxol concentrations. 
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Figure 6. Taxol-doped cells: sample distributions of velocity, speed and lifetime. 
 

Table 5. Standard error of the mean (SEM) for MT velocity, speed and lifetime. 

NOCODAZOLE 

Dose SEMv SEMλ SEMτ 

0 nM 0.28 0.03 0.08 

1 nM 0.42 0.03 0.08 

10 nM 0.48 0.04 0.09 

100 nM 0.64 0.05 0.13 

TAXOL 

Dose SEMv SEMλ SEMτ 

0 nM 0.56 0.05 0.08 

0.1 nM 0.22 0.02 0.05 

10 nM 0.34 0.03 0.10 

100 nM 0.31 0.03 0.12 
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lifetime, have been estimated independently, their mean values are clearly corre-
lated. In the following, we assume that two variables (velocity and lifetime) are 
independently estimated, and we work out the third one (length) from the mean 
values of the others: 

m m
c

v
k
τ

λ
⋅

=
 

where v represents the mean velocity (μm/min), τ  the mean lifetime (s), and k 
is a conversion factor. In Table 6, such computed length values cλ  are com-
pared with those estimated by the algorithm, mλ . It is clear that the estimated 
length values do not significantly differ from those computed from velocity and 
lifetime mean values. 

5.5. Performance Comparisons on True Test Data 

As previously discussed, the algorithm assessment based on simulated data, even 
though significant, should be completed with comparisons of competing algo-
rithms tested on the same real data. Obviously, in this case, a ground truth is not 
available, hence metrics such as α , β  or Jaccard similarity coefficient cannot 
be worked out. Nevertheless, in literature other algorithms are described, that 
estimate average MT parameters in cell cultures comparable to those addressed 
in this paper, and/or whose software implementation is publicly available. 
Hence, we have compared the average velocity and length and the respective 
standard deviations yielded by AMicro with: 
• Algorithm 2 (plusTipTracker) described in [28]. The software, publicly availa-

ble, has been run on a subset of the same stacks of the present work. 
• Algorithm 3 described in [16]. As the software is not available, we replicate 

the results reported by the authors, obtained on a HeLa Kyoto cell line stably 
expressing EB3-EGFP, and doped with 0, 80 nM nocodazole and 0, 20, 100  

 
Table 6. Estimated vs. computed MT track length. 

NOCODAZOLE 

Dose mλ  cλ  

0 nM 1.30 1.23 

1 nM 1.20 1.16 

10 nM 1.17 1.24 

100 nM 1.07 0.99 

TAXOL 

Dose mλ  cλ  

0 nM 1.36 1.40 

0.1 nM 1.44 1.23 

10 nM 1.14 1.03 

100 nM 0.98 1.00 
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nM taxol concentrations. 
• Algorithm 4 described in [18]. This algorithm has been directly tested on a 

subset of the same stacks of the present paper. 
The results are reported in Table 7 for both nocodazole and taxol-doped cell 

cultures. If data are not available for a given stack, the table reports NA. 
It can be noticed that Algorithm 2 generally yields higher mean velocity if 

compared to AMicro, whereas Algorithms 3 exhibit similar values in control 
stacks and at 100 nM drug concentrations. Moreover, Algorithm 3 yields very 
low standard deviation, due to an algorithmic choice that suppresses variability 
to a large extent. As for length, AMicro and Algorithm 3 yield nearly the same 
average values; instead, Algorithm 2 is able to detect much shorter tracks. This 
can be justified by the removal of shorter tracks carried out by both AMicro and 
Algorithm 2, but not by Algorithm 3. 

If we focus on the comparison between AMicro and Algorithm 4, we can ap-
preciate that they yield coherent trends as for mean velocity and length, with 
AMicro generally providing slightly lower values, due to the fact that [18] is 
tuned so as to yield a larger number of detected tracks. We point out the signifi-
cant difference in average length at 100 nM concentration of both taxol and no-
codazole. This is due to the screening process implemented in AMicro, which 
removes all short tracks not matching the uniform linear motion assumption. 

 
Table 7. Comparison among different algorithms.  

NOCODAZOLE TAXOL 

Dose Algo mv  vσ  mλ  λσ  Dose Algo mv  vσ  mλ  λσ  

0 nM 

AMicro 

2 

3 

4 

15.00 

20.57 

16.00 

16.23 

7.88 

13.00 

0.75 

13.43 

1.30 

0.63 

1.45 

1.00 

0.76 

0.52 

0.30 

1.41 

0 nM 

AMicro 

2 

3 

4 

20.77 

20.44 

15.50 

22.67 

10.12 

11.10 

1.40 

17.92 

1.36 

0.67 

1.60 

1.20 

0.82 

0.58 

0.23 

1.70 

1 nM 

AMicro 

2 

3 

4 

14.70 

NA 

NA 

NA 

6.99 

NA 

NA 

NA 

1.20 

NA 

NA 

NA 

0.41 

NA 

NA 

NA 

0.1 nM 

AMicro 

2 

3 

4 

15.91 

NA 

NA 

NA 

8.34 

NA 

NA 

NA 

1.44 

NA 

NA 

NA 

0.96 

NA 

NA 

NA 

10 nM 

AMicro 

2 

3 

4 

17.37 

18.56 

NA 

19.92 

7.67 

10.20 

NA 

15.53 

1.17 

0.61 

NA 

1.12 

0.62 

0.53 

NA 

1.49 

10 nM 

AMicro 

2 

3** 

4 

13.46 

15.25 

9.00 

11.06 

6.17 

11.60 

1.40 

9.34 

1.14 

0.40 

0.95 

0.45 

0.61 

0.32 

0.15 

0.55 

100 nM 

AMicro 

2 

3* 

4 

12.82 

17.33 

13.10 

11.20 

7.46 

11.60 

2.25 

10.51 

1.07 

0.44 

1.00 

0.34 

0.57 

0.32 

0.24 

0.40 

100 nM 

AMicro 

2 

3 

4 

13.75 

NA 

7.00 

8.66 

3.10 

NA 

1.00 

8.86 

0.98 

NA 

0.40 

0.29 

0.34 

NA 

0.15 

0.34 

*Concentration 80 nM. **Concentration 20 nM. 
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Figure 7. Nocodazole-doped cells: comparison between AMicro and Algorithms 2, 3 and 4. 
 

Table 8. Average growth velocity: comparison between AMicro and manually scored data. 

NOCODAZOLE 

Dose Stack ID Manual AMicro 

0 nM 

1 

2 
3 

12.03 

16.86 
16.77 

12.24 

15.36 
15.84 

1 nM 

1 

2 

3 

14.02 

13.53 

16.60 

13.34 

14.00 

16.92 

 
The velocity and length yielded by the algorithms, in the case of nocodazole- 

doped cell cultures, are reported in Figure 7. We point out the fact that, whereas 
AMicro and Algorithm 4, at intermediate concentrations (i.e. 10 nM), shows an 
increase of MTs dynamicity in terms of velocity, this behaviour is not revealed 
by Algorithms 2 and 3, which yield a monotonic decreasing velocity curve. 

Finally, the results of AMicro have been compared with those computed by 
hand by expert biologists of the Department of Molecular Biotechnology and 
Health Sciences of the University of Turin. For the sake of brevity, this has been 
done on a small subset of the same data stacks, referring to nocodazole-doped 
cell cultures, and only means velocity values have been taken into account. The 
available comparisons are listed in Table 8. 

Paired t-test has been evaluated, which has turned out to be at the limits of 
statistical significance (p = 0.052). The Pearson correlation coefficient, adjusted 
in order to keep into account the small sample size [29], turned out to be 0.89, so 
denoting a strong correlation between the two sample measures. 

6. Conclusions 

We have presented AMicro, an automatic tool for tracking and analyzing astral 
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MTs in fluorescence confocal microscopy images. The algorithm has been vali-
dated using data and metrics provided by the International Competition [8]; 
then, it has been run on real experimental data. Despite the lack of a ground 
truth, the validation process has provided encouraging results, which are also 
well-substantiated by the expected drug effects at high concentrations. An im-
portant aspect is related to computational time; indeed the time spent on ana-
lyzing samples is almost negligible if compared to the manual labour (several 
hours compared to few minutes). Moreover, the automatic software is not af-
fected by human errors, due to tiredness or attention deficit, and can provide a 
valid support for biological experiment evaluation. 

The main achievement of our method is that it is extremely easy to use, and 
all parameters are automatically set up without requiring the user intervention. 
At present, it is being routinely employed by the biologists of the Department 
of Molecular Biotechnology and Health Sciences of University of Turin; other 
experiments, different from those employed in this work, are being carried on. 
As for future developments, the preliminary results related to the impact on 
the velocity trend of intermediate concentrations of nocodazole will be refined 
using cell cultures doped with more nocodazole concentrations (as well as other 
MTAs). AMicro will be tested also on mitotic cell cultures. Finally, to ensure a 
better portability, it is planned to leave the MathWorks environment developing 
an ImageJ plug-in. 
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