POLITECNICO DI TORINO

Repository ISTITUZIONALE

The groupoid of the Triangular Numbers and the generation of related integer sequences

Original
The groupoid of the Triangular Numbers and the generation of related integer sequences / Sparavigna, Amelia Carolina. - ELETTRONICO. - (2019). [10.5281/zenodo.3470205]

Availability:
This version is available at: 11583/2757752 since: 2019-10-02T21:39:53Z
Publisher:
Zenodo

Published
DOI:10.5281/zenodo. 3470205

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright
(Article begins on next page)

The groupoid of the Triangular Numbers and the generation of related integer sequences

Amelia Carolina Sparavigna
Department of Applied Science and Technology, Politecnico di Torino, Italy.

Here we discuss the binary operators of the set made by the triangular numbers, sequence A000217, in the On-Line Encyclopedia of Integer Sequences (OEIS). As we will see, by means of these binary operators we can obtain related integer sequences. Here we propose some of them. The sequences, except one, are given in OEIS.

Written in Torino, 2 October 2019. DOI: 10.5281/zenodo. 3470205

In [1], we find defined the triangular numbers as those which are counting dots arranged in equilateral triangles. Then, the n -th triangular number is the number of dots in the triangle with n dots on a side. It is equal to the sum of the natural numbers from 1 to n :

$$
T_{n}=\sum_{k=1}^{n} k=\frac{n(n+1)}{2}
$$

The triangular numbers are forming the sequence A000217 in OEIS, the On-Line Encyclopedia of Integer Sequences [2,3].
Some properties of triangular numbers are given in [1] and [4]. One of the properties that we find in [1] is:

$$
\begin{equation*}
T_{n+m}=T_{n}+T_{m}+n m \tag{1}
\end{equation*}
$$

Actually, we have another manner to write T_{n+m}, if we consider OEIS A000217 as a groupoid.
A groupoid is an algebraic structure made by a set with a binary operator [5]. The only restriction on the operator is closure. This properties means that, applying the binary operator to two elements of a given set S , we obtain a value which is itself a member of S . If this operation is associative and we have a neutral element and opposite elements into the set, then the groupoid becomes a group. So, let us consider OEIS A000217 numbers and find binary operators between them.

As we did in some previous discussions (see for instance [6]), we can find a binary operator, which is satisfying the closure. We can follow the same approach as in [7-10]. We have:

$$
2 T_{n}=n^{2}+n=(n+1)^{2}-(n+1)
$$

Let us use numbers A_{n}, so that: $A_{n}=(n+1)$. Then:

$$
A_{n+m}=(n+1)+(m+1)-1
$$

So we can define a binary operation such as: $A_{n+m}=A_{n} \oplus A_{m}=A_{n}+A_{m}-1$.
Moreover, we have that: $\quad 2 T_{n}=A_{n}^{2}-A_{n} \quad ; \quad A_{n}=\frac{1}{2} \pm \frac{1}{2}\left(1+8 T_{n}\right)^{1 / 2}$
Let us consider in (2) the positive sign:

$$
\begin{gathered}
A_{n+m}=A_{n}+A_{m}-1=\frac{1}{2}\left(1+8 T_{n}\right)^{1 / 2}+\frac{1}{2}\left(1+8 T_{m}\right)^{1 / 2} \\
A_{n+m}=\frac{1}{2}+\frac{1}{2}\left(1+8 T_{n+m}\right)^{1 / 2}
\end{gathered}
$$

So we have:

$$
\begin{gathered}
\left(1+8 T_{n+m}\right)=\left[-1+\left(1+8 T_{n}\right)^{1 / 2}+\left(1+8 T_{m}\right)^{1 / 2}\right]^{2}= \\
\left(1+8 T_{n}\right)+\left(1+8 T_{m}\right)+1-2\left(1+8 T_{n}\right)^{1 / 2}-2\left(1+8 T_{m}\right)^{1 / 2}+2\left(1+8 T_{n}\right)^{1 / 2}\left(1+8 T_{m}\right)^{1 / 2}
\end{gathered}
$$

Then:

$$
T_{n+m}=T_{n}+T_{m}+\frac{1}{4}-\frac{1}{4}\left(1+8 S_{n}\right)^{1 / 2}-\frac{1}{4}\left(1+8 T_{m}\right)^{1 / 2}+\frac{1}{4}\left(1+8 T_{n}\right)^{1 / 2}\left(1+8 T_{m}\right)^{1 / 2}
$$

The binary operator, that is, the generalized sum for the triangular numbers is given as:

$$
\begin{equation*}
T_{n} \oplus T_{m}=T_{n}+T_{m}+\frac{1}{4}\left[1-\left(1+8 T_{n}\right)^{1 / 2}-\left(1+8 T_{m}\right)^{1 / 2}+\left(1+8 T_{n}\right)^{1 / 2}\left(1+8 T_{m}\right)^{1 / 2}\right] \tag{3}
\end{equation*}
$$

Using (3) and (1), we have the following identity:

$$
4 n m=1-\left(1+8 T_{n}\right)^{1 / 2}-\left(1+8 T_{m}\right)^{1 / 2}+\left(1+8 T_{n}\right)^{1 / 2}\left(1+8 T_{m}\right)^{1 / 2}
$$

From the generalized sum (3), we have the recursive relation: $T_{n+1}=T_{n} \oplus T_{1}$.
Starting from number $T_{1}=1$, the generated sequence is $3,6,10,15,21,28,36,45,55$, $66,78,91,105,120,136,153,171,190,210,231$, and so on.
The recursive relation can be written, in this case with $T_{1}=1$, as:

$$
\begin{gathered}
T_{n+1}=T_{n}+1+\frac{1}{4}\left[-2-\left(1+8 T_{n}\right)^{1 / 2}+3\left(1+8 T_{n}\right)^{1 / 2}\right] \\
T_{n+1}=T_{n}+1+\frac{1}{2}\left[-1+\left(1+8 T_{n}\right)^{1 / 2}\right]
\end{gathered}
$$

Moreover, we have that $\left(1+8 T_{n}\right)^{1 / 2}$ is the sequence of the odd numbers $3,5,7,9,11,13,15$, 17,19 , and so on.

Let us consider again (3), that is:

$$
T_{n} \oplus T_{m}=T_{n}+T_{m}+\frac{1}{4}\left[1-\left(1+8 T_{n}\right)^{1 / 2}-\left(1+8 T_{m}\right)^{1 / 2}+\left(1+8 T_{n}\right)^{1 / 2}\left(1+8 T_{m}\right)^{1 / 2}\right]
$$

in the form $T_{n+1}=T_{n} \oplus T_{1}$, but here we change the values of T_{1}. Here in the following the sequences that we generate.

$$
T_{1}=0, \text { sequence } 0,0,0,0,0,0, \ldots
$$

$$
T_{1}=1 \text {, sequence } 3,6,10,15,21,28,36,45,55,66,78,91,105,120,136,153,171
$$ 190, 210, 231, and so on. And this is OEIS A000217, the sequence of triangular numbers.

$T_{1}=3$, sequence $10,21,36,55,78,105,136,171,210,253,300,351,406,465,528$, $595,666,741,820,903, \ldots$. Searching this sequence in OEIS, we can easily find that it is A014105, that is, the Second Hexagonal Numbers: $H_{n}=n(2 n+1)$.
$T_{1}=4$, sequence $12,24,40,60,84,112,144,180,220,264,312,364,420,480,544,612$, $684,760,840,924, \ldots$ OEIS A046092 (four times triangular numbers).
$T_{1}=6$, sequence $21,45,78,120,171,231,300,378,465,561,666,780,903,1035,1176$,
$1326,1485,1653,1830,2016, \ldots$ OEIS A081266 (Staggered diagonal of triangular spiral in

A051682).
$T_{1}=7$, sequence $23,48,82,125,177,238,308,387,475,572,678,793,917,1050,1192$, 1343, 1503, 1672, 1850, 2037, \ldots OEIS A062725.
$T_{1}=10$, sequence $36,78,136,210,300,406,528,666,820,990,1176,1378,1596,1830$, $2080,2346,2628,2926,3240,3570, \ldots$ OEIS A033585, that is, numbers: $2 n(4 n+1)$.
$T_{1}=11$, sequence $38,81,140,215,306,413,536,675,830,1001,1188,1391,1610$, $1845,2096,2363,2646,2945,3260,3591, \ldots$ OEIS A139276, that is, numbers $n(8 n+3)$.

Of course, we can continue and obtain further sequences.
Let us remember that, in (2), we can consider the negative sign too. Then we have another binary operation:

$$
T_{n} \oplus T_{m}=T_{n}+T_{m}+\frac{1}{4}\left[1+\left(1+8 T_{n}\right)^{1 / 2}+\left(1+8 T_{m}\right)^{1 / 2}+\left(1+8 T_{n}\right)^{1 / 2}\left(1+8 T_{m}\right)^{1 / 2}\right]
$$

Again, let us consider $T_{n+1}=T_{n} \oplus T_{1}$ as we did before.
$T_{1}=0$, sequence $1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,136,153$, $171,190,210$, and so on. OEIS A000217, the sequence of triangular numbers.
$T_{1}=1$, sequence $6,15,28,45,66,91,120,153,190,231,276,325,378,435,496,561$, $630,703,780,861, \ldots$ OEIS A000384, Hexagonal numbers $H_{n}=n(2 n-1)$.
$T_{1}=3$, sequence $15,36,66,105,153,210,276,351,435,528,630,741,861,990,1128$, 1275, 1431, 1596, 1770, 1953, ... OEIS A062741, three times pentagonal numbers $3 n(3 n-1) / 2$.
$T_{1}=4$, sequence $17,39,70,110,159,217,284,360,445,539,642,754,875,1005$, $1144,1292,1449,1615,1790,1974, \ldots$ OEIS A022266, numbers $n(9 n-1) / 2$.
$T_{1}=6$, sequence $28,66,120,190,276,378,496,630,780,946,1128,1326,1540,1770$, $2016,2278,2556,2850,3160,3486, \ldots$ OEIS A014635, numbers $2 n(4 n-1)$.
$T_{1}=7$, sequence $30,69,124,195,282,385,504,639,790,957,1140,1339,1554,1785$, $2032,2295,2574,2869,3180,3507, \ldots$ OEIS A139274, numbers $n(8 n-1)$.
$T_{1}=10$, sequence $45,105,190,300,435,595,780,990,1225,1485,1770,2080,2415$, $2775,3160,3570,4005,4465,4950,5460 \ldots$. This sequence is not present in OEIS.
$T_{1}=11$, sequence $47,108,194,305,441,602,788,999,1235,1496,1782,2093,2429$, $2790,3176,3587,4023,4484,4970,5481, \ldots$. OEIS A178572, numbers with ordered partitions that have periods of length 5 .

Of course, the approach here proposed can used for the generation of further integer sequences, using the binary operators given in the previous works [6-10]. It is possible that, among the generated sequences, news sequences are produced too.

References

[1] https://en.wikipedia.org/wiki/Triangular_number
[2] Sloane, N. J. A. Sequence A000217 in "The On-Line Encyclopedia of Integer Sequences." [3] https://oeis.org/A000217
[4] Weisstein, Eric W. "Triangular Number." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/TriangularNumber.html
[5] Stover, Christopher and Weisstein, Eric W. "Groupoid." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Groupoid.html
[6] Sparavigna, Amelia Carolina (2019). Composition Operations of Generalized Entropies Applied to the Study of Numbers, International Journal of Sciences 8(04): 87-92. DOI: 10.18483/ijSci. 2044
[7] Sparavigna, Amelia Carolina. (2019, June 6). Binary Operators of the Groupoids of OEIS A093112 and A093069 Numbers (Carol and Kynea Numbers). Zenodo. http://doi.org/10.5281/zenodo. 3240465
[8] Sparavigna, Amelia Carolina. (2019, June 16). Groupoids of OEIS A002378 and A016754 Numbers (oblong and odd square numbers). Zenodo. http://doi.org/10.5281/zenodo. 3247003
[9] Sparavigna, Amelia Carolina. (2019, June 22). Groupoid of OEIS A001844 Numbers (centered square numbers). Zenodo. http://doi.org/10.5281/zenodo. 3252339
[10] Sparavigna, Amelia Carolina. (2019, September 5). Groupoid of OEIS A003154 Numbers (star numbers or centered dodecagonal numbers). Zenodo. $\mathrm{http}: / /$ doi.org/10.5281/zenodo. 3387054

