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Abstract: In this work we are discussing the binary operator that we can generated by homographic
function. By means of this operator, that we can see as a generalized sum, we can create a group. 
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In  recent  works  we  have  shown some  generalized  sums  and  related  groups,  which  are  based  on

transcendental functions.  Let us note that the generalized sums are binary operators which widespread

the addition of real numbers. Besides the investigation of groups generated by transcendental functions,

we have also considered groups involving generalized integers  [1-5].  Here we consider  the group

having a binary operator generated by homographic function.

Let us consider two elements  x and y of reals  R, and a related binary operation.  We indicate this

composition law by the notation x⊕ y ,  a generalized sum so that (R,) is giving a group. 

Let us remember that a group is a set A having an operation  which is combining the elements of A.

That is, the operation combines any two elements  a,b  to form another element of the group denoted

ab.   To qualify (A,)  as a group, the set  and operation must satisfy the following requirements.

Closure: For all a,b in A, the result of the operation ab is also in A. Associativity: For all a,b and c in

A, it holds (ab)c = a(bc). Neutral (or identity) element: An element e exists in A, such that for

all elements a in A, it is ea = ae = a. Opposite (or inverse) element: For each a in A, there exists an

element  b  in  A  such that  ab  =  ba  =  e,  where  e  is the identity. If a group is Abelian,  a further

requirement is the commutativity: For all a,b in A, ab = ba.  

To have a given generalized sum, we follow an approach based on a "generation" [1,6-8].
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Let us have a function G(x) , which is invertible  G−1(G(x))=x . A deformation  generator can

define the group law Φ(x , y)  [6,7]:

 Φ(x , y)=G(G−1(x)+G−1( y ))   or   x⊕ y=G(G−1(x )+G−1( y)) .

In this manner the group law is giving the generalized sum, as we can call the binary operator of the

group.

Let us consider the homographic function.

 G(x)= x+1
x−1 ; G

−1(x)= x+1
x−1 ; G

−1(G(x))=

x+1
x−1

+1

x+1
x−1

−1
= x+1+x−1
x+1−x+1

=x

x⊕ y=G(G−1(x )+G−1( y))=G( x+1
x−1

+ y+1
y−1

)=G( 2 xy−2
(x−1)( y−1)

)=

2 xy−2
(x−1)( y−1)

+1

2 xy−2
(x−1)( y−1)

−1

So that: x⊕ y=3 xy−x− y−1
xy+x+ y−3 (1).

(1) is the generalized sum based on the homographic function..

To have a finite value of (1), we need  xy+x+ y−3≠0 .  That is:  y≠(3−x )/(1+x) (*). In this

manner we have the closure on finite values.

Let us consider the neutral element e of this sum. It is different from zero, as we can easily see if we

use 0 in the generalized sum:

x⊕0=3 x 0−x−0−1
x 0+x+0−3

=−x−1
x−3

= x+1
3−x

Let us note that x⊕0 is the number that we have in the condition (*). For this reason, let us also 

avoid 0, from the element of the set (**).



The neutral element e is equal to −1 : x⊕(−1)=−3 x−x+1−1
−x+x−1−3

=−4 x
−4

=x

The opposite element of x  is 1/ x , so that: x⊕(1 /x )=3 x / x−x−1/ x−1
x / x+x+1/x−3

=−1

For the associativity, we can show that x⊕( y⊕z)=(x⊕ y )⊕z . Actually: 

x⊕( y⊕z)=3 x ( y⊕z)−x−( y⊕z)−1
x ( y⊕z )+ x+( y⊕z )−3 ; (x⊕ y )⊕z=3(x⊕ y )z−(x⊕ y)−z−1

(x⊕ y )z+(x⊕ y)+z−3

x⊕( y⊕z)=8 xyz−4 xy−4 xz−4 yz+4
4 xyz−4 x−4 y−4 z+8

=(x⊕ y )⊕z

Using the binary operator (1), and conditions (*),(**), we can define the neutral element. We have also

that the binary operator possesses the associative property.  In this manner (1) is a generalized sum of a

group.
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