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What’s Around the Curve? A Driving Simulation Experiment on Compensatory 

Strategies for Safe Driving Along Horizontal Curves with Sight Limitations  

 

Bassani Marco, Hazoor Abrar, Catani Lorenzo 

Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino  

24 corso Duca degli Abruzzi, 10129 – Torino (Italy) 

 

Abstract 

This paper focuses on the behaviours adopted by road users when negotiating horizontal curves with 
sight limitations. Experiments at a driving simulator were conducted on two-lane highways in which 
drivers were confronted with a range of sight conditions generated by the manipulation of variables 
such as curve direction, radii and distance of lateral sight obstructions along horizontal curves. It was 
observed that most of the drivers adopted strategies which resulted in a stopping distance shorter 
than the available sight distance, thereby maintaining safe driving conditions. Some drivers reduced 
their speed, some increased the lateral distance from any sight obstructions along the roadside, some 
did both, while others did neither. A preliminary analysis indicated that the safety benefits resulting 
from a vehicle speed reduction strategy significantly outweigh those from a lateral shift in the lane. 
Further analyses on the 1,246 cases investigated offered further support for this proposition, while 
revealing that a higher proportion of drivers opted for the first strategy for safety reasons. Moreover, 
visibility conditions (safe, partially safe, and unsafe) played a role in the choice of driving strategies. 
Results provide evidence that a significant group of drivers used the two strategies under severely 
restricted visibility conditions (i.e., along sharp radius curves); however, the strategies selected were 
independent of the driver speed profile (i.e., slower, average, or faster).  

 

Keywords: road curve design; available sight distance; stopping sight distance; perceived risk; driver 

profile. 

 

Re-submitted to Transportation Research part F: Traffic Psychology and Behaviour.  
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1. INTRODUCTION 

The theory of risk compensation states that people adjust their behaviour in response to the level of 

perceived risk (Wilde, 1982). Wilde (1994, 2001) suggested that this adjustment arises from an 

unconscious and continuous process of evaluation of both risk and safety utility functions. In driving 

operations, risk compensation is related to the “behavioural adaptation” of drivers to changes in the 

road that are deemed unfavourable in terms of safety (OECD, 1990). Most changes typically occur in 

the transition between straights and curves where the driver needs to evaluate certain geometric 

factors (i.e., lane width, alignment curvature, lateral sight obstruction) before adapting his/her speed 

(longitudinal) and steering (transversal) behaviour to the new conditions (McDonald, 2004; 

Coutton-Jean et al., 2009). 

Statistics confirm that crashes are more likely to occur along horizontal curves than straight 

sections (NHTSA, 2008). Comte et al. (2000) reported that a significant proportion of such crashes 

were most likely caused by drivers travelling too fast while negotiating a curve and losing control of 

the vehicle or being forced into a skid. Charlton (2007) sustains that crashes along curves are caused 

by (i) an inability to meet increased attentional demands, (ii) the misperceptions of speed and 

curvature, and (iii) a failure to maintain the correct lane position. However, there are several elements 

in the road environment which encourage drivers to adopt optimal behaviours with adjustments to 

both speed and lateral position in the lane (Reymond et al., 2001; Charlton, 2007). Awan et al. (2019) 

and Charlton et al. (2018) investigated the impact of perceptual countermeasures on driving 

behaviour on curves, concluding that additional road markings boost driver attention and improve 

compliance with posted speed limits, thus resulting in fewer crashes. Curve features affect driver road 

perception (Charlton et al., 2014). The alignment characteristics (both horizontal and vertical), and the 

layout of the cross section are significant perceptual factors. In simulated environments, Bella (2014) 

investigated the effects of combined (horizontal and vertical) curves on driver speed, while Ben-Bassat 

& Shinar (2011) examined the role of shoulder width and safety barriers on driver behaviour. In both 

cases, outcomes (speed and lateral position) were significantly influenced by road geometry. Calvi 

(2015) investigated the effects of some geometric factors on driving performance on 72 different 

curves distributed across three test scenarios. He concluded that the curve radius, the presence of 

spirals, the cross-section, and the visibility conditions significantly influenced driving speeds and 

trajectories. 

From the 207 responses provided by Greek drivers to a questionnaire, Kanellaidis (1995) 

observed that sight distance is one of a number of factors influencing driver speed choice along curves. 

This is confirmed by Moreno et al. (2013), who stated that a sufficient sight distance value allows 
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drivers the time to take in the visual information needed to perform any control and guidance actions 

with a certain margin of safety. 

Finally, Weller (2009) observed that a reduction in the sight distance available leads to a 

reduction in speed along curves similar in magnitude to that produced by the erection of curve 

warning signs. Weller concluded that any actions which resulted in an increase in perceived risk (sight 

distance limitation or warning sign), would lead to a reduction in average operating speeds and, 

consequently, an increase in safety. 

Although the effects of restricted and unrestricted sight conditions (Calvi et al., 2015) and the 

relationship between ASD (Bassani et al., 2019) and speed and lateral shift have already been 

investigated, the compensatory behavioural adaptation to poor sight conditions and an analysis 

focusing specifically on the road variables affecting this adapted behaviour have yet to be investigated. 

When negotiating a curve with limited visibility, the risk perceived is due to the unknown 

conditions along that part of the curve not visible to the driver. A line of stopped or slowly moving 

vehicles, a non-surmountable obstacle in the lane (i.e., a tree, a mass of rock, a stray animal, etc.) may 

be in that non-visible stretch of curve. In the event one of those obstacles were too close to the actual 

vehicle position, the driver might not be able to stop the car in time. Hence, such sight conditions are 

commonly perceived as inherently risky due to the potential presence of unknown obstacles ahead. 

This is even more likely when drivers operate at high speeds. Drivers know well that the length of road 

required to bring their vehicle to a halt (i.e., the stopping distance) affects the safety of their journey. 

The above reported considerations form part of all updated road design policies to guarantee 

comfortable and safe travels (AASHTO, 2011; MIT, 2001). Policies define the available sight distance 

(ASD) as the longest distance that the driver can see along the future vehicle path. Figure 1 exhibits 

the “conventional” available sight distance (ASDc) that separates the driver and the target, i.e., the 

farthest point visible along the lane centreline, which in turn corresponds to the future vehicle 

trajectory. Another important hypothesis assumed in these policies is that the driver is isolated (i.e., 

no other vehicles around) and travelling with good visibility on a wet pavement, so as to evaluate the 

least safe interaction between the driver, the vehicle, the road, and the environment. 

For curve analysis and design, ASDc should be of a sufficient length to enable the driver traveling 

at the design speed to see an unsurmountable object ahead and make an emergency stop (i.e., the 

conventional “stopping sight distance”, SSDc), so as to avoid hitting it. As a result, policies require 

analysis and, possibly, design corrections aimed at ensuring that ASDc ≥ SSDc (AASHTO, 2011; MIT, 

2001). In the modern approach to roadway design, sight analysis is considered of fundamental 

importance in the assessment of safety conditions both along road sections and at intersections. Since 
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2002, in Italy sight analysis has been compulsory in new road planning; the standard requires as an 

output the ASDc and SSDc profiles with the road stations along the abscissa. 

With a few adjustments, the visibility concept outlined in the design policies can be transferred 

to real driving conditions. For example, along a curve the driver line of sight is different from the 

conventional one, and their operating speed is different from the design one. As a result, the actual 

available sight distance (ASDa) may be larger or smaller than ASDc because of the lateral position of 

the driver in the lane (Figure 1). Similarly, the actual operating speed may differ from the design speed; 

consequently, the actual stopping distance (SSDa) may be different from the conventional (design) one. 

Since they do not know the exact distance required for a complete emergency stop, when the ASDa is 

perceived to be inadequate, drivers can only compensate for the risk associated with unsafe 

conditions (ASDa < SSDa) by:  

 reducing their speed to reduce SSDa, and/or 

 move laterally in the lane increasing the distance from the sight obstruction to increase 

ASDa (evidence for this last proposition is given in Figure 1). 

The aim of this study is to investigate if, how, and which drivers employ the following two 

possible compensatory strategies to maintain safe driving along curves with sight limitations: (i) a 

decrease in operating speed to reduce the SSDa, and (ii) a lateral shift of the vehicle in the lane to 

increase the ASDa. Experiments at a driving simulator were carried out with the involvement of 

forty-one volunteers.  

 
Figure 1. Conventional (ASDc) and actual (ASDa) available sight distances along a horizontal curve with sight 
limitations due to the presence of a lateral sight obstruction. In the figure, r is the radius of the future 
conventional trajectory; Dc is the conventional offset of the sight obstruction from the ideal trajectory; Da is 
the distance between the sight obstruction and the actual trajectory followed by the driver in the vehicle; d is 
the offset of the lateral sight obstruction from the shoulder; sw is the shoulder width, lw is the lane width. The 
case presented here shows that if the driver is placed at a Da > Dc, then ASDa > ASDc. 
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Each of the 1,246 observations collected during the experiment (resulting from a combination 

of the travelled curves with the drivers involved) were classified under safe (when ASDa > SSDa always), 

partially-safe (when ASDa > SSDa for a limited length of the curved road section), and unsafe (when 

ASDa < SSDa along the whole section). The recorded speeds were used to distinguish between slower, 

average, and faster drivers. The compensation strategies adopted were compared with behavioural 

profiles, curve radius values, and visibility conditions to determine possible relationships. Finally, an 

ANOVA was carried out to understand whether road geometric factors could have had an influence 

on the variations in SSDa and ASDa observed from an analysis of experimental speed and position data. 

 

2. METHODOLOGY  

In this study, experiments were conducted with the fixed-base driving simulator of the Department of 

Environment, Land and Infrastructure Engineering at the Politecnico di Torino. The following section 

outlines the work carried out and the methodologies adopted to accomplish the research objectives. 

 

2.1 PARTICIPANTS 

In conformity with the Code of Ethics of the World Medical Association (Williams, 2008), forty-one 

drivers took part in the experiment on a voluntary basis (26 males and 15 females); they received no 

benefit or payment for their involvement. All participants signed an informed consent form before the 

experimental session. 

The participant’s ages ranged from 20 to 60 years, with a mean age of 34.2 years; the average 

length of driving experience for the group was 15.2 years, as listed in Table 1. An effort was made to 

ensure that the group of participants reflected the characteristics of the more active Italian driving 

population (MIT, 2016). The crash experience data reported in Table 1 indicates that female drivers 

had a lower number of crashes than males which is consistent with Italian crash statistics (ACI-ISTAT, 

2018). 

The speed data for each driver along the driven tracks were analysed to define their profile. 

“Slower” drivers were considered those who maintained a constant vehicle speed below the mean 

speed (of all collected speed data measured along the track); “average” drivers were those whose 

speed varied around the mean speed; “faster” drivers were those whose operating speed always 

exceeded the mean. From the speed profiles in Table 1 we can see that females generally drove slower 

than males. Finally, in Table 1, drivers are also grouped into three age classes: (i) 20-30, (ii) 31-50, and 

(iii) 51-60 years old. 
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Table 1. Characteristics of participants. 
Gender - Male Female Total 
Participants (number) - 26 15 41 

Age  
[years] 

Min 20 21 20 
Mean 36.3 30.6 34.2 
Max 60 54 60 

Class Age 
(number) 

20-30 (1) 12 11 23 
31-50 (2) 9 3 12 
51-60 (3) 5 1 6 

Driving experience  
[years] 

Mean 17.3 11.7 15.2 
Std. Dev. 11.5 10.0 11.2 

Crash Experience  
[frequency/driver] 

Mean 1.1 0.5 0.9 
Std. Dev. 1.5 0.5 1.2 

Driver profile  
(number) 

Slower 5 8 13 
Average 12 3 15 
Faster 9 4 13 

 

2.2 APPARATUS 

A fixed-base driving simulator with force-feedback steering wheel, manual gearbox, pedals, dashboard, 

and adjustable seat was employed for the experiments. The simulated environment was reproduced 

by means of three 32-inch sized screens with resolution of 1920 × 1080 pixel and a frequency of 60 Hz, 

which covers 130° of the horizontal field of view. A speedometer was built into a dashboard placed 

behind the steering wheel, while a 5.1 surrounding sound system provides realistic car engine and 

other environmental noises. SCANeRTMstudio software was used to develop the experimental tracks, 

model the scenarios, and run the simulations. A relative validation for speed (Catani, 2019; Bassani et 

al., 2018) and for trajectories (Catani and Bassani, 2019) was obtained prior to the investigation. 

 

2.3 EXPERIMENTAL DESIGN 

Two flat terrain road alignments used in this study were designed according to Italian Geometric 

Design Standards for highways and streets (MIT, 2001). A two-lane road section having a lane width 

(lw) of 3.75 m and a shoulder width (sw) of 1.5 m was considered. Combinations of four different curve 

radii (120 m, 225 m, 300 m, and 430 m) were included in the two tracks in random order. To obtain 

specific ASD values at each curve, a lateral sight obstruction consisting of a 1.5 m high stone wall along 

the inner side of the horizontal curves was included. The sight obstruction was placed at three 

different distances (d1 = 0 m, d2 = 1.5 m, and d3 = 3 m) from the inner pavement edge. For confounding 

purposes, other curves had unrestricted sight conditions (i.e., with no sight obstructions), and 

corresponding data were not analysed in this work. Each alignment was composed of 18 horizontal 

curves, the parameters of which were manipulated by combining curve radii (r) and sight obstruction 

wall distances (d) from the road edge, as illustrated in Figure 2. 
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For each combination of successive horizontal curves, a straight segment was included to 

prevent the driver’s performance along a curve being influenced by previous curves. Assuming the 

prescription of the Italian Road Geometrics Policy, the length of tangent section was set in a 110 to 

300 m range (MIT, 2001). Furthermore, the horizontal curves and tangents were properly connected 

with transition curves (spirals) with a parameter scale ranging from r/3 to r in compliance with the 

optical criterion for transition curve design (MIT, 2001). 

The lengths of the two alignments were equal to 12.89 km and 14.44 km. Considering the 

possibility of simulator sickness, fatigue and boredom, the track lengths were designed to limit drive 

times to 20 minutes (Philip et al., 2003). 

In this experiment, a simulated passenger car having a 130 HP engine with a six-gear manual 

transmission was selected. The tracks were driven in both directions (clockwise and anti-clockwise) to 

gather data on both left- and right-hand similar curves. Random traffic was simulated in both travelling 

directions, paying attention not to influence driver behaviour, in order to gather the desired speed 

and trajectory data based only on the road environment. The presence of preceding cars on the 

travelled lane was designed to induce the suspicion of potential obstacles in the lane: they were placed 

sufficiently ahead of the simulated vehicles to avoid the need to overtake them. Thus, free-flow 

conditions in the driven directions were guaranteed in all the experiments. Finally, no vertical signs 

and other constraints were included along the tracks. 

Prior to starting the experiments, participants familiarized themselves with the simulator by 

driving a simple scenario for about 10 minutes (Rizzo et al., 2001). Each participant drove two random 

pre-selected tracks with a rest of at least 10 minutes in between to re-establish optimal driving 

performance (Cobb et al., 1999). 

 
Figure 2. Cross section of the road configuration in right-hand and left-hand curves, with the sight obstruction 
at different distances from the lane axis (Dc) and from the driver’s line of sight (Da). The lane gap (LG) measures 
the distance from the driver to the lane centreline.  
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2.4 DRIVING SIMULATOR DATA COLLECTION  

Vehicle speed (v) and position in the lane (LG) measured from the lane centreline (Figure 2) were the 

parameters considered in this study. These data were extracted for each driver along the investigated 

curves, as well as along the approaching and leaving sections (spirals and tangents), as shown in 

Figure 3. The same data were used to compute the sight distances according to the methodologies 

reported in the next sections. 

 
Figure 3. Spiralled design horizontal curve with data reference points (Notes: SC = Spiral to Curve point; 
CS = Curve to Spiral point; TS = Tangent to Spiral point; ST = Spiral to Tangent point; CSen = Centre of entry 
Spiral point; CSex = Centre of exit Spiral point; (Ln)i,j = normalized length for i-th curve and j-th driver; 
(ASDa)i,j = actual available sight distance on the final target point placed at ST+50 m). 

 

2.4.1 Stopping sight distance 

An accurate evaluation of SSDa is only possible when the driver makes an emergency stop. Therefore, 

it is not possible in practical terms to measure such a variable. To overcome this problem, the (SSDa)i,j 

values for the i-th curve travelled by the j-th driver were estimated by referring to: 

 

(𝑆𝑆𝐷 ) , = (𝑣 ) , ∙ τ +  
( ) ,

·( ± )
         (1) 

 

which derive from the equilibrium of forces acting on a vehicle (according to Newton’s second law) 

and considering the perception and reaction time. It gives a measure of the most probable distance 

required for a complete stop. In eq. 1, va is the observed vehicle speed at reference points in m/s, τ is 

the perception-reaction time in s, that was assumed equal to (2.8 - 0.01·Va) with Va expressed in km/h 
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according to the Italian standard (MIT, 2001), fe is the equivalent longitudinal friction coefficient 

(values provided by the same Italian standard), i is the longitudinal grade of road, and g is the 

gravitational acceleration. 

For this experiment, eq. 1 provided the (SSDa)i,j values on the basis of conditions assumed by 

the Italian standards (MIT, 2001), which may differ from the real ones. For example, the 

perception-reaction time (τ) varies between drivers, and indeed also for the individual driver when 

he/she operates under different health, attentional, and environmental conditions (Lerner, 1993; 

Green, 2000; Layton and Dixon, 2012). Moreover, the equivalent longitudinal friction coefficient (fe), 

which includes the contribution of aerodynamic drag force and rolling resistance to the stopping 

distance, is highly dependent on speed, as well as on tire, vehicle, and road surface conditions (e.g., 

new/old tire tread, wet/dry pavement surface). Both values cannot be precisely reckoned for the 

experimental conditions investigated here, but they approximate to possible values of (SSDa)i,j which 

were compared with the actual estimation of (ASDa)i,j during the experiments. 

 

2.4.2 Available sight distance 

When both the driver and the target are positioned along the circular portion of the curve (i.e. 

between SC and CS in Figure 3), as illustrated in Figure 1, (ASDc)i and (ASDa)i,j are computed as follows: 

 

(𝐴𝑆𝐷 ) = 2(𝑟 ) · 𝑎𝑟𝑐𝑐𝑜𝑠 1 −
( )

( )
       (2) 

(𝐴𝑆𝐷 ) , = 2(𝑟 ) , · 𝑎𝑟𝑐𝑐𝑜𝑠 1 −
( ) ,

( ) ,
      (3) 

 

where (ASDa)i,j was obtained by considering the average trajectory of the j-th driver along the i-th 

curve, (ra)i,j was calculated as the radius of this average actual trajectory, and Da was computed 

following the scheme of Figure 2; (ASDc)i simply depends on (rc)i and (Dc)i of the i-th curve only (i.e., it 

is independent of the driver). 

When either of or both the driver and the target fell outside the circular arc (before SC and/or 

after CS in Figure 3), ASDc and ASDa values were estimated on the basis of the known geometrical 

features of the curves as per the methodology outlined in the Appendix.  

 

2.4.3 Visibility conditions 

Subsequently, (ASDa)i,j and (SSDa)i,j values were compared to analyse the actual visibility conditions 

along the driven path of each individual test driver.  

The visibility conditions along the track were investigated by developing (i × j) sight profiles. 

Looking at the visibility profile examples shown in Figure 4, ASDa changes with the decrease in sight 
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distance as the vehicle approaches the curve with a lateral sight obstruction. The lowest value of ASDa 

is reached when the vehicle and target point (the farthest point visible along the future trajectory) are 

both inside the circular arc (eq. 3 was used to validate the values obtained from the analysis). In 

contrast, SSDa depends on the adopted speed; hence it can increase, decrease or remain constant 

depending on driver longitudinal behaviour. According to Figure 4, the three examples lead to the 

following three sight conditions: 

 “safe”, when (ASDa)i,j > (SSDa)i,j throughout the profile (approaching and exiting the curve); 

 “partially-safe”, when (ASDa)i,j > (SSDa)i,j for a limited part of the driven path approaching and 

exiting the curve; and 

 “unsafe”, when (ASDa)i,j < (SSDa)i,j throughout the profile. 

It is worth noting that in Figure 4, the horizontal axis indicates the position of a vehicle as a 

function of the normalized length starting from the first reference point (TS – 50 m, Ln = 0) to the final 

point (when the target at the end of the line of sight meets the ST + 50 m, it represents the position 

of the driver, Ln = 1). 

 
Figure 4. Comparison of actual available (ASDa) and stopping sight (SSDa) distances and actual speed profiles. 
Examples from three different test drivers (j) along the same rightward curve (i = 10) having r = 120 m, 
D = 6.375 m, and d = 3 m. 
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Since drivers are not aware of the actual values of available and stopping sight distances, they 

must rely on their previous driving experience to support any evaluations regarding same. Hence, 

drivers who feel unsafe adjust their speed and/or position in the lane in response to the limited sight 

conditions and the associated perceived risk, while those who feel safe do not make any adjustments, 

thus maintaining and accepting the perceived risk level. 

 

2.5 COMPENSATORY STRATEGIES 

As previously stated, the only two compensatory strategies that may be adopted to increase the 

margin of safety along curves with limited visibility are (1) a reduction in the SSD by decreasing the 

operating speed along the curve, and (2) a lateral shift of the vehicle in the lane to increase ASDa. 

The SSD variation, namely Δ(SSDa)i,j, was determined for the first strategy with the help of: 

 

𝛥(𝑆𝑆𝐷 ) ,  =  (𝑆𝑆𝐷 , ) ,  − (𝑆𝑆𝐷 , ) ,       (4) 

 

where (SSDa,SC)i,j is the actual stopping sight distance of the i-th curve at the SC point of the j-th driver, 

while (SSDa,CS)i,j is the same value at the CS point (Figure 3). Positive values for Δ(SSDa)i,j indicate that 

the driver reduced speed (with positive speed variations, va) to shorten the SSD in an attempt to 

increase the margin of safety (i.e., decreasing the perceived risk in negotiating the curve), otherwise 

the driver did not compensate for a perceived unsafe condition (with null or negative va). 

The values of ASD, namely (ASDa)i,j, were estimated according to the methodology presented in 

Section 2.4.2; the ASD variation (ΔASDi,j) with respect to the conventional position was estimated as 

per the following equation: 

 

𝛥𝐴𝑆𝐷 ,  =  (𝐴𝑆𝐷 ) ,  − 𝐴𝑆𝐷 ,                             (5) 

 

Positive ΔASDi,j values indicate that the driver benefited from sight distance values higher than 

the conventional one. In these circumstances, the i-th driver increased the margin of safety by shifting 

the vehicle laterally away from the sight obstruction (thus introducing a variation in the lateral 

distance from said obstruction Da). Conversely, negative ΔASDi,j values indicate a lateral shift towards 

the sight obstruction (interior side). 

Speed and lane position profiles relative to 1,246 curves were analysed in this work from a total 

of 1,476 data (resulting from the combination of 41 drivers × 18 curves × 2 tracks) collected in the 

experiment. As already mentioned, curves with unrestricted sight conditions 
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(14 drivers × 6 curves × 2 tracks) were excluded, as well as those curves where drivers were 

conditioned by vehicles ahead (a total of 62 cases were observed). 

 

3. RESULTS AND DISCUSSION 

Observations confirmed that some drivers moved laterally thereby changing Da to increase ASDa, 

others reduced speed (va) along the curve thereby reducing SSDa, some moved laterally and reduced 

speed at the same time, while a group of drivers did not make any changes aimed at improving safety.  

The minimum, the mean, the maximum, and the standard deviation of estimated values for the 

two compensatory strategies are summarized in Table 2. Data in the table present positive and 

negative values demonstrating that some drivers compensated for the hazardous sight conditions, 

while others did not. Regarding the magnitude of values, it is worth noting that ΔASDi,j and Da values 

fall within a smaller range than Δ(SSDa)i,j and va. This fact evidences that, for the investigated range 

in the geometry of curves, drivers reaped greater benefits when they reduced their speed than when 

they moved laterally in the lane. 

 

Table 2. Summary of estimated magnitude of compensatory strategies at different radii (r). The sign conventions 
for Δva and ΔDa are: (+) = reduction in speed/ away from the sight obstruction; (-) = increase in speed/towards 
the sight obstruction; the sign convention for Δ(SSDa)i,j and ΔASDi,j are: (+) = increase of distance; (-) = decrease 
of distance. Number of observations are: 318 for 120 m, 308 for 225 m, 336 for 300 m, and 284 data for 430 m, 
with a total of 1,246 data.  

Compensatory  
Parameter 

Radius Min Mean Max Std. Dev. 
strategy [m]     

Speed reduction 

va  
[km/h] 

120 -12.33 3.36 21.26 5.1 
225 -25.65 -2.92 19.79 9.0 
300 -24.57 -1.29 23.11 9.8 
430 -22.03 -6.12 24.62 9.4 

All cases -25.65 -1.7 24.62 10.5 

Δ(SSDa)i,j 
[m]

120 -13.4 5.8 34.9 7.7 
225 -44.6 -3.4 35.2 10.6 
300 -42.6 -2.0 39.3 12.3 
430 -50.7 -8.6 52.9 14.5 

All cases -50.7 -1.9 52.9 12.6 

Lateral shift 

Da 

[m] 

120 -2.3 -0.5 0.9 0.5 
225 -1.7 -0.4 0.7 0.4 
300 -1.3 -0.3 0.8 0.4 
430 -1.5 -0.3 0.8 0.4 

All cases -2.3 -0.4 0.9 0.6 

ΔASDi,j 

[m] 

120 -6.1 -1.5 2.8 1.5 
225 -6.4 -1.7 3.2 1.7 
300 -6.0 -1.5 5.1 2.0 
430 -7.3 -1.5 4.4 2.3 

All cases -7.3 -1.5 5.1 1.9 
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3.1 DRIVER PROFILES AND AGE CLASS VS. VISIBILITY CONDITIONS 

The relationship between the visibility conditions and the driver behaviour profiles and age classes are 

synthetized in Figure 5. Consistent with Table 1, participants were almost equally distributed across 

the three profiles (33.9, 37.1, and 29.0% for slower, average, and faster drivers respectively).  

Figure 5a summarises the distribution of the three driver behaviour profiles with respect to the 

three driving conditions established in Section 2.4.3. A sizeable majority of drivers operated under 

safe visibility conditions (711 out of 1,246, 57.1%), while only 5.5% of drivers drove the simulated 

vehicle under unsafe conditions. The results in Figure 5a are evidently in line with expectations: in 358 

out of 422 cases (84.8% of data), slower drivers operated in safe visibility conditions, while in just one 

case (i.e., one driver on one curve) a slower driver was observed operating in unsafe conditions. 

Conversely, in 282 out of 362 cases (77.9% of data) faster participants drove in partially or totally 

unsafe conditions. 

The data in Figure 5b show a similar trend to those in Figure 5a, when age classes are substituted 

for driver profiles. In the case of the more experienced drivers involved in the experiment (Class Age 

3, 51-60 year olds), many (104 out of 174) drivers operated in partially or totally unsafe conditions, 

while the majority of drivers in the two younger age classes drove safely (417 out of 702 in Class Age 

1, 224 out of 370 in Class Age 2). This result reflects the tendency of inexperienced drivers to adopt a 

safer approach to curves with sight constraints compared to more experienced drivers. In other words, 

the latter have more confidence in their ability to negotiate risky road conditions, or analogously they 

perceive a lower level of risk than young drivers when exposed to the same sight limitations. 

 

   
                                                      (a)                                                                                               (b) 
Figure 5. (a) Frequency of driver profile type against the visibility conditions; (b) frequency of Class Age against 
the visibility conditions.  
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3.2 COMPENSATORY STRATEGIES VS. VISIBILITY CONDITIONS 

Figure 6 provides a summary of the data indicating the numbers and percentages of drivers who used 

compensatory strategies under the different visibility conditions (i.e., safe, partially safe and unsafe). 

Under safe conditions, around 85% of 711 drivers did not shift their vehicle laterally, while in around 

32% of 69 cases a lateral shift was used to compensate for a perceived unsafe sight condition 

(Figure 6b). 

In unsafe sight conditions, around 75% of 69 drivers compensated with a speed reduction, while 

in safe conditions, around 60% of drivers did not reduce their speed. These results add further support 

to the explanations given in Section 3.1, thus reinforcing the hypothesis that the marked tendency to 

reduce speed to compensate for a lack of visibility is linked to the greater benefits that can be obtained 

in comparison to those gained from a lateral shift. 

In a different analysis, data was broken down into four cases considering the possible combined 

use of the two compensatory strategies (Figure 7). The first case includes data where positive values 

for both Δ(SSDa)i,j and ΔASDi,j were observed and consists of a number of cases in which participants 

employed both compensatory mechanisms in curve negotiation. A second and third case refer to 

those drivers who adopted only one of the two strategies. The fourth case includes data with negative 

values for Δ(SSDa)i,j and ΔASDi,j reflecting situations in which drivers did not adopt any compensation 

strategies. 

 
                                                         (a)                                                                                               (b) 
Figure 6. Number of times (in absolute and percentage terms) in which curves were negotiated with (a) a speed 
reduction, and (b) a lateral shift, for different visibility conditions. 
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Figure 7. Driver choice of compensatory strategy combinations considering visibility profile type. 
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(a) 

 (b) 

Figure 8. (a) Compensatory strategies associated with driver profile; (b) compensatory strategies associated 
with driver class age.  
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that an increase in radius results in an increase in the number of drivers tending to adopt one strategy 

instead of two (at 430 m, only 2% of drivers adopted both). 

These results evidence the different behavioural outputs produced by short radii (sharp) curves 

with respect to shallow ones, with shallower curves (r ≥ 225 m) having a different proportions 

distribution. In the case of the 120 m radius, the majority of drivers operated unsafely, with the result 

that a higher number of speed reduction operations were performed to compensate for these 

potentially hazardous sight conditions.  

 

 (a) 

 (b) 

Figure 9. Curve radius values associated with (a) visibility conditions and (b) compensatory strategies.  
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3.5 FACTORS AFFECTING COMPENSATORY STRATEGIES 

An analysis of variance (ANOVA) was performed to determine the impact of road geometric factors 

on compensatory mechanisms. In this analysis, both dependent measures were analysed separately 

against the following independent factors depicted in Figure 1: (i) direction of the curve (rightward 

and leftward), (ii) radius of curvature (120 m, 225 m, 300 m, and 430 m), and (iii) sight obstruction 

distance from road edge (0, 1.5 m, and 3 m). 

Additionally, data were grouped into two families considering the different visibility conditions: 

in the first group data for safe profiles were included, while the second group contains the partially 

safe (PS) and unsafe (US) visibility condition data. Therefore, two ANOVAs were conducted per 

compensatory strategy. 

 

3.5.1 Speed reduction  

The effect of road geometry factors on Δ(SSDa)i,j are listed in Table 3 for safe conditions, and Table 4 

for partially safe and unsafe conditions. In the first case, ANOVA revealed the significance of curve 

direction (F(1,687) = 5.72, p < 0.05, η2 = 0.007), and radius (F(3,687) = 14.26, p < 0.001, η2 = 0.050) 

while the effect of sight obstruction distance was not found to be significant for the speed reduction 

strategy for the safe profile group. The interaction effect of sight obstruction distance from the 

roadside (d) with other factors was found to be moderately significant.  

In the second case, ANOVA showed the significant effects of both curve direction 

(F(1,512) = 34.42, p < 0.001, η2 = 0.044), and curve radius (F(3,512) = 35.23, p < 0.001, η2 = 0.053). As 

with previous cases, the main effect of sight obstruction distance was not found to be significant for 

the compensatory strategy, while the interaction between sight obstruction distance and curve 

direction proved significant (F(2,512) = 7.14, p < 0.001, η2 = 0.018), suggesting that the role played by 

the distance of sight obstruction changes when it is evaluated together with curve direction. No 

further significant interaction effects were determined in the analysis.  

Both analyses revealed that geometric factors play an important role in the adoption of a 

speed reduction strategy with the radius having the greatest effect (η2 = 5%). The results also confirm 

the preliminary analysis which highlighted a significant variation in the magnitude of the 

compensatory strategies Δ(SSDa) at different radii (Table 2). Possible reasons for this variation could 

be the different speeds adopted by drivers when considering the magnitude of curve radius (Calvi, 

2015), and the manoeuvre direction, i.e. rightward and leftward (Bella, 2013).  
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Table 3. ANOVA on factors affecting Δ(SSDa)i,j for safe visibility conditions. 
(Notes: Dir = Direction, r = Curve Radius, d = sight obstruction distance from road edge) 
Number of obs. 711      
Root MSE 9.2863      
Source Partial SS df MS F Prob > F η2 
Model 14541.7 23 632.25 7.33 0.0000  
Main Effects       
Dir 493.6 1 493.6 5.72 0.0170 0.00669 
r 3689.6 3 1229.87 14.26 0.0000 0.05001 
d 126.2 2 63.11 0.73 0.4814 0.00171 
Interaction       
Dir * r 93.5 3 31.18 0.36 0.7808 0.00127 
Dir * d 825.0 2 412.48 4.78 0.0086 0.01118 
r * d 2275.0 6 379.17 4.40 0.0002 0.03083 
Dir * r * d 1552.8 6 258.79 3.00 0.0067 0.02104 
Residual 59243.6 687 86.24    
Total 73785.3 710 103.92    

 

Table 4. ANOVA on factors affecting Δ(SSDa)i,j for partially safe and unsafe visibility conditions 
(Notes: Dir = Direction, r = Curve Radius, d = sight obstruction distance from road edge) 
Number of obs. 535      
Root MSE 12.5307      
Source Partial SS df MS F Prob > F η2 
Model 41973.0 22 1907.86 12.15 0.0000  
Main Effects       
Dir 5404.3 1 5404.26 34.42 0.0000 0.04416 
r 6596.6 3 5532.20 35.23 0.0000 0.05391 
d 776.6 2 388.30 2.47 0.0853 0.00635 
Interaction       
Dir * r 1322.7 3 440.89 2.81 0.0391 0.01081 
Dir * d 2242.8 2 1121.38 7.14 0.0009 0.01833 
r * d 1943.4 6 323.90 2.06 0.0561 0.01588 
Dir * r * d 1443.2 5 288.63 1.84 0.1038 0.01179 
Residual 80393.9 512 157.02    
Total 122366.9 534 229.15    

 

The effects of radius on the choice of compensatory mechanism together with the interaction 

between this variable and profile type (safe and unsafe) is illustrated in Figure 10a. The results showed 

that in 79% of all cases with a radius of 120 m participants reduced their speed; these results are in 

line with those obtained by Calvi (2015) who also found that lower speed is an example of 

compensatory behaviour in reduced visibility conditions. However, on medium and large radius curves 

(r equal to 225, 300, and 430 m) drivers tend to increase speed so a higher proportion of Δ(SSDa)i,j 

values are negative which means driver did not compensate with a reduction in speed. The same 

results were observed with the interaction of radius and curve direction, as shown in Figure 10b.  

These results support the Risk Homeostasis Theory, which purports that drivers possess an 

internal target level of risk for each situation, and they will increase or decrease their safety actions in 

order to reduce the difference between their momentary perceived level of risk and situational target 
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level (Wilde, 1982; Lewis-Evans and Charlton, 2006). The perceived risk decreases with an increase in 

radius values, therefore drivers tend to increase speed in order to maintain the momentary risk level 

in line with the target one. 

 

(a)

(b) 
Figure 10. Risk compensation as per the speed reduction strategy: (a) effect of visibility conditions (safe, S; 
partially safe, PS; unsafe, US) and radius; (b) effect of curve direction (rightward, RW; leftward, LW) and radius. 
 

3.5.2 Lateral shift 

Table 5 presents the results of ANOVA for the lateral shift compensatory mechanism (ΔASD) when 

considering the safe profile group. Results revealed the effects of direction (F(1,687) = 156.12, 

p < 0.001, η2 = 0.149) and sight obstruction distance (d) to be highly significant (F(2,687) = 4.09, 

p < 0.001, η2 = 0.007), while the effect of radius (r) is insignificant for the first compensatory 

mechanism. The analysis of variance shows a significant interaction effect between curve direction 

and radius (F(3,687) = 8.04, p < 0.001, η2 = 0.002), while the interaction effect between other factors 

was not significant under safe profile conditions. 

The same analysis was performed with the partially safe and unsafe profile groups as listed in 

Table 6. ANOVA revealed that only curve direction had a significant effect on the dependent 
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parameter (F(1,512) = 116.35, p < 0.001, η2 = 0.149). ANOVA showed a moderate level of interaction 

between curve direction and sight obstruction distance (F(2,512) = 7.70, p < 0.001, η2 = 0.019); and 

between curve radius and sight obstruction distance (F(6,512) = 3.21, p < 0.01, η2 = 0.024).  

 

Table 5. ANOVA on factors affecting ΔASDi,j data for safe visibility conditions.  
(Notes: Dir = Direction, r = Curve Radius, d = sight obstruction distance from road edge) 
Number of obs. 711      
Root MSE 1.4547      
Source Partial SS df MS F Prob > F η2 
Model 754.6 23 32.81 15.50 0.0000  
Main Effects       
Dir 330.4 1 330.35 156.12 0.0000 0.14960 
r 4.3 3 1.43 0.67 0.5681 0.00194 
D 17.3 2 8.65 4.09 0.0172 0.00784 
Interaction       
Dir * r 51.0 3 17.01 8.04 0.0000 0.02311 
Dir * d 10.7 2 5.34 2.53 0.0808 0.00484 
r * d 11.6 6 1.94 0.92 0.4825 0.00527 
Dir * r * d 13.8 6 2.29 1.08 0.3704 0.00623 
Residual 1453.8 687 2.12    
Total 2208.3 710 3.11    

 

Table 6. ANOVA on factors affecting ΔASDi,j data for partially safe and unsafe visibility conditions .  
(Notes: Dir = Direction, r = Curve Radius, d = sight obstruction distance from road edge) 
Number of obs. 535      
Root MSE 1.5962      
Source Partial SS df MS F Prob > F η2 
Model 681.5 22 30.98 12.16 0.0000  
Main Effects       
Dir 296.4 1 296.42 116.35 0.0000 0.14926 
r 19.9 3 6.62 2.60 0.0516 0.01000 
d 6.1 2 3.03 1.19 0.3050 0.00305 
Interaction       
Dir * r 3.7 3 1.24 0.49 0.6905 0.00188 
Dir * d 39.2 2 19.62 7.70 0.0005 0.01976 
r * d 49.1 6 8.19 3.21 0.0042 0.02474 
Dir * r * d 21.7 5 4.35 1.71 0.1314 0.01095 
Residual 1304.5 512 2.55    
Total 1985.9 534 3.72    

 

This analysis shows that only some parameters affect the lateral shift strategy directly, while all 

of them affect the ΔASDi,j when interacting with other variables. The contribution of curve direction is 

comparatively higher with η2 equal to 15% for both groups of data. However, radius values do not 

impact directly on the choice of strategy. A possible explanation for this might be that drivers correct 

their trajectories while negotiating horizontal curves by shifting towards the centre of the road for 

leftward curves and on rightward curves they move towards the roadside (Bella, 2013). This lateral 

movement significantly effects the magnitude of the compensatory strategy (ΔASD). The magnitude 
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of variation may vary with curve direction. Calvi (2015) concluded that rightward curves show a higher 

variation in the lateral movement of vehicles compared to leftward curves. 

To understand the effect(s) of direction and obstruction distance on driver behaviour, the 

results were plotted with respect to sight obstruction distance along rightward and leftward curves 

for both visibility profiles, as shown in Figure 11a. The different driver responses along the curves can 

be seen in the higher values for rightward curves in contrast to those for leftward curves. This means 

that under unsafe and partially safe visibility conditions, drivers increase the sight distance by making 

positive lateral movements to increase the margin of safety relative to the perceived risk. The same 

trend may be observed in Figure 11b, which illustrates the effects of curve direction and radius on the 

compensatory strategy.  

 

(a)     

(b) 
Figure 11. Risk compensation as per a lateral shift of the vehicle in the lane: (a) ΔASDi,j data distribution on the 
basis of visibility conditions (safe, S; partially safe, PS; unsafe, US) and per different sight obstruction distances 
(Dc); (b) ΔASDi,j data distribution on the basis of curve direction (rightward, RW; leftward, LW) and radius. 
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These results concur with those obtained by Zakowska (2010). In the case of rightward curves, 

most drivers tend to drive close to the centre of the lane, whereas the observed values for leftward 

curves remain negative for all curve radii (almost all drivers tend to move toward the centre of 

curvature, i.e. towards the sight obstruction). One possible reason for these negative values (no 

compensatory action) might be the existence of higher sight distance values in the case of leftward 

curves with respect to rightward ones, which in turn leads to a perception of greater safety in 

comparison with the rightward curves driven previously. 

 

4. CONCLUSIONS  

The present study was designed to determine the effect of sight limitations (caused by obstructions 

along horizontal curves) on the compensatory strategies adopted by drivers. With sight limitations, 

driver behaviour is conditioned by the inability to see any potential obstructions around the curves 

ahead. The experiment at the driving simulator recreated this scenario, and two compensatory 

strategies corresponding to a reduction in vehicle speed aimed at reducing the stopping distance (SSD), 

and a lateral shift to increase available sight distance (ASD) were observed and investigated. Two road 

tracks were designed with a combination of spiralled horizontal curves connected with straight 

tangents designed to meet the Italian Policy on road geometrics (MIT, 2001). A total of 1,246 case 

studies were generated by the forty-one participants who negotiated a series of curves with four 

different radii lengths (120, 225, 300, and 430 m) and with continuous 1.5 m high walls located at 

different offsets from the pavement edge. 

The results of this investigation indicate that certain geometric factors characterizing curves 

have a significant effect on the compensatory strategies used. ANOVA showed that the radius was the 

geometric factor which had the greatest effect on the speed reduction strategy. This also explains why 

drivers are concerned by vehicle stability on more demanding, sharper curves (r = 120 m), while on 

wider curves most drivers increase speed because of higher perceived available sight distance values. 

Moreover, it was also found that the curve direction plays a significant role in the lateral shift 

compensatory strategy. The variation in ASD values observed on rightward curves was greater than 

on leftward curves, which means that some drivers increase the ASD with a lateral shift of the vehicle 

along rightward curves; some do the same on leftward ones but to a lesser degree. 

Furthermore, the visibility condition profile type (safe, partially safe, and unsafe) plays a role in 

the adoption of certain compensatory strategies. It was observed that drivers under partially safe and 

unsafe visibility conditions were more prone to the use of compensatory strategies in comparison to 

those drivers travelling under safe conditions. The percentage of cases in which drivers opted for the 

speed reduction strategy was 40.4% with this figure increasing to 47% for partial safe conditions and 
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to 75.4% for unsafe visibility conditions. With respect to the lateral shift compensatory strategy, the 

percentage increments were 15.1% and 31.9% for safe and unsafe visibility conditions respectively. 

As regards choice of compensatory strategy, a clear majority of drivers preferred a reduction in 

speed. Results demonstrate that with this strategy, drivers benefitted from a greater reduction in SSD 

with respect to that obtained with a lateral movement of the vehicle (included in the interval of -7.3 

and + 5.1 m). Moreover, this study confirmed that most drivers managed to use the speed reduction 

compensatory strategy while negotiating sharp curves (r = 120 m) under both safe and unsafe (PS+US) 

visibility conditions. The pattern for the percentage distribution of sight conditions and compensation 

strategies employed for the sharpest curve considered here (r=120 m) was completely different to 

that for shallower curves (r ≥ 225 m). 

Furthermore, the results revealed no apparent relationship between driver speed profiles 

(slower, average, and faster) and the compensatory categories. The results also illustrate how 

inexperienced drivers (in comparison with more experienced ones) assumed a safer approach to 

curves with sight restrictions. It would seem that more experienced drivers have greater confidence 

in their ability to operate under risky sight conditions. The driver profile categories could be reinforced 

in future studies by the addition of other factors (age, gender, driving experience, etc.) which were 

not explored in detail here due to the limited number of drivers involved. 

 

5. RECOMMENDATIONS 

The results of this investigation also confirm that design prescriptions for the evaluation of the 

available sight distance (AASHTO, 2011; MIT, 2001) are appropriate, realistic and reflect average 

driving conditions. In particular, road design policies assume that the driver moves along the 

centreline; in these experiments, driver positions (i.e., the lane gap, LG) were found to be across the 

lane centreline, leading to differences between actual (ASDa) and conventional (ASDc) available sight 

distance values of only 3.9 – 5.7% according to the combination of investigated geometric variables. 

These findings have significant implications for an understanding of how operating speed and 

vehicle lateral positioning along curves, and approaching and leaving sections increase the margin of 

safety. Providing drivers with continuous speed limit information would improve safety on the roads 

(Charlton et al., 2018), together with specific road markings which could be of assistance to drivers 

when adopting appropriate lateral positions along curves (Awan et al., 2019; Charlton, 2007).  

This study contributes to a better understanding of the behavioural adaptation of drivers to 

geometric design factors, which is of fundamental importance in the comprehension of interactions 

between the driver and the road environment with implications for (i) new road design guidelines and 
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the re-design of existing ones, (ii) speed limit management for existing roads, and (iii) driver road 

safety campaigns.  

Road designers should keep in mind that even if the conventional sight prescription 

(ASDc ≥  SSDc) is satisfied (AASHTO, 2011; MIT, 2001), actual driving conditions may result in 

ASDa being lower than SSDa due to unfavourable speeds and/or lateral position in the lane. 

Consequently, geometric road design settings must produce ASDc values sufficiently greater than SSDc 

ones to ensure safe conditions for those drivers who slightly exceed the speed limits and/or drive 

closer than expected to the sight obstruction. However, the designer should not adopt excessively 

high ASDc values, since they induce higher speeds which in turn may compromise overall safety 

conditions (Bassani et al., 2019). 

Furthermore, road analysts should regard the available sight distance as a factor when 

establishing speed limits along horizontal curves (Charlton and de Pont, 2007; Campbell et al. 2012). 

The results of this investigation demonstrate that a significant number of drivers operating under 

unsatisfactory sight conditions (i.e., partially safe and unsafe) do not react to these conditions with a 

reduction in speed and/or a lateral movement in the lane. Hence, this segment of the driver 

population must be encouraged to alter their behavior vis-à-vis the presence of an adequate and 

consistent number of posted speed limit signs. 

Educational road safety campaigns and programs are necessary to compensate for the 

hazardous behaviour of a significant proportion of drivers across all the different age categories. They 

should inform drivers on possible compensatory manoeuvres in the event of sight limitations, and 

promote a policy of speed reduction rather than lateral movement as a means to improve the available 

sight distance. It is worth highlighting that excessive lateral movements along right-ward curves 

(aimed at improving ASD) increase the possibility of a collision with oncoming traffic on the opposite 

lane. This investigation demonstrates that experienced drivers are more confident (perhaps 

excessively so) in negotiating curves than less experienced drivers. One out of two do not adopt any 

compensatory strategy, a greater proportion than in the two younger age classes. 

The findings of this study illustrate the usefulness of driving simulation studies when seeking to 

explore the complex interactions between the driver, vehicle and the road environment with 

significant implications for road safety and road design practices. One important limitation of any 

simulation study, however, is related to the level of risk perceived by drivers, which is lower compared 

to real driving conditions. This is understandable since virtual crashes do not have the same impact on 

drivers as real crashes and do not cause any damage. Nevertheless, the results of this investigation 

can be used to interpret real driving conditions on foot of the relative validation reached by the used 

simulator (Bassani et al. 2018; Catani and Bassani, 2019). Finally, other limitations concern the 
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restricted number of road environment and geometry parameters used in this study which, of course, 

can be expanded in future investigations. 
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APPENDIX 

Actual and conventional available sight distance (ASDc,a) estimation 

The simulator data were collected for each driver along the investigated curves, as well as along the 

approaching and leaving sections at reference points and stations (Figure 3). Due to the large amount 

of data, the manual calculation of actual ASD values for each driver along each curve required a lot of 

effort. For this reason, the estimation of the actual available sight distance (ASDa)i,j was achieved with 

the calibration of models providing the ASD from five fixed points on the driving lane at each reference 

point (Figure 3). Figure A1 exhibits the different lines of sight from the five positions (p) considered at 

station SC (Spiral to Curve point). These points were equally spaced at lw/4 apart on both sides with 

respect to the lane centreline (with lw representing the lane width). The same procedure was adopted 

for the other stations (TS – 50 m, TS – 20 m, TS, CSen). 

The fixed reference positions were identified as follows: p = centre of the driving lane (lane 

centreline); p+1 = middle point between lane and road centreline; p+2 = road centreline; p-1 = middle 

point between lane centreline and rightward lane edge; p-2 = rightward lane edge. 

A total of 24 cases were analysed, resulting from the combination of two curve directions, four 

radius (r) values, and three sight obstruction distances from the road edge (d). For each case, 10 

models were calibrated based on the reference stations (five before the circular arc – observer 

position – and five after the circular arc – target position; Figure 3). Thus, in this analysis 240 (24 × 10) 

equation models were used to estimate the (ASDa)i,j,k for i-th curve, travelled by the j-th driver at k-th 

station. 

 

Figure A1. Example of scheme for available sight distance computation from lines of sight of fixed points on the 
driving lane at the SC station along a rightward curve (not in scale). 
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The results of the model calibration for a rightward curve, with a radius of 300 m, and a sight 

obstruction distance (d) of 1.5 m from the shoulder are reported below. The calculated sight distances 

from twenty-five fixed points at the curve approaching stations are shown in Figure A2. A second order 

polynomial interpolation between the ASD values computed at the same k-th station was found to be 

appropriate: 

 

(𝐴𝑆𝐷 )  =  𝑎(𝐿𝐺 ) +  𝑏(𝐿𝐺) + 𝑐     (A1) 

 

where (ASDa)j is the actual available sight distance (in m) for j-th driver; and (LG)j is the lane gap (in m) 

from driving simulator data as the lateral displacement of j-th driver point of view from the lane 

centreline. Coefficients for the example of Figure A2 are listed in Table A1. 

 

Table A1. Calculated coefficients at k-th station for rightward curve, with radius of 300 m, and a distance to the 
sight obstruction (d) of 1.5 m from the shoulder for the reference points (Figure 3). 

Reference points 
 

Coefficients 
a b c 

TS – 50 m -0.052 3.06 151.33 
TS – 20 m -0.006 4.13 128.92 

TS -0.079 4.86 117.62 
CSen -0.179 5.56 109.34 
SC -0.204 5.69 107.90 

 
Figure A2. Example of available sight distances computed at TS-50 m, TS – 20 m, TS, CSen and SC. 
(Notes: p = centre of driving lane; p-2 = inner end of the lane; p+2 = exterior end of the lane; p+1 and p-1 = centre 
points between lane axis and edges). 


