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Abstract Cutoff walls represent an interesting solution for the containment of the pol-

lution of superficial groundwater. For polluted sites, the purpose of a cement-bentonite 

cutoff wall is to minimize contaminant transport and the primary design requirement for 

such materials is the low hydraulic conductivity. Despite these barriers are often cast in 

place as provisional tools, recently their wide use imparted the need for a better under-

standing of cement-bentonite walls also in the long-term. This certainly implies not only 

the need to study the time evolution of the cement-bentonite hydro-mechanical proper-

ties in a contaminated environment, but also the necessity of a continuous monitoring 

of the efficiency of the system. To this aim, the use of dedicated devices cast in place 

inside the wall when the mixture is still fluid proved to be particularly suitable to inter-

cept and analyse the fluids flowing through the barrier. In this paper, the results of a 

numerical study are presented, with the goal of suggesting criteria about the optimum 

spacing and geometry of these devices. 

Keywords: cutoff walls, cement-bentonite, contaminants, monitoring 

 

 

1   Introduction 

Containment is a widely used pollution control strategy, involving ‘putting a box’ 

around the contaminated ground. Slurry trenching is the most widely used form of trench 

barrier, and involves excavating a trench through a dense slurry and then backfilling the 

trench. Slurry trench cutoff walls were originally developed to control ground water 

flow beneath dams and levees, and for temporary excavations below the ground water 

table (Soga et al., 2013). With time, society became aware of subsurface contamination 
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from industrial and storage activities and slurry trench cutoff walls proved to be a relia-

ble technology to limit the underground circulation of pollutants. To achieve this goal, 

a backfill hydraulic conductivity lower than 10-9 m/s is specified in slurry wall design 

(ICE, 1999). Other requirements for slurry mixtures are a sufficient shear strength and 

ductility, as well as chemical compatibility with the permeating fluid. Among the dif-

ferent materials used for such barriers, a widespread solution is provided by cement-

bentonite mixtures. The construction process is in this case performed in one single 

phase: a series of alternate panels are excavated, using the cement-bentonite slurry as a 

stabilizing fluid. The same material is then left in the trench to harden at the end of the 

excavation (Jefferies, 1971). This construction process not only allows the continuity of 

the barrier to be easily assured, but it also permits the installation of monitoring and 

measuring devices in the liquid slurry, avoiding potential damage induced by the perfo-

ration of the solid material (Sanetti, 1998, 2000). The goal of these devices is generally 

to collect the fluid passing through the barrier before the leachate contaminates the sur-

rounding environment, allowing an early identification of contaminants and an assess-

ment of the efficiency of the barrier for monitoring purposes. In this paper, the working 

principles of a (patented) monitoring device to be installed in self-hardening cement-

bentonite cut-off walls are investigated by means of numerical simulations. In Section 

2, just the hydraulic response of the barrier is analyzed, while in Section 3 the presence 

of a dilute contaminant is addressed too. 

2   Hydraulic behavior of the barrier 

2.1 The numerical model 

A scheme of a parallelepiped cut-off wall (panel) with the monitoring devices is shown 

in Figure 1(a). As a first approximation, the device can be considered as a cylinder that 

allows the drainage of the pore fluid on the whole lateral surface. The hydraulic head 

inside the device is supposed to be known, and equal to hdev. By assuming that the ver-

tical component of fluid velocity can be disregarded, a two dimensional scheme can be 

adopted, as shown in the plan view in Figure 1(b). By assuming the homogeneity of the 

cement-bentonite mixture, the symmetry of the problem allows studying just a part of 

the wall, centered in the devices and characterized by a length s. The system can thus be 

described by just three geometrical variables, namely (i) the thickness t of the barrier, 

(ii) the diameter d of the device, and (iii) the spacing s between the devices. In the nu-

merical study, some geometrical configurations of the system have been studied, by 

changing the spacing and the diameter of the devices for a given wall thickness.  

In order to study the hydraulic response of the system, just the water flow in the barrier 

(assumed to be water saturated) is considered, neglecting the presence of contaminants. 

Assuming that the specific discharge of the porous medium v and the gradient of the 

hydraulic head h are linearly related by the Darcy law through the hydraulic conductivity 
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Kb, the governing equation for an isotropic and homogenous material can be simply 

expressed by the Laplace equation: 

∇2ℎ = 0. (1) 

  

          
(a)   (b)             (c) 

Fig. 1  Geometrical variables (a), plan view (b) and boundary conditions (c) 

The boundary conditions for the problem at hand are summarized in Figure 1(c): the 

hydraulic head h = hin on the inlet surface in (i.e. the part of the wall in contact with the 

contaminated area) is supposed to be known, as well as the hydraulic head h = hout at the 

outlet surface out, being hin > hout. In all the following numerical analyses, the hydraulic 

head difference between the sides of the wall is supposed to be constant and equal to 1 

m. On the lateral surface of the device dev a constant hydraulic head is imposed too, i.e. 

h = hdev. Finally, due to the symmetry of the fluxes, on the lateral sides of the domain 

side a no flux condition is imposed. For the sake of making the results of the analyses 

as general as possible, the model has been formulated in a non-dimensional fashion, 

according to the following non-dimensional groups: s/t (normalized device spacing), d/t 

(normalized device diameter), h* (normalized hydraulic head in the device), defined as 

h* = (hdev-hout)/(hin-hout). In particular, h* varies from 1 – when the hydraulic head in the 

device coincides with the inlet hydraulic head hin- to 0 – when hdev = hout. Equation (1), 

together with the relevant boundary conditions, has been numerically solved via the Fi-

nite Element Method, by using the software Comsol Multiphysics ®. 

 

2.2 Numerical results 

In this section, some numerical results are presented, with the aim of evidencing the role 

of the hydraulic and geometrical variables on the hydraulic response of the system. 

When the results are not shown in a non-dimensional fashion, reference is made to 0.4 

m thickness cut-off wall, made of a cement-bentonite mixture characterized by a hy-

draulic conductivity Kb = 10-9 m/s, as suggested by regulations (ICE, 1999). In every 

simulation, the flow across the outlet boundary of the wall, qout, has been calculated, as 



4  

well as the flow of water inside the device, qdev. The following variables have then been 

defined: 

 The equivalent hydraulic conductivity of the cutoff wall with the device, 

Keq = qout/s‧t/h, being h = hin-hout; 

 The hydraulic efficiency of the system, expressed in terms of the reduction of 

the equivalent hydraulic conductivity of the system with respect to the hydrau-

lic conductivity of the cement-bentonite mixture, Eff = (Kb-Keq)/Kb. It is easy 

to prove that the efficiency Eff can be expressed also in terms of water flow as 

Eff = (qDarcy – qout)/qDarcy, where qDarcy is the water flow that would be obtained 

without the device. 

It is worth noting that, from the hydraulic point of view, a functional system should be 

characterized by a positive efficiency Eff, i.e. having an outward flow lower than the 

inward one. As expected, for a negligible size of the device, positive efficiency is guar-

anteed for h* < 0.5. In order to clarify this aspect, Figure 2(a) shows the calculated val-

ues of hydraulic head and the velocity flow lines for a device characterized by h* = 0.1. 

In this case the efficiency is positive and an inward flow in the device is obtained, thus 

reducing the flow of water from the outlet surface of the wall. Vice versa, Figure 2(b) 

shows the numerical results for h* = 0.8. In this case, the efficiency is negative and the 

flow of water is outward from the device to the wall, thus increasing the quantity of 

water crossing the outward surface of the wall. In the following, just configurations with 

positive efficiency will be considered: the presence of the device – at least from the 

hydraulic point of view – provides a mitigation effects, reducing the flow of water cross-

ing the barrier. 

Figure (3) shows a collection of results from several finite analyses performed to evi-

dence the role of device spacing and diameter on the hydraulic efficiency of the system. 

It is evident that the lower the spacing s and the head in the device h*, the larger the 

efficiency. The role of device diameter is instead less straightforward. Figure 3(a) shows 

that, for h*=0, the efficiency always increases with the increase of the diameter of the 

device, while for h*>0 the evolution of Eff with d/t is non monotonic. In fact, for large 

diameters, the hydraulic head difference between the device and the outlet boundary is 

imposed at a small distance, thus inducing a large hydraulic gradient and an increase in 

the magnitude of the outward flow from the device.  

To provide a tool that can be useful for the identification of the optimal configuration of 

the system from the hydraulic point of view, the diameters corresponding to the maxi-

mum efficiency are collected in Fig. 4 for different spacings and hydraulic heads in the 

device. Next to each point, the corresponding efficiency is reported. 
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(a) h* = 0.1               (b) h* = 0.8 

Fig. 2  Role of the hydraulic head in the device h* on the hydraulic head distribution and on fluid 

velocity flow lines. 

 

  
(a) h* = 0.0    (b) h* = 0.1 

Fig. 3 Evolution of hydraulic efficiency of the system with device diameter for different spacings. 

 

Fig. 4. Optimal geometrical configuration for different h* values and related hydraulic efficiency. 
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3   Solute transport in the barrier: numerical model 

3.1 The numerical model 

As discussed in the introduction, slurry trench cut-off walls are widely used also for the 

containment of subsurface pollution. The requirement for the backfill material to have 

a hydraulic conductivity Kb lower than 10-9 m/s is in fact specified in slurry wall design 

because, under such condition, contaminant diffusion can be reasonably assumed to be 

the relevant transport process (Devlin & Parker, 1996). In the design of slurry walls, the 

determination of either the potential service life (which is usually related to the break-

through time of the contaminant) for a given wall thickness or the wall thickness re-

quired for a target service life is generally performed considering the contaminant flux 

as a one-dimensional advective-dispersive process, see e.g. Li et al (2017). The presence 

of the monitoring device however might have a relevant effect on the specific discharge 

direction, as proved in the previous sections, making the one-dimensional assumption 

not reliable to properly describe the advection process. Neglecting porosity changes, the 

two-dimensional contaminant mass balance equation for a diluted contaminant is thus 

considered: 

𝑅𝜙
𝜕𝑐

𝜕𝑡
+ ∇ ∙ 𝒋 = 0, (2) 

where c is the molar contaminant concentration, R is the retardation factor,  is porosity 

and j the contaminant flux. The transport of the solute can be expressed as the sum of 

two contributions, namely advection and dispersion. Dispersion accounts for the direct 

flow of the contaminant mass, and thus, is related to chemical concentration gradients, 

while advection represents the movement of the contaminant mass due to the flowing 

water. Accordingly, the total contaminant flux reads: 

𝒋 = 𝑐𝐯 − 𝐷∇𝑐, (3) 

being D the effective dispersion parameter of the cement-bentonite mixture, accounting 

for molecular diffusion, porosity and tortuosity (see, e.g., Della Vecchia & Musso, 

2016). The system of equation (1) and (2) is thus solved numerically by means of the 

Finite Element Method, again using the software Comsol Multiphysics ®. The initial 

and boundary conditions imposed to solve equation (2) are: 

 Initial condition: the backfill is assumed to be free of contaminant everywhere: 

c(x, t = 0)=0 on ; 

 Inlet boundary in: according to van Genuchten & Parker (1994), a Robin 

boundary condition is applied, guaranteeing a constant flux through the inlet 

boundary and mass balance consistency : 

(𝑐𝐯 − 𝐷∇𝑐) ∙ 𝐧 = ( 𝑐𝑖𝑛𝐯) ∙ 𝐧, (4) 

being cin the inlet concentration and n the normal unit vector to the boundary;  

 Outlet boundary out: (∇𝑐) ∙ 𝐧 = 0, in order to achieve a constant concentration 

gradient across the outlet boundary, according to Prince et al (2000). 



7 

 Device lateral surface dev: c = 0, due to the continuous removal of water from 

the device in order to keep the hydraulic head constant. 

 

3.2 Numerical results 

Some preliminary simulations of contaminant propagation through the cutoff wall with-

out the device have been run (h = 1 m, h* = 0, D = 2.5‧10-12 m2/s). Figure 5 shows the 

breakthrough curves for the contaminant in terms of the evolution of the average nor-

malized concentration on out cout/cin with the non-dimensional time T. The non-dimen-

sional time has been defined as T = tv/D, being v the water velocity in the 1D case (i.e. 

when no devices are present) and t the time. It is evident that, for hydraulic conductivi-

ties larger than 10-11 m/s, the slope of the breakthrough curve increases with Kb. Vice 

versa, for Kb values lower than 10-11 m/s, the breakthrough curve is insensitive to Kb. 

This effect can be related to a well-known non-dimensional variable, the Péclet number, 

which in this case is defined as: 

𝑃𝑒 =
𝑣𝐿

𝐷
, (5) 

where L is the length of the one-dimensional path, in this case coincident with the thick-

ness of the cutoff wall. This number is a measure of the relative importance of advection 

to dispersion. For the considered material parameters and geometrical configuration, 

Kb = 10-11 m/s leads to Pe = 0.04: such a low Péclet number implies a negligible contri-

bution of advection with respect to diffusion, so that the response of the system does not 

depend anymore on the hydraulic conductivity of the backfill, but just on its dispersion 

coefficient (which is the same in all the simulations). The role of the geometrical con-

figuration of the devices on contaminant propagation through the barrier is evidenced in 

Fig. 6, which shows the breakthrough curves on out for the cutoff wall without devices, 

as well as for device spacing s/t = 1, 2 and 4. Numerical results in Fig. 6 have been 

obtained by setting the hydraulic conductivity Kb = 10-9 m/s.  

 

Fig. 5  Influence of the backfill hydraulic conductivity on the outlet breakthrough curves for the cutoff 

wall without devices. 
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Fig. 6  Influence of the geometry of the barrier (s/t) on the breakthrough curves for Kb = 10-9 m/s. 

The mitigation role of the device is evident: at the same time, the lower the spacing 

between devices, the lower the concentration at the outlet boundary. The effect is more 

evident when stationary conditions are approached. The reduction of the concentration 

at the outlet is related to a larger contaminant mass removal through the devices, which 

is triggered by the zero-concentration condition imposed on their walls. The division of 

contaminant fluxes (normalized with respect to the inlet flux) between the outlet bound-

ary and the device for s/t = 1 are shown in Figure 7: more than 90% of contaminant mass 

is removed by the device. However, it is well known that the hydraulic conductivities 

determined by in situ testing are larger than those found from laboratory measurements, 

as a consequence of the heterogeneity in the constructed wall and of the effects of large-

scale testing, where inclusions and fissures may form a network of flow paths. Accord-

ingly, numerical simulations conducted considering a larger hydraulic conductivity, 

Kb = 10-8 m/s, and the same dispersion coefficient are shown in Fig. 8. In this case, the 

larger seepage velocity (i.e. the larger Péclet number) reduces the role of diffusion with 

respect to advection and makes the breakthrough curve less dependent on device spac-

ing. Furthermore, the effect of the devices is primarily to retard the arrival at the outlet 

of the contaminant, rather than to reduce the outlet concentration at steady state condi-

tions.  
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Fig. 7  Subdivision of normalized fluxes (continuous line) between the device and the outlet boundary 

for s/t =1, compared with the flux (dashed line) at the outlet boundary when no devices are present. 

 

 

Fig. 8  Influence of the geometry of the barrier (s/t) on the breakthrough curves for Kb = 10-8 m/s. 

4   Conclusions 

In the present study, some numerical analyses have been performed to evaluate the per-

formance of slurry trench cutoff walls with a device embedded for monitoring purposes. 

In the first part of the paper, the hydraulic response of the system has been studied, 

identifying the role of the main geometric variables of the wall and of the device. In 

particular, the role of device diameter, spacing and hydraulic head have been identified 

in terms of non-dimensional variables, leading to a rational criterion to identify the con-

figuration of the system corresponding to the maximum hydraulic efficiency in terms of 

reduction of water flow from the cutoff wall. In the second part of the paper, transport 
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across the barrier of a diluted contaminant has been considered too. In this case, the role 

of another non-dimensional variable has been put in evidence, i.e. the Péclet number. 

For low Péclet numbers, the transport of the contaminant is dominated by dispersion/dif-

fusion mechanisms, while for larger Péclet numbers advection begins to play a relevant 

role. The consequences on the behavior of cutoff walls are put in evidence, with partic-

ular reference to the role played by the devices and their geometry. Further studies will 

focus on the effect of contaminant concentration on material transport properties. 
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