
14 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Penny-shaped cracks by Finite Fracture Mechanics / Cornetti, P.; Sapora, A.. - In: INTERNATIONAL JOURNAL OF
FRACTURE. - ISSN 0376-9429. - 219:1(2019), pp. 153-159. [10.1007/s10704-019-00383-9]

Original

Penny-shaped cracks by Finite Fracture Mechanics

Publisher:

Published
DOI:10.1007/s10704-019-00383-9

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2759332 since: 2019-10-15T15:28:26Z

SPRINGER, VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS



(*) corresponding author. Email: pietro.cornetti@polito.it; tel.: +390110904901; fax: +390110904899 

PENNY-SHAPED CRACKS BY FINITE FRACTURE MECHANICS 
 

P. Cornetti (*), A. Sapora 

 

Department of Structural, Building and Geotechnical Engineering 

Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy. 

 

 

Abstract 

 

In this brief note, we provide the failure stress of a solid containing a penny-shaped crack by means 

of Finite Fracture Mechanics. The solution is analytical up to the numerical root of the equation 

providing the finite crack growth increment. Results are discussed and compared with the ones 

provided by Linear Elastic Fracture Mechanics, by Theory of Critical Distances and by Cohesive 

Crack Model (with a Dugdale-type cohesive law). 
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1. Introduction 

 

Finite Fracture Mechanics (FFM) is a fracture criterion resting on the assumption of a discrete crack 

growth; as such, it differs from Linear Elastic Fracture Mechanics (LEFM) where crack propagation 

is assumed to be continuous. Failure load predictions are achieved by means of the discrete energy 

balance (which substitutes the infinitesimal Griffith one exploited by LEFM) coupled with a suitable 

stress condition. While LEFM works for cracked structures only, FFM is able to provide sound 

strength predictions for cracked, notched or plain structures. FFM works for quasi-brittle materials 

and is a two-material parameter model, requiring the tensile strength and fracture energy (or 

toughness) for use. 

Several models considering crack jumps or a discontinuous crack growth had been proposed in the 

past (e.g. Kfouri, 1979; Neimitz & Aifantis, 1987; Hashin, 1996; Pugno & Ruoff, 2004). Leguillon 

first set the FFM approach in 2002 (Leguillon, 2002). Since that, several successful applications of 

FFM have been provided and nowadays FFM can be regarded as an effective tool to predict the 

strength of mechanical components (e.g. Cornetti et al., 2006; Yosibash et al., 2006; Mantič, 2009; 

Camanho et al., 2012; Weißgraeber & Becker, 2013; Felger et al., 2019), allowing fast strength 

predictions suitable for preliminary sizing of structures. 
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Most of FFM applications deal with 2D geometries. Only recently, some attempts have been done 

to extend the fracture criterion to 3D cases (Leguillon, 2014; Yosibash & Mittelman, 2016; García et 

al. 2016; Doitrand & Leguillon, 2018). The 3D case is of course much more complex for several 

reasons, e.g. the change of the crack shape as crack grows. In the present paper we will analyze the 

case of a (infinite) body containing a penny-shaped crack subjected to a remote uniform stress 

orthogonal to the crack, which is actually the simplest 3D geometry one can consider. In fact, although 

the problem is three-dimensional, the axial symmetry (the crack remains circular during its growth) 

makes the FFM analysis relatively simple, yet interesting for the geometry itself and for possible 

future 3D extensions. In this respect, the present investigation is analogous to the spherical particle 

debonding problem analyzed by Gentieu et al. (2019). 

The paper is organized as follows. After the Introduction, Section 2 briefly recalls the stress and 

displacement field for a penny-shaped crack. In Section 3, we apply FFM to get the failure stress 

estimate. In Section 4, since the geometry analyzed is hard to reproduce experimentally, we validate 

the FFM approach by comparison with the widely used Cohesive Crack Model (CCM) and the Theory 

of Critical Distances (TCD). Conclusions are finally given in Section 5. 

 

 

2. The penny-shaped crack 

 

Let us consider an infinite body containing a crack having the shape of a disk of radius a. The 

cylindrical coordinate system has the origin at the center of the crack and the reference plane is the 

one containing the crack. The radial coordinate is r and the axial coordinate is z. The third coordinate 

is the azimuth  but it will not be used because of axial symmetry. The body is loaded by a uniform 

remote stress  at infinity in the z direction, so that the crack is in Mode I opening conditions (see 

Fig. 1). 

The solution for such a geometry within the linear elasticity theory dates back to Sneddon (1946); 

see also Bertram Broberg (1999). Accordingly, the longitudinal stresses in the reference (crack) plane 

(z = 0) are given by: 

 

2 2

2
( ) arccos ,z

a a
r r a

rr a


 
     

  
 (1) 

 

It follows that the Stress Intensification Factor (SIF) is equal to: 
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The longitudinal displacement on the upper crack face (z = 0+) is: 

 

2
2 24(1 )

( ) ,zu r a r r a
E
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
 (3) 

 

which is half of the crack opening displacement. E and  are the Young’s modulus and the Poisson’s 

coefficient of the material, respectively. Eqs. (1-3) are enough to apply FFM. However, in order to 

compare FFM with CCM in Section 4, we need also some results for the case of a penny-shaped crack 

where the (crack) annular surface b < r < a (and z = 0) is loaded by a uniform (opening) stress p (see 

Fig. 2). Accordingly, the SIF is (Tada et al., 2000): 

 

2 22
I

p
K a b

a
 


 (4) 

 

which reverts to Eq. (2) as b  0. Finally, the longitudinal displacement at the border of the loaded 

and un-loaded region of the upper crack surface (z = 0+) is: 

 

24(1 )
( ) ( )zu r b p a b

E


  


 (5) 

 

 

3. Finite Fracture Mechanics 

 

According to the FFM approach, a necessary condition for a finite crack to occur is that the energy 

available for the crack growth must be higher than the energy required to create the new fracture 

surface. Thus, we need to evaluate the strain energy increment  passing from the original geometry 

to the final one, i.e. after the finite crack extension. Because of axial symmetry, we can assume the 

crack increment to be annular from r = a up to r = a + . The strain energy increment equals the crack 

closure work, so that we can get  as half of the product of the stress before crack advance (Eq. (1)) 



4 
 

and the displacement after crack advance (Eq. (3) with a replaced by a + ) integrated over the new 

crack surface:  

 

1
2 ( , ) ( , ) 2 d

2

a

z z

a

u a r a r r r



      (6) 

 

where 2uz is the crack opening. Hence, by means of Eqs. (1) and (3): 
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The integration yields: 
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The same result can be obtained by means of Irwin’s relationship and the SIF (Eq. (2)): 
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which, upon integration, confirms Eq. (8). For the crack to propagate, the strain energy increment 

must be higher than the energy necessary to create the new (annular) crack surface. Introducing the 

material fracture energy Gc, this implies that: 
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Irwin’s relationship and length lch are, respectively: 
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where KIc is the material fracture toughness and c the material tensile strength. Accordingly, Eq. 

(10) yields: 

 

ch 2 2

c
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Eq. (12) shows that, for a given crack size and according to the discrete energy balance, the remote 

stress causing crack propagation decreases as the crack increment increases (see Fig.3). 

The latter condition for crack growth is a stress requirement. According to Leguillon’s FFM 

approach, we can require that, before the crack increment, the stress exceeds the material tensile 

strength on the region where the crack step will take place, i.e. z(r)  c for a  r  (a+). Since the 

stress field ahead the crack tip is monotonically decreasing, this condition is tantamount requiring 

that: 

 

  cz r a      (13) 

 

By using the stress field Eq. (1), one gets: 
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Eq. (14) shows that, for a given crack size and according to the stress condition (13), the remote stress 

causing crack propagation increases as the crack increment increases (see Fig. 3). 

According to FFM, both conditions (12) and (14) are necessary for crack growth. If 

contemporaneously fulfilled, they become also a sufficient condition. Of course, the actual failure 

stress is the minimum for which both the inequalities are satisfied. Because of the monotonic behavior 

of the conditions, the minimum remote failure stress is achieved when both the conditions are strictly 

fulfilled (Fig. 3). It means that the actual crack advance is given by the root c of the equation obtained 

by equating the right hand sides of Eqs. (12) and (14), i.e.: 

 

2

2 2

ch2 (3 3 ) 3 (2 ) arccos
a

a a l a a
a

 
        

 (15) 

 



6 
 

The remote failure stress f is finally achieved upon substitution of the root of Eq. (15) into either the 

right hand side of Eq. (12) or Eq. (14). Results are plotted in Figs.4 and 5. As the crack size increases, 

the finite crack extension decreases from (3/8  )  lch to (1/2)  lch, while the failure stress drops 

from the tensile strength to zero. The failure stress vs. crack radius is plotted also in bi-logarithmic 

scale in Fig. 6, which shows the typical LEFM 1/2 slope for large sizes. 

 

 

4. Comparison with existing models and similar geometries 

 

4.1 LEFM 

We start comparing the result by the FFM approach with LEFM predictions (i.e. KI = KIc), which, in 

dimensionless form, reads: 

 

chf

c

1

2

l

a


 


 (16) 

 

As expected (see Figs.5-6), FFM and LEFM predictions tend to merge for large crack size: relative 

differences are lower than 1% for crack radii larger than about 4  lch. For smaller cracks, it is evident 

that LEFM provides higher (and thus potentially dangerous) predictions with respect to FFM, 

becoming furthermore unreliable when a < (/4)  lch since Eq. (16) yields failure stresses higher than 

the tensile strength. Hence, according to LEFM, structures are insensitive to penny-shaped defects 

with radius lower than (/4)  lch. On the other hand, FFM predictions are affected by penny-shaped 

crack of any size, although the failure stress vs. crack radius curve shows a flat tangent in the origin 

and an almost constant value (difference below 1%) for crack radii below about (/8)  lch. 

 

4.2 Theory of critical distances 

Theory of Critical Distances (TCD) are a set of stress failure criteria that, beyond the strength, take 

also the fracture toughness into account by means of a suitable characteristic distance (Taylor, 2007). 

In such a way, TCD extends the applicability of stress failure criteria to structures where stress 

singularities or high stress gradients occur. Among TCD approaches, the simplest and most used one 

is the Point Method (PM). According to PM, failure is achieved when the stress at a distance (1/2) 

 lch ahead the crack tip (or the stress concentration point) reaches the tensile strength. In the geometry 

at hand, this means, by Eq. (1): 
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Although able to predict the transition between the strength-governed failure for a vanishing crack 

and the energy-driven failure for large crack sizes, Figs. 4 and 5 show that PM predictions are 

significantly lower with respect to the FFM ones (up to 16%). Considering the FFM approach as more 

accurate, we may say that PM provides too conservative predictions. 

 

4.3 Cohesive Crack Model 

For the penny-shaped crack, it is also possible to achieve analytical solution by means of a Dugdale-

type CCM, i.e. with a rectangular cohesive law, see Fig. 7. According to Dugdale (1960) model, a 

plastic annular region of radial size ap appears ahead the crack tip where stresses are constant and 

equal to c. The size of this zone is determined by imposing that the SIF at r = a + ap , i.e. at the 

fictitious crack tip, is null. By Eqs. (2) and (4), one gets: 
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Hence (see, e.g. Kelly & Nowell, 2000): 
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meaning that the plastic (or process) zone size is zero when the remote stress is zero and infinite when 

the remote stress approaches the tensile strength. Crack growth will occur when the opening 

displacement at the real (i.e. at r = a) crack tip reaches the critical value wc = Gc/c (see Fig. 7). By 

Eqs. (3) and (5), one gets: 
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By inserting Eq. (19) into (20), we finally get the failure stress and the related process zone size vs. 

the crack radius a as: 

 

2
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Obviously Eqs. (21) and (22) hold for crack radii larger than (/8)lch. Below, ap is infinite and the 

failure stress equals the tensile stress. Results are plotted in Figs. 4 to 6. For what concerns the process 

zone (Fig. 4), it shows a monotonically decreasing trend with respect to the crack radius as the finite 

crack extension does. Furthermore, ap  (/8)lch as a  , i.e. ap tends to the classical Dugdale 

plastic zone estimate for large cracks, as expected. For what concerns the failure stress (Fig. 5), the 

agreement between FFM and CCM is excellent: relative differences remain always below 4%. This 

result validates the present FFM approach. 

 

4.4 Average stress Finite Fracture Mechanics 

One can also couple the discrete energy balance Eq. (10) through an average stress condition (Cornetti 

et al., 2006), i.e. requiring the average normal stress before crack advance to exceed the tensile 

strength. This means replacing Eq. (13) with the following equation: 
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Upon substitution of Eq. (1), Eq. (23) yields: 
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Eq. (24) coupled with Eq. (12) provides the finite crack extension, decreasing from (3/8  )  lch to 

(2/)  lch as the crack radius increases (see Fig. 4), and the corresponding failure stress, which is 

compared with Leguillon’s FFM in Fig. 8. It is evident that Cornetti’s FFM provides lower estimate 
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for the failure stress. This is a general feature; moreover, average stress FFM is usually in agreement 

with CCM characterized by a linear softening cohesive law (Cornetti et al., 2019). 

 

4.5 Griffith crack 

In Fig. 9 we compare the FFM (and LEFM) failure stress estimates for a penny-shaped crack with the 

ones for a Griffith crack, i.e. a through-thickness crack in an infinite plate subjected to a remote 

uniform uniaxial stress orthogonal to the crack. The half-length of the Griffith crack is a and it is 

assumed to be equal to the radius of the penny-shaped crack. The FFM solution for the Griffith crack 

is given in Cornetti et al. (2014, 2016). The comparison is interesting because it shows that the knee 

point defining the transition between the small crack stress-governed failure and the large crack 

energy-driven rupture occurs for the penny-shaped crack at a higher a value (about (/4)  lch instead 

of (1/)  lch holding for the Griffith crack) as clearly evidenced in Fig. 9. Relative differences lower 

than 1% between FFM and the corresponding LEFM solutions occurs anyway at about the same value 

(4  lch). 

 

 

5. Conclusions 

 

In the present paper, we provided the FFM solution for a penny-shaped crack under mode I conditions 

and remote uniform normal stresses. Classical Fracture Mechanics results allowed us to achieve the 

solution in a semi-analytical form. The problem is three-dimensional, leading to some differences 

with respect to the two-dimensional FFM applications already available in the Scientific Literature. 

The model was finally validated by comparing the FFM solution with the CCM approach. The 

excellent agreement corroborates the use of FFM as an effective tool to assess the safety of structural 

components. 
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Figure captions 

 

Figure 1. Penny-shaped crack under uniform remote stress: 3D view (a); longitudinal section (b). 

Figure 2. Penny-shaped crack under annular constant stresses: 3D view (a); longitudinal section (b). 

Figure 3. Admissible failure stresses vs. finite crack increment according to discrete energy balance 

and stress requirement for a = 0.6 lch. The actual failure stress is the minimum among admissible 

values. 

Figure 4. Finite crack increment according to FFM approaches and process zone size at incipient 

failure according to CCM vs. crack radius. 

Figure 5. Failure stress according to FFM, LEFM, PM and CCM vs. crack radius. 

Figure 6. Failure stress according to FFM, LEFM, PM and CCM vs. crack radius (bi-logarithmic 

plot). 

Figure 7. Dugdale-type cohesive law. 

Figure 8. Failure stress vs. crack radius according to FFM coupled with point-wise and average stress 

conditions. 

Figure 9. Failure stress for a solid containing a penny-shaped crack (continuous line) and for a slab 

containing a through-thickness crack (dashed line) vs. crack radius/half-length according to FFM and 

LEFM. 
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Figure 1. Penny-shaped crack under uniform remote stress: 3D view (a); longitudinal section (b). 
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Figure 2. Penny-shaped crack under annular constant stresses: 3D view (a); longitudinal section (b). 
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Figure 3. Admissible failure stresses vs. finite crack increment according to discrete energy balance 

and stress requirement for a = 0.6 l
ch

. The actual failure stress is the minimum among admissible 

values. 
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Figure 4. Finite crack increment according to FFM approaches and process zone size at incipient 

failure according to CCM vs. crack radius. 
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Figure 5. Failure stress according to FFM, LEFM, PM and CCM vs. crack radius. 

  



18 
 

 

 

 

Figure 6. Failure stress according to FFM, LEFM, PM and CCM vs. crack radius (bi-logarithmic 

plot). 
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Figure 7. Dugdale-type cohesive law. 
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Figure 8. Failure stress vs. crack radius according to FFM coupled with point-wise and average stress 

conditions. 
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Figure 9. Failure stress for a solid containing a penny-shaped crack (continuous line) and for a slab 

containing a through-thickness crack (dashed line) vs. crack radius/half-length according to FFM and 

LEFM. 

 

 


