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Abstract—This paper presents a power-efficient Ultra Low
Voltage (ULV) Digital-Based Operational Transconductance Am-
plifier (DB-OTA), which uses static logic gates and processes
digitally the analog input signal. Post-layout simulations in 180nm
CMOS technology show that at 300mV supply voltage the circuit
consumes just 2nW while driving a capacitive load of 80pF with
Total Harmonic Distortion lower than 5% at 100mV input signal
swing. The total silicon area is 1,426 µm2. The maximum energy
efficiency supply for the DB-OTA and its scalability to 40nm
CMOS technology node are also demonstrated.

Index Terms—Ultra-Low Voltage (ULV), Operational
Transconductance Amplifier (OTA), Digital-Based Circuit,
Internet of Things (IoT).

I. INTRODUCTION

Ultra-low Voltage (ULV), Ultra-Low-Power (ULP) inte-
grated circuits are necessary in Internet of Things (IoT)
nodes to allow energy-autonomous operation from harvesters
and/or very small batteries through their whole life [1]. While
high energy efficiency is achieved in digital circuits at near-
threshold supply voltages (VDD) close to the minimum energy
point [2] and by energy-quality scaling [3], the same concepts
do not apply to analog interfaces, which are indeed the
bottleneck in terms of power, cost and performance [4].

Focusing on Operational Transconductance Amplifiers
(OTAs), which are ubiquitous in analog circuits, traditional
topologies are power hungry and not amenable to low VDD
operation [5], [6], especially due to the degradation of analog
performance in nanoscale MOS devices, which are not well
suited to analog even at nominal supply.

The above limitations of OTA under low VDD have been
addressed at system level and the block level. In the system
level approach, the main idea is to either replace or mimic
the OTA behavior by different blocks, e.g., ring oscillators
[7] or dynamic amplifiers [8]. On the other hand, at block
level ULV OTAs using bulk-driven Differential-Pair (DP) [6],
internal positive feedback [9] and Common-Mode FeedFoward
(CMFF) circuit [10] have been proposed. However, all these
solutions are power-hungry and their performance does not
improve in aggressively scaled technological nodes.

In this paper, the digital-based differential circuit concept
presented in [11] is exploited to design a novel highly energy-
efficient ULV OTA, referred to here as Digital-Based Opera-
tional Transconductance Amplifier (DB-OTA).

In section II, the circuit operation is briefly reviewed and a
design guideline for ULV operation is proposed. Based on the
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Fig. 1. (a) DB-OTA schematic. N is the number of stages in the calibration
inverter chain. (b) Truth tables that rule the DB-OTA operation. VT is the
tripping point of a buffer.

post-layout simulations shown in section III, the DB-OTA just
consumes 2nW at VDD = 300mV driving a capacitance load
(Cout) of 80pF with a Total Harmonic Distortion (THD) lower
than 5% for 100mV of input signal swing. In the same section
III, the DB-OTA scalability is also demonstrated. Finally, in
section IV, some concluding remarks are drawn.



II. ULV DB-OTA CIRCUIT DESCRIPTION AND DESIGN

In this section, the operation of a digital-based differential
circuit presented in [11] is firstly reviewed and then exploited
to design an ULV DB-OTA.

A. Digital-Based Differential Circuit Description

The schematic of the proposed ULV DB-OTA is shown
in Fig. 1 (a). The circuit is comprised by the Differential-
Mode (DM) amplifier, the Common-Mode (CM) extractor
loop, the summing network and the output stage, as in [11].
The main goal of this topology is to replace the classical
DP stage with digital gates keeping the same functionality,
i.e., to amplify the differential input signal vd = (Vin+−Vin−)
and to be insensitive to common mode input signal variations
vcm =

(Vin++Vin−)
2 . To reach these goals, the DM Amplifier,

which is formed by two digital buffers, is used to sense
the level of the input voltages w.r.t. the buffers voltage
tripping points (VT) resulting in four possible logical outputs:
(Xout+,Xout−) = (0,0),(1,1),(1,0),(0,1).

As detailed in Fig. 1 (b.1), when (Xout+,Xout−) =
(0,1),(1,0) the output stage is activated and Vout is
increased/decreased depending on vd. Otherwise, when
(Xout+,Xout−) = (0,0),(1,1), the CM Extractor is turned on to
correct the input CM signal. The truth tables which describe
how the CM Extractor and the output stage work are shown
in Fig. 1 (b.2) and (b.3), respectively.

Once it is sensed that the CM input signal must be corrected,
the transistor MNcmp (MPcmp) is turned on and CCMP is
properly discharged (charged) and the generated VCM signal is
then subtracted from the input through the summing network
(V ′in+(−) = 0.5(VCMP +Vin+(−))). On the other hand, after the
CM signal compensation, the vd signal can be thus amplified
charging or discharging COUT through the transistors MPout
and MNout. A detailed analysis of the circuit dynamic can be
found in [11].

B. ULV DB-OTA Design

The proposed ULV DB-OTA has been designed in 180nm
following digital design criteria. Under this perspective,
CMOS static logic is adopted for most the gates in Fig.1.
Moreover, as usual in ULP digital design, the power supply
voltage is set to the Minimum Energy Point (MEP) [2], which
turns out to be about VDD = 300mV for the target technology
and switching activity.

The strength of the output stage is set by considering
the maximum capacitive load (80pF in the proposed design)
and slew rate requirements, taking into account also that
a minimum capacitive load (10pF in the proposed design)
is needed in the DB-OTA for low-distortion analog signal
reconstruction. The strength of the other gates is consequently
designed as cascaded drivers. Minimum-size devices have been
used in the CM extractor stage and the capacitance CCMP has
been set in view of the closed-loop stability requirements [11]
and to reduce Total Harmonic Distortion (THD).

Two parts of the circuit deserve a special care due to
their analog function, i.e. the summing network and the first
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Fig. 2. DB-OTA layout. Total area of 1,426 µm2.
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inverters of the DM amplifier: the summing network has been
implemented using inverter-based pseudo-resistors as voltage
dividers. Large area has been adopted in PMOS devices in
Fig. 1 (a.1), to achieve a good matching leveraging Pelgrom’s
law [12].

For what concerns the DM amplifier in Fig. 1 (a.2), mis-
match in the buffers VT decides the DB-OTA input offset
voltage and it has been mitigated by the calibration network in
Fig. 1 (a.3). Such a calibration network includes four auxiliary
pull-up (pull-down) branches, having pMOS (nMOS) devices
with minimum length and binary weighted minimum width
(Wk = 2kWmin,k = 0 . . .3) and driven by the same input signal,
which can be individually enabled/disabled depending on an
8-bit digital calibration word so that to modify the trip point
of the buffer and effectively compensate mismatch. It is worth
mentioning that this calibration network is also able to work
in low VDD.

III. SIMULATIONS RESULTS

The proposed DB-OTA has been laid out in 180nm CMOS
so that to match the delays of the non-inverting and inverting
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Fig. 5. ULV DB-OTA frequency response.

signal paths. The layout of the circuit, including the calibration
network, occupies just 1,426 µm2 and it is shown in Fig. 2. The
operation and performance of the DB-OTA have been tested
by post-layout simulations performed in the voltage follower
configuration and is then compared with ULV OTAs presented
in recent literature.

A. Post-Layout Simulated Performance

The time-domain input and output waveforms of the pro-
posed DB-OTA at VDD = 300mV, with sine wave input at 30Hz
frequency, 50mV peak amplitude and Cout = 80pF capacitive
load are reported in Fig.3(a) and reveal the operation of
the circuit as an opamp and less than 2% THD and 2nW
power consumption. A zoom in the waveform shows the step-
wise changes in vout resulting from digital operation. Fig. 4
depicts THD versus Vamp for three different Cout = 80,45,10pF
keeping fin = 120Hz.

1) Frequency Response: The frequency response of the
circuit has been tested by time-domain, large-signal simula-
tions, since small signal analysis cannot be adopted in view
of the digital operation of the circuit. For this purpose, the
DB-OTA has been tested in the voltage follower configura-
tion with 50mV-peak-amplitude sine wave input at different
frequencies f0, and the differential amplification frequency
response Ad( f ) = Vout( f )

Vd( f ) has been estimated in magnitude and
phase taking the ratio of the Fast Fourier Transform (FFT)
at the fundamental frequency f0 of the output and of the
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Fig. 6. ULV DB-OTA Power Breakdown
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differential voltage. The DB-OTA frequency response reported
in Fig.5 exhibit 35dB DC gain and 0.85,1.3 and 2.48kHz Gain
Bandwidth Product (GBW ) with phase margin 76◦,68.5◦ and
57◦ under Cout = 80,45 and 10pF load, respectively.

2) Process Variations and Calibration: The uncalibrated
DB-OTA has been tested under process variations for Vamp =
50mV, Cout = 80pF and fin = 120Hz by Montecarlo (MC)
simulations performed on 100 samples and the output THD
has been considered to evaluate the signal quality degradation.
The histogram of the output THD reported in Fig.3(c) reveals
a noticeable number of samples exceeding 10% THD due
to the spread of the trip voltages of the DM amplifier ∆VT,
which leads to high input offset voltage and results in the
output saturation, as shown in Fig.3(b). From the same figure,
however, the offset can be completely compensated by the
proposed calibration network turning the DB-OTA back to
work properly.

3) Power Consumption and Figure of Merit (FOM): For all
Cout values here explored the power consumption was found to
be always lower than 2 nW. Fig. 6 shows the DB-OTA power
breakdown for Cout =80pF, at which it can be seen that 45% of
the total power is used to process the input signal while the rest
is used to charge Cout. The energy efficiency of the proposed
DB-OTA under low VDD has been also analyzed in Fig. 7
where the power, the GBW and the small signal figure of merit
FOMS = 100GBW Cout(IDD)

−1 are plotted at different VDD. It
is interesting to note that there is a peak for FOMS around
VDD = 300mV, which coincides with the energy-efficient VDD
optimum in digital sub- or near-threshold designs, regarding
their most energy efficient VDD, i.e., their Minimum Energy



TABLE I
COMPARISON WITH STATE-OF-THE-ART ULTRA-LOW-VOLTAGE OPERATIONAL TRANSCONDUCTANCE AMPLIFIER

Performance [10]+ [6]+ [13]+ [14]+ [9]∗ [5]∗
MC-OTA

[5]∗
FFC-OTA This work∗ Unit

Technology 65 130 180 350 65 130 130 180 nm
Supply Voltage 0.35 0.25 0.5 0.6 0.3 0.3 0.3 0.3 V
DC Gain 43 60 52 69 60 46.2 49.8 35 dB
GBW 3600 1.88 1,200 11.4 70 2,450 9,100 0.85 kHz
Slew Rate 5600 0.7 2,890 14.6 25 2,400 3,800 0.5 V

ms
THD 0.6 0.2 1 0.08 - - - 3 %
Phase Margin 56 52.5 - 65 53 52 76 76 o

Cout 3 15 20 15 5 2 2 80 pF
Power 17,000 18 110,000 550 51 1,800 1,800 2 nW
Dia Area 5,000 83,000 26,000 60,000 3,000 - - 1,426 µm2

FOMS 19 29 0.11 0.18 2.05 81 303 1020 V−1

FOML 34.6 14.6 26.27 23.9 73.4 80 140 600 -

+experimental; ∗simulation;

Point (MEP). To illustrate, in Fig. 7 the notch filter MEP
designed in [15] is also plotted. This result is expected since
the DB-OTA processes the analog input information digitally.

B. Comparison with the State of the Art

Based on the post-layout simulation, compared to ULV
OTAs proposed in recent literature, whose performance is
summarized in Tab. I, the ULV DB-OTA presented here is
able to drive the highest Cout (x4 lager than [13]) at the
lowest power consumption (x9 lower than [6]) and shows itself
as the most power-efficient topology for CMOS technology
considering FOMS as a benchmark (x3.35 lager than [5] FFC-
OTA). The comparison in terms of both FOMS and FOML
is also illustrated in Fig. 8 including the performance of the
proposed circuit samples after calibration and reveals that
state-of-art performance is achieved even considering process
variations. Moreover, the results of preliminary transistor-level
simulations performed on the circuit ported to 40nm CMOS
are also shown in Fig.8, demonstrating a further improved
performance in finer technology, as expected for digital circuits
and as not observed in traditional analog OTAs.

IV. CONCLUSION

By processing the analog input signal digitally with static
logic gates, the ULV DB-OTA presented here has achieved
at VDD = 300mV a FOMS = 1020V−1 consuming only 2 nW
and 1,426 µm2 of silicon area. The DB-OTA maximum energy-
efficient point has been demonstrated as well as its scalability.
Through this implementation, this work moves forward against
the common statement which states that, in general, analog
integrated circuits do not take advantage of CMOS technology
scaling.
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