Next-generation crossover-free quantum Hall arrays with superconducting interconnections

Original
Next-generation crossover-free quantum Hall arrays with superconducting interconnections / Kruskopf, Mattias; Rigosi, Albert; Panna, Alireza; Marzano, Martina; Patel, Dinesh; Jin, Hanbyul; Newell, David B; Elmquist, R E. - In: METROLOGIA. - ISSN 0026-1394. - ELETTRONICO. - 56(2019), p. 065002.

Availability:
This version is available at: 11583/2758332 since: 2019-10-14T12:24:55Z

Publisher:
Institute of Publishing

Published
DOI:10.1088/1681-7575/ab3ba3

Terms of use:
openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)
Next-generation crossover-free quantum Hall arrays with superconducting interconnections

Mattias Kruskopf1,2, Albert F. Rigosi1, Alireza R. Panna1, Martina Marzano4, Dinesh Patel3, Hanbyul Jin1,2, David B. Newell1, and Randolph E. Elmquist1

1National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA
2Joint Quantum Institute, University of Maryland, College Park, MD 20742, USA
3Department of Physics, National Taiwan University, Taipei 10617, Taiwan
4Politecnico di Torino, Istituto Nazionale di Ricerca Metrologica, Turin, Italy

E-mail: mattias.kruskopf@nist.gov, albert.rigosi@nist.gov, alireza.panna@nist.gov, m.marzano@inrim.it, dkpjnp@gmail.com, hanbyul.jin@nist.gov, david.newell@nist.gov and randolph.elmquist@nist.gov

Keywords: quantum Hall effect, quantized Hall array resistance standards, epitaxial graphene, superconducting contacts, multiple connection, split contacts

Abstract: This work presents precision measurements of quantized Hall array resistance devices using superconducting, crossover-free, multiple interconnections as well as graphene split-contacts. These new techniques successfully eliminate the accumulation of internal resistances and leakage currents that typically occur at interconnections and crossing leads between interconnected devices. As a result, a scalable quantized Hall resistance array is obtained with a nominal value that is as precise and stable as that from single-element quantized Hall resistance standards.

1. Introduction

Although the first graphene samples were isolated as micrometer-size flakes and found to have favorable electrical and optical properties,[1–5], more recently, high-quality and centimeter-scale graphene has been obtained through epitaxial growth on silicon carbide (SiC) [6–9]. The epitaxial graphene (EG) growth has improved to the point that one can realize devices suitable for general applications, like larger scale electronics, and more specialized applications, such as quantized Hall resistance (QHR) standards [9–17].
Limitations of reliable access to quantum Hall resistance plateaus other than $R_H = R_K/2 = h/2e^2$, where R_H is the Hall resistance and R_K is the von Klitzing constant, have motivated the development of quantum Hall array resistance standards (QHARS) based on series and in parallel connected devices [18–20]. These next-generation quantum resistance devices show promise in fulfilling the requirement of scalability for future applications in metrology. One issue for these scalable resistance networks, based on many Hall bar elements, is that they may suffer from accumulated internal resistances and Hall resistance contributions at thin-film metal contacts and interconnections. In addition, the crossover of electrical connections between Hall elements introduce other difficulties such as possible leakage currents through the dielectric where the voltage terminals need to cross the current path. Finally, because of limited chip mounting options, it is impossible to realize longitudinal resistance measurements as recommended in metrological guidelines for the QHR [21]. These challenges are the reason why state-of-the-art QHARS devices often cannot reach the level of quantization needed for resistance metrology.

In this work, we present new EG-based QHARS device design approaches to minimize the error contributions of undesired resistances at contacts and interconnections and ensure precise resistance quantization for series-parallel networks. The applied split-contact geometry and superconducting interconnections ensure minimum deviation from the nominal resistance value on the order of 10^{-9}. Furthermore, new quantization criteria are applied to verify the quantization of these resistance networks as a whole rather than by the characterization of single Hall devices in addition to previously discussed concepts [22,23].

2. Device preparation and characterization

2.1. Sample and contact design

Figure 1(a) shows the sample design based on six Hall bars (light grey), superconducting interconnections and contacts (dark grey), and the positions of the bonding wires (blue) that were used for the four-terminal resistance measurements. Each Hall bar was contacted by a multiple interconnection [20,24] that was optimized for a specific magnetic field direction such that the hot-spot forms in the lower left and upper right corner of each device as indicated in Figure 1(b). The device fabrication started with the deposition of a Pd/Au layer onto the EG. After the EG/Pd/Au layer was structured into the Hall bar shape by argon plasma etching, it was contacted with a $\approx 320 \text{ nm}$ thick NbTiN layer and capped with a $\approx 30 \text{ nm}$ thick Pt layer to prevent surface oxidation. A detailed description of the individual fabrication steps is given in a previous work [25]. The confocal laser scanning microscope (CLSM) image of the finished device is given in Figure 1(b). Before the device was wire-bonded onto a chip carrier, covalent Cr(CO)$_3$ functionalization was used to adjust the charge carrier density of the device as explained in Section 2.2. A previous work shows that by integrating the principle of the Delahaye triple-series interconnection for QHR devices into a single contact (by means of split contacts shown in
Figure 1(b) and Figure 1(c)), the resulting contact resistance in the quantum Hall regime is reduced to a level of 100 µΩ or less [25]. The vanishing contact resistance is the result of the current flowing through mainly one branch of the split-contact, with each other branch experiencing a proportion of current that is smaller than the last. Thus, the connection voltage drop quickly approaches zero, bringing the superconductor to the potential of the quantized two-dimensional electron gas (2DEG). The condition for the branches to act as separate charge carrier reservoirs in the quantum Hall regime is separation by a minimum distance d, which must be larger than the inelastic scattering length of the charge carrier [26]. It is safe to assume that the condition is fulfilled for the distance $d \geq 5 \mu m$ indicated in Figure 1(c) between neighboring branches since inelastic scattering occurs at sub-micron length scales [27,28]. Additionally, the design accounts for the prevention of Andreev reflections that may occur at EG/superconductor interfaces and can lead to deviations of the Hall resistance from the nominal value [29–32]. As demonstrated in Figure 1(c), a several micrometer-wide Pd/Au stripe separates the EG edge from
the NbTiN superconductor such that Andreev effects cannot occur. Figure 1(d) shows the array device mounted in a 32-pin leadless chip carrier (LCC03204) that was used for the pre-characterization. Precision measurements of the same sample were performed afterward using a transistor outline (TO-8) package.

2.2. Graphene growth, device fabrication and carrier density control

EG was obtained by thermally decomposing the Si-face of 4H-SiC(0001) semi-insulating substrates having a miscut of less than 0.1°. Substrates were first diced from a 4-inch wafer into squares with sides measuring 22.8 mm × 22.8 mm, cleaned by a piranha etch, immersed into diluted hydrofluoric acid, and surface-treated with polymer adsorbates for polymer-assisted sublimation growth (PASG) [8,9]. PASG involved spin coating a weak solution of 0.2 % (by volume) AZ5214E polymer in isopropanol. Prior to EG growth, the prepared substrates were then placed on a slab of polished graphite with the Si-face in direct contact with the slab for face-to-graphite growth [13,33]. The combination of the face-to-graphite growth and PASG methods supports the formation of a uniform surface morphology and suppresses the formation of high substrate steps and bilayer domains. Reducing the SiC terrace height to a sub-nanometer level is important since it reduces variations of the doping level, the number of scattering centers, and strain caused by local detachment of the graphene layer at the edges of the terraces [34–37]. The annealing process at 1900 °C was performed in argon at atmospheric pressure with a graphite-lined resistive-element furnace. After growth, the EG quality was assessed using CLSM and optical microscopy, both being convenient and preparation-free methods for rapid identification of successful large-area growths [38].

Raman spectroscopy was performed to verify that the EG was undamaged before and after the functionalization process. Spectra were collected with a spectrometer using a 532.2 nm wavelength excitation laser source and a backscattering configuration. The spot size was about 1 μm, the acquisition times were 2 s, the laser power was 25 mW power, and the optical path included a 50 × objective and 600 mm⁻¹ gratings. Square Raman maps were collected with step sizes of 0.5 μm in a 100 by 100 raster-style grid. The large-scale quality of the EG was assessed by monitoring only the 2D (G’) peak and its Raman shift, full width at half maximum (FWHM), and spatial location on the device. The 2D (G’) peak quantities are summarized in Figure 1 (e), with average FWHM of 33.16 cm⁻¹ ± 0.93 cm⁻¹ and average peak position of 2728.07 cm⁻¹ ± 3.36 cm⁻¹ (all uncertainties represent 1σ deviations). Figure 1 (d) shows a photo of the measured device which was fabricated using NbTiN contacts and interconnections.

Functionalization of EG with Cr(CO)₃ was performed to have improved control over the carrier density, as it had been demonstrated in other reports [39–44]. To begin the functionalization process, the completed EG device was loaded onto a phosphor-bronze boat filled with approximately 100 mg of crystalline Cr(CO)₆ (chromium hexacarbonyl) and placed within a homemade vacuum furnace. The deposition steps (well-documented in Ref. [44]) resulted in ring-centered Cr(CO)₃ functionalization. By functionalizing the EG surface, the electron doping was reduced to a carrier density below 10¹¹ cm⁻² and produced limited drift of the carrier density in air. To adjust the carrier density to the level of about 2×10¹¹ cm⁻² for the measurement, the sample was annealed at 355 K for about 20 minutes in vacuum and was cooled down immediately afterward.
2.3. Assessment ofNbTiN properties

The measurement temperature and applied magnetic flux densities need to be far below the critical properties of the superconductor to allow voltage and current terminals to be the same by using multiple interconnections without crossing leads. This is not only important to avoid undesired ohmic resistance contributions but also to avoid the occurrence of non-zero Hall fluctuations at interconnections [45,46].

To assess the most important properties of the NbTiN superconductor, the four-wire resistance across a superconducting element of the device was monitored as a function of the magnetic flux density and temperature. Figure 1(f) shows that the resistance vanishes at a temperature of \(T = 10 \, \text{K} \) and magnetic flux densities up to \(B = 9 \, \text{T} \). At this temperature the critical field is likely to be higher since a breakdown of the superconductivity was only observed above 11.5 K for the system’s highest available magnetic flux density of \(B = 9 \, \text{T} \). At zero magnetic flux density, the typical critical temperature of this superconductor is \(T \approx 12.5 \, \text{K} \).

3. Results and discussion

Under the assumption of negligible resistance contributions from contacts and superconducting strip lines, the quantum Hall array device introduced in Figure 1 provides access to several measurement configurations resulting in different nominal resistance values. Here we focus on only those configurations in which the current splits equally among two or more paths and that provide access to null measurements that may be used to check for the uniformity and quantization of the resistance array. This characterization is complementary to the comparison to a calibrated 100 \(\Omega \) standard resistor using a cryogenic current comparator (CCC) resistance bridge.

To precisely determine the array resistance values using the CCC bridge, a NIST 100 \(\Omega \) standard resistor (Electro-Scientific Industries SR102) was used. The standard resistor has a well-known linear drift rate and was calibrated about 100 days prior to the characterization of the array device using a GaAs-AlGaAs quantized Hall resistance standard.

3.1. Measurement configuration 1 results, \(R = 2/6 \, R_K \approx 8604 \, \Omega \)

Figure 2(a) shows the first configuration of three parallel pairs of series-connected quantized Hall devices with a resulting nominal resistance of \(R_{a,b} = U_{a,b}/I_{a,b} = 2/6 \, R_K \approx 8604 \, \Omega \). The voltage differences \(U_{1,2}, U_{1,3}, U_{2,3} \) at the terminals “1, 2, 3” in the center of the sample are monitored to detect a breakdown of the resistance quantization.

Figure 2(b) shows lock-in measurements of the magnetic field dependence of the resistance \(R_{a,b} \) with a symmetrical behavior at low fields below \(\pm 5 \, \text{T} \) and a wide resistance plateau beyond \(\pm 5 \, \text{T} \). Due to similar carrier densities of the devices, the potential differences \(U_{1,2}, U_{1,3}, \) and \(U_{2,3} \) show Shubnikov-de Haas oscillations at lower fields and approach zero for \(\pm 5 \, \text{T} \).

Precision measurements of the potential differences at \(B = 9 \, \text{T} \) shown in Figure 2(c) were collected using a nanovoltmeter (EM N11) and a NIST-built ramping voltage source that is normally used in a CCC resistance bridge system [47]. The voltage source was operated at \(U_{SD} = U_{a,b} = 1.26 \, \text{V} \) to provide a stable current of \(I_{a,b} \approx 146 \, \mu\text{A} \), or \(I_{SD} \approx 49 \, \mu\text{A} \) through each of the six QHR devices. Measurements were performed by recording at least ten points, each using direct current (dc) reversal cycles to eliminate thermal voltages with a ramp time = 1 s, settle
additionally, each data point U_i in Figure 2(c) is composed of two measurement sets with reversed nanovoltmeter potential terminals such that $U_i = (U_i^+ - U_i^-)/2$ to reject constant voltage offsets that are typically < 10 nV. All three determined potential differences between the three parallel device branches with a mean value of 3.1 nV ± 7.6 nV were zero within the measurement uncertainty which indicates that all six devices were equal and thus almost certainly well quantized. To make measurements using different measurement conditions better comparable, the relative potential deviation $\delta U_{dev} = U/U_{SD}$ was determined resulting in a mean value of all three measurements of 2.5 nV/V ± 6.1 nV/V. This method achieves a metrological useful sensitivity to resistance differences below 10 nΩ/Ω with respect to a 12.9 kΩ resistor assuming a potential difference measurement with a statistical uncertainty < 10 nV and currents on the order of 100 µA.

A comparison of the QHARS and a 100 Ω standard resistor was realized using a binary cryogenic current comparator (BCCC) bridge [48]. Figure 2(d) shows the field-dependent
deviation from the nominal resistance value $R_{a,b} = 2/6 \, R_K$ as a function of the magnetic flux density between $B = 6$ T and $B = 9$ T. The data points for $B \geq 7$ T have a relative deviation well below 10 nΩ/Ω with the lowest value being 1.9 nΩ/Ω ± 0.75 nΩ/Ω at $B = 9$ T. The larger uncertainties of the measurements at 8 T, 7 T, and 6 T are related to the lower number of collected measurements of 25 points compared to 50 points at 9 T. The error bars shown in Figure 2(d) only account for the type A ($k = 1$) uncertainties of the measurements.

3.2. Measurement configuration 2 results, $R = 1/2 \, R_K \approx 12906$ Ω

In the second measurement set shown in Figure 3(a), the QHARS device was contacted such that only four out of the six devices contributed to the transport, creating a network with two parallel pairs of series-connected devices. This was achieved by using the terminals “1,2,3” as current terminals such that $R_{1,2} = R_{2,3} = R_{1,3}$ with a nominal value of $1/2 \, R_K \approx 12906$ Ω. The terminals “a” and “b” were used to identify asymmetries in the device by monitoring the potential
difference $U_{a,b}$.

Figure 3(b) shows the field dependence of $R_{1,2}$, $R_{2,3}$ and $R_{1,3}$ and their corresponding potential differences $U_{a,b}$ monitored with a lock-in measurement system within the range of available magnetic flux densities of $-9 \ T \leq B \leq 9 \ T$. Small differences in the charge carrier densities and low-field resistivities of the devices resulted in somewhat different onsets of the resistance plateaus at $1/2 \ R_K \approx 12906 \ \Omega$ around $\pm 5 \ T$. Measurements of $U_{a,b}$ in Figure 3(b) show that the potential differences of all three measurements with a mean value of $-0.29 \ nV \pm 4.7 \ nV$ are zero to within the measurement uncertainty and thus indicate the well quantization of all Hall elements.

The CCC resistance comparison of the QHARS against the same 100 Ω standard resistor in Figure 3(c) proves that all three resistances $R_{1,2}$, $R_{2,3}$ and $R_{1,3}$ were well quantized at $1/2 \ R_K$ with a deviation of $\approx \pm 2 \ n\Omega/\Omega$.

4. Conclusions

We have demonstrated the fabrication and functionality of EG-based QHARS that provide variable resistances with excellent quantization properties resulting in deviations from its nominal value on the order of $\pm 2 \ n\Omega/\Omega$. Additionally, the introduced relative potential deviation measurements between points of equal potential in the symmetric network design were successfully applied to verify the uniformity and quantization of the device. This technique does not require the assessment of individual devices and thus represents a straightforward quantization criterion of QHARS.

The reasons for the reported performance that matches that of single quantum Hall devices are the crossover-free, superconducting NbTiN interconnections that eliminate ohmic resistance contributions and Hall fluctuations as well as the applied split-contacts with minimum contact resistances. By presenting a novel way to simplify device interconnections without altering the quantized resistance value this work brings the development of QHARS to the next stage.

Author Contributions

M.K. and A.F.R have contributed equally to this manuscript. M.K., A.F.R., and R.E.E. developed the EG functionalization process. M.K., A.R.P., M.M., D.P., A.F.R., and H.J. performed transport measurements. M.K. produced the graphene samples and fabricated the devices. The manuscript was written through the contributions of all authors. All authors have given approval to the final version of the manuscript.

Acknowledgments

The work of D.P. at NIST was made possible by arrangement with C.-T. Liang of National Taiwan University, and the work of M.M. at NIST was made possible by arrangement with M. Ortolano of Politecnico di Torino and L. Callegaro of the Istituto Nazionale di Ricerca Metrologica, Turin, Italy. The authors would like to thank S. Schlamminger and A. Biacchi for their assistance during the internal review at NIST. Commercial equipment, instruments, and materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology or the United States government, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.
References

Jeckelmann B and Jeanneret B 2001 The quantum Hall effect as an electrical resistance standard *Reports Prog. Phys.* **64** 1603–55

Hou Z, Xing Y, Guo A-M and Sun Q-F 2016 Crossed Andreev effects in two-
dimensional quantum Hall systems *Phys. Rev. B* **94** 064516

[34] Nagase M, Hibino H, Kagashima H and Yamaguchi H 2008 Local conductance measurement of few-layer graphene on SiC substrate using an integrated nanogap probe *J. Phys. Conf. Ser.* **100** 052006

