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Abstract—In this paper, a novel approach for statistical analy-
sis of cable harnesses characterized by several random parame-
ters is proposed, which is based on a perturbative reformulation
of the well-known stochastic Galerkin method (SGM). With
respect to the traditional SGM, the proposed method avoids
the solution of an augmented multiconductor transmission line
(MTL), whose dimensions may become prohibitive in case of
structures characterized by several wires and random parame-
ters. Namely, it resorts to the iterative and repeated solution of a
MTL having the same number of wires as the original structure,
where the effects of random variations of geometrical parameters
are included by means of equivalent sources. The proposed
approach is here applied to collect statistical information of
voltages and currents at the terminations of a shielded cable.
Through such an example, involving a large number of wires
(7) and random variables (12), it is proven that the proposed
method yields a significant reduction of computational time with
respect to the traditional SGM, at the same time providing similar
accuracy in the prediction of statistical moments.

Index Terms—Multiconductor transmission lines, perturbation
technique, shielded cable, statistical analysis, stochastic Galerkin
method.

I. INTRODUCTION

Statistical techniques recently gained increasing attention
from the electromagnetic compatibility (EMC) community,
owing to the need for handling systems in which some
parameters may randomly vary, due to either manufacturing
tolerances or uncertainty in the knowledge of their exact value.
This is, for instance, the case of complex wiring harnesses,
whose geometrical characteristics, such as precise position of
wires within the bundle, are often hard to control [1]–[4]. Since
these random variations may significantly impact the EMC
performance, modeling and propagating the uncertainty asso-
ciated with these parameters become of paramount importance
to provide a statistical characterization (in terms of statistical
moments) of relevant electrical quantities.

To this end, the standard approach, known as Monte Carlo
(MC) method, is to perform repeated simulations exploiting
different realizations of the system under analysis. However,

in order to achieve a high accuracy in the prediction of
statistical moments, a huge number of samples is required.
This often leads to an unacceptable computational time, unless
the underlying deterministic model is very simple.

To overcome such a limitation without degrading prediction
accuracy, more advanced statistical techniques have been re-
cently proposed. Among these, the stochastic Galerkin method
(SGM) offers characteristics that are particularly suited for an
accurate statistical assessment of cables and interconnects with
geometry affected by uncertainty [5]. This method resorts to a
polynomial chaos expansion (PCE) of the random quantities of
the problem, i.e., the per-unit-length (p.u.l.) parameters (input
quantities) as well as line voltages and currents (output quan-
tities). These quantities are expanded in series of orthogonal
polynomials, which are then used to derive an augmented, yet
deterministic model of the original system, whose solution
directly provides statistical estimates of the output variables
without the need for repeated simulations. When applied to
wiring structures characterized by a limited number of wires
and/or random variables, this technique was proven to be very
accurate and computationally efficient [6].

Nevertheless, due to its intrusiveness, the computational
burden of SGM becomes prohibitive when the number of
random variables and/or conductors is very large. To overcome
this limitation, the present paper proposes a reformulation of
the SGM, which is obtained by combining the classical SGM
with the perturbative technique recently proposed in [7], [8]
for the solution of nonuniform transmission lines. According
to this novel approach, the solution of the augmented multicon-
ductor transmission line (MTL) model obtained by the SGM is
avoided, by converting such an augmented network into sub-
networks having the same number of wires as the original
structure. The solution is achieved iteratively, by including
the effects of random variability of geometrical parameters by
means of distributed current and voltage sources. The accuracy
and computational efficiency of this “hybrid” procedure are
here investigated considering a shielded cable with random



1

5

rc
rd

d

rs

3

4

2

7

6

(a)

Vs / 2

50W 

load

50W 50W 
4 m0 z

50W 

load

1

2
3

4

5
6

7

(b)

Fig. 1: Cross-section of the shielded cable under analysis (a);
cable configuration with terminations (b).

position of the inner wires [9], [10] as an application example.

II. STRUCTURE UNDER ANALYSIS

For illustration purposes, we consider in this work the
shielded cable depicted in Fig. 1(a). The geometry was orig-
inally described in [9]. Later, this cable was stochastically
studied in [10]. The cable consists of seven coated wires, with
conductor radius rc and dielectric radius rd = 2rc. One wire
is located at the center of the shield, whereas the remaining six
wires lie symmetrically around the center at a radial distance
d = 5rc. The relative permittivity of the dielectric coating
is εr = 4. The shield radius is rs = 10rc.1 The cable
is 4-meter long and uniform along its length. Without loss
of generality, in this work we consider a differential source
connected between wires no. 1 and no. 2, and 50-Ω loads
connected to each wire as depicted in Fig. 1(b).

For the stochastic analysis, the positions of the outer wires
(no. 2 to no. 7) are considered to be random. Namely, the hor-
izontal and vertical coordinates of these wires are uniformly
distributed within ±10% around their nominal values. The
total number of random variables is thus 12.

III. STATE-OF-THE-ART GALERKIN APPROACH

The frequency-domain equations for the cable under inves-
tigation read [11]:

d

dz
V(z, ω, ξ) = −jωL(ξ)I(z, ω, ξ), (1a)

d

dz
I(z, ω, ξ) = −jωC(ξ)V(z, ω, ξ), (1b)

1Since only relative dimensions count, the value of rc is here arbitrary.

where ω is the angular frequency, and L and C are the perti-
nent p.u.l. inductance and capacitance matrices, respectively.
Vectors V = [V1, . . . , V7]T and I = [I1, . . . , I7]T collect the
line voltages and currents, respectively, whereas vector ξ =
[ξ1, . . . , ξ12] encompasses the random parameters (i.e., the
wire positions). The p.u.l. inductance and capacitance matrices
depend on ξ and they are therefore stochastic, as a result of
the variability of wire positions. Due to this randomness, wire
voltages and currents are in turn also stochastic.

The classical MC approach collects statistical information
by repeatedly solving (1) for multiple samples of the random
parameters. However, the MC analysis is rather slow due
to the non-negligible time required by the evaluation of the
p.u.l. parameters, and by the analysis of the corresponding
transmission-line configurations.

In order to significantly speed-up the p.u.l. parameter extrac-
tion, a third-order PCE was calculated in [10] to statistically
characterize the p.u.l. parameters:

L =

454∑
k=0

Lkϕk(ξ) (2a)

C =

454∑
k=0

Ckϕk(ξ), (2b)

where the basis functions ϕk are multivariate Legendre poly-
nomials. From the PCE, relevant statistical information is read-
ily derived [12]. The number of 455 PCE coefficients results
from a third-order expansion with 12 random parameters.

Once the PCEs of the p.u.l. parameters are obtained, equa-
tions (1) are recast in terms of an augmented and deterministic
MTL-like equations by means of the SGM [6]:

d

dz
Ṽ(z, ω) = −jωL̃Ĩ(z, ω), (3a)

d

dz
Ĩ(z, ω) = −jωC̃Ṽ(z, ω), (3b)

where vectors Ṽ and Ĩ collect the PCE coefficients of the wire
voltages and currents, whereas the new p.u.l. matrices L̃ and C̃
are formed by a suitable combination of the PCE coefficients
in (2). By solving the deterministic MTL problem (3), a statis-
tical characterization of the voltages and currents in terms of
PCEs like (2) is obtained. Equation (3) is 455 times larger than
(1), therefore being equivalent to a line with 3185 conductors
instead of 7! This is the so-called “curse of dimensionality”,
which reduces the efficiency of the SGM for problems with
high order and/or number of random parameters.

IV. PROPOSED PERTURBATIVE GALERKIN APPROACH

In order to alleviate the computational burden of the direct
solution of (3) as a (rather huge) coupled MTL, a perturbation
technique is applied in order to solve the SGM problem (3) in
an iterative and decoupled manner. This perturbation technique
is a reformulation of the one originally proposed in [7, 8] for
the analysis of nonuniform MTLs.



The proposed approach starts by isolating the first compo-
nent in the PCEs (2), which corresponds to the average value
and is constant w.r.t. ξ, being ϕ0(ξ) = 1:

L = L0 +

454∑
k=1

Lkϕk(ξ) (4a)

C = C0 +

454∑
k=1

Ckϕk(ξ) (4b)

With this modification, the SGM produces

d

dz
Ṽ(z, ω) = −jω

L0

. . .
L0

 Ĩ(z, ω)− jω∆̃LĨ(z, ω)

(5a)

d

dz
Ĩ(z, ω) = −jω

C0

. . .
C0

 Ṽ(z, ω)− jω∆̃CṼ(z, ω),

(5b)

where the diagonal matrices in the r.h.s. are the result of
the Galerkin projection of the deterministic, zero-order com-
ponents, whereas the augmented matrices ∆̃L and ∆̃C are
structurally identical to L̃ and C̃ in (3). Yet, they do not
account for the aforementioned average contributions, but only
for the random displacement therefrom.

It should be noted that the norms of ∆̃L and ∆̃C are
expected to be (significantly) smaller than the norms of L0

and C0. This is because the expansions (2) are convergent,
and the norms of their coefficients decay exponentially to
zero [12]. This interpretation allows solving equation (5)
iteratively by resorting to a perturbation approach [7, 8]. By
denoting with the subscript m the solution at the mth iteration
step, equation (5) becomes

d

dz
Ṽm(z, ω)

= −jω

L0

. . .
L0

 Ĩm(z, ω)− jω∆̃LĨm−1(z, ω), (6a)

d

dz
Ĩm(z, ω)

= −jω

C0

. . .
C0

 Ṽm(z, ω)− jω∆̃CṼm−1(z, ω).

(6b)

The above equation is equivalent to an MTL with distributed
sources (cfr. [11]). It is important to remark that such dis-
tributed sources depend only on the solution at the previous
iteration step, and they are therefore known when solving (6)
at step m. Moreover, the MTL is now described by block

diagonal p.u.l. matrices. This allows solving each block inde-
pendently by considering

d

dz
Vk,m(z, ω) =− jωL0Ik,m(ω) + VFk,m(z, ω), (7a)

d

dz
Ik,m(z, ω) =− jωC0Vk,m(ω) + IFk,m(z, ω) (7b)

for k = 0, . . . , 454, where

VFk,m = [−jω∆̃Lk Ĩk,m−1(z, ω)]kth row block (8a)

IFk,m = [−jω∆̃CkṼk,m−1(z, ω)]kth row block (8b)

The problem (6) is solved for increasing m starting from
null equivalent sources and updating them with (8), until the
solution has converged within a given tolerance (0.1% in this
paper). Thereafter, the vectors of PCE coefficients Ṽ and Ĩ are
obtained as the sum of all the computed perturbation terms.

The new proposed approach requires the solution of MK
equivalent MTL problems of size n (i.e., the number of
conductors of the original transmission line), with M the
total number of perturbation steps and K the number of
PCE coefficients. This is opposed to the single simulation
of an MTL of size nK. Therefore, although the number of
perturbations M may vary with frequency and with the amount
of variation in the line parameters, the proposed method is
expected to outperform the classical SGM when the number
of conductors and/or PCE coefficients is large, as is the case
for the shielded cable of Fig. 1, for which n = 7 and K = 455.

V. NUMERICAL RESULTS AND VALIDATION

In this section, the proposed perturbative technique is
compared against the classical SGM implementation in the
computation of the mean and standard deviation of some
explicative examples of voltages at the terminations of the
shielded cable of Fig. 1. The PCE of the p.u.l. inductance and
capacitance matrices are taken from [10]. Their augmented
counterparts L̃ and C̃ are readily obtained. The simulations
are performed on a PC with an Intel(R) Core(TM) i7-6700,
CPU running at 3.4 GHz and 16 GB of RAM.

As an example, Fig. 2 illustrates the common mode (CM)
voltage at the near end (top left) and the differential mode
(DM) voltage at the far end (top right) of the two conductors
used for differential signaling, as well as the induced single-
ended crosstalk voltages on conductors no. 3 at the near end
(bottom left) and no. 5 at the far end (bottom right). The
comparison between the classical SGM (solid gray lines) and
the proposed perturbative SGM (dashed black lines) shows
excellent agreement, thus proving the accuracy of the proposed
approach.

As far as computational efficiency is concerned, the pertur-
bative SGM only requires 2463 s to analyze 500 frequency
points, in contrast to the 24079 s required by the classical
SGM. A speed-up factor of roughly one order of magnitude
is thus achieved. This is remarkable when considering that
the perturbative approach requires to deal with additional
distributed sources, in analogy with the analysis of nonuniform
MTLs (cfr. [7]), even for a uniform MTL. For this reason, the
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Fig. 2: Mean and standard deviation of (a) CM voltage at near end of wires no. 1 and 2, (b) DM voltage at far end of wires
no. 1 and 2, (c) crosstalk voltage at near end of wire no. 3 and (d) crosstalk voltage at far end of wire no. 5 predicted by the

standard SGM method (solid grey curves) and by the proposed approach (dashed black curves).

proposed method is expected to be even more beneficial for
nonuniform MTLs.

It should be mentioned that the time required to compute
the PCE of the p.u.l. parameters is excluded from the above
analysis, since it is a one-off preliminary step that is common
to both SGM-based approaches, and it does not need to be re-
performed when different terminal configurations and/or cable
lengths are considered.

VI. CONCLUSION

This work presented a hybrid technique for the statistical
analysis of wiring harnesses affected by several random ge-
ometrical parameters. The proposed approach is based on a
perturbative reformulation of the traditional SGM, and allows
keeping the size of the MTL networks to be solved equal to
the size of the original MTL structure under analysis.

According to such a perturbative approach, an initial pre-
diction of the voltage and current PCE coefficients is first
evaluated using the average of the p.u.l. parameters. Then,
these values are iteratively refined by including distributed
voltage and current sources that involve the stochastic variation
of the p.u.l. parameters through their PCE coefficients.

The proposed approach has been applied to the statistical
assessment of a shielded cable involving a large number
of wires (7) and random parameters (12). With respect to
traditional SGM implementations, the advocated technique has
proven to provide a significant reduction of computational
time, while retaining similar prediction accuracy.

Finally, it is worth mentioning that, although here applied
to uniform MTLs only, the proposed approach appears to be
promising (and even more beneficial) to handle the practically
relevant case of wiring harnesses or interconnects with cross-
section that andomly vary along the line length.
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