
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Blockchain-based Mobility Verification of Connected Cars / Chiasserini, Carla Fabiana; Giaccone, Paolo; Malnati,
Giovanni; Macagno, Michele; Sviridov, German. - STAMPA. - (2020). (Intervento presentato al  convegno IEEE CCNC
2020 tenutosi a Las Vegas (USA) nel 10-13 Jan. 2020) [10.1109/CCNC46108.2020.9045104].

Original

Blockchain-based Mobility Verification of Connected Cars

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/CCNC46108.2020.9045104

Terms of use:

Publisher copyright

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2756113 since: 2021-10-10T08:44:12Z

IEEE



Blockchain-based Mobility Verification of
Connected Cars

Carla Fabiana Chiasserini, Paolo Giaccone, Giovanni Malnati, Michele Macagno, German Sviridov
Dipartimento di Elettronica e Telecomunicazioni - Politecnico di Torino - Torino, Italy

Abstract—Several applications for connected cars leverage the
mobility information periodically broadcasted by cars through
standard vehicle-to-vehicle messages. We propose an architecture
in which each car generates and sends reports including the
messages received from its neighbors to the access network
infrastructure. The infrastructure collects and stores received
reports through multiple blockchains, each of them referring to
a different geographical area. A smart contract is then executed
to verify the spatial coherence among the received mobility
data. We implement a proof-of-concept of such a solution using
Hyperledger Fabric, and we investigate the scalability of our
solution in terms of resource consumption in a MEC system.

I. INTRODUCTION

In next-generation Intelligent Transport Systems (ITS), cars
will continuously exchange notification messages with their
neighbors. Multiple notification messages standards are cur-
rently available, e.g., Cooperative Awareness Messages [1]
(CAMs) in ETSI standard or BSM [2] according to the SAE
standard. Notification messages are destined to carrying safety-
related information. For this reason they typically include
information such as the position, the speed, the acceleration
and the heading of a car. For simplicity and without loss
of generality we will consider CAMs as reference standard.
While each CAM is used for a one-time validation of the
surrounding environment, if stored, the information contained
withing each CAM can be used to track the detailed mobility
of the cars and enable the development of new applications.
In particular, insurance companies could employ this data to
identify those responsible of road accidents and to simplify
the resolution of conflicts. Similarly, the same information
could be used for other purposes such as identifying drivers
not obeying to traffic regulation, or locating stolen cars.

Among the main issues related to CAM-based applications
is the unreliability of the exchanged information. Indeed, due
to malfunctions or poor GPS coverage, transmitted CAMs may
include inaccurate information, while in some scenarios (e.g.,
insurance frauds) drivers may be interested in transferring
deliberately forged information. Furthermore, the information
carried by CAMs needs to be securely stored so that no one
can tamper with it.

Motivated by the above observations, in our work we
propose the BIFOCAL (BlockchaIn For cOoperative CAM
vALidation) architecture, which enables the validation of
the information contained within each CAM and provides
a tamper-evident and distributed data storage. This is made
possible by the use of a permissioned blockchain storing a
log of the exchanged CAMs. The blockchain runs in servers

located within the Multi-access Edge Computing (MEC) sys-
tem. The validation of the logged information is performed by
means of a smart contract that checks the coherence across the
mutual positions of transmitters and receivers of the CAMs.
BIFOCAL leverages the access network infrastructure and (a
part from a small persistent memory for temporarily storage)
does not require additional resources at each vehicle.

The rest of the paper is organized as follows. Sec. II
discusses related work. Sec. III describes the scenario and mo-
tivates the use of the blockchain. Sec. IV presents the designed
system architecture. The system performance is investigated in
Sec. V. Finally, in Sec. VI we draw our conclusions.

II. RELATED WORKS

Few works have leveraged blockchains in the context of
vehicular networks. The work in [3] proposes a general
blockchain-based architecture for supporting a wide range
of decentralized vehicular applications. It is based on the
Ethereum smart contracts, thus requiring also the presence
of miners. Each car directly interacts with the blockchain
and requires the execution of a set of applications while also
paying transaction fees for this purpose. Direct interaction
with the blockchain limits the scalability of the approach
since it introduces a considerable amount of transactions to
the blockchain and it requires a unique geographically global
blockchain.

The work in [4] proposes a different blockchain architecture
for vehicular applications. Instead of using existent blockchain
technologies, the authors propose a new architecture aiming
at greater scalability. Cars are assigned a role which can be
either a miner node or an ordinary node. The infrastructure
devices (e.g., base stations) are assigned a role of controller
nodes and have as sole purpose that of providing means for
information exchange among different network entities. All
the collected data is process and stored locally at each miner
node so that, if needed, this information can be distributed to
other network participants. Ordinary nodes instead can only
access data provided by miner and controller nodes. The main
limitations of [4] are the fact that additional hardware devices
are required inside the cars in order to process and store data
locally at each car. In addition to that, scarce availability of
miner nodes may lead to a degradation in the transaction
throughput.



III. BLOCKCHAIN-BASED MOBILITY VERIFICATION

Vehicles communicate between each-other by exchanging
CAM messages. Although CAM messages are used both for
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communications, in this work we focus only on V2V CAMs.
Every car periodically broadcasts a CAM including its identi-
fier (randomly generated for privacy reasons), its geographical
position alongside with the corresponding time at which the
position has been evaluated, and its speed, heading, and
acceleration.

V2V CAM transmission does not include delivery guarantee
nor any type of security measure as: i) CAMs may be
lost due to radio channel congestion or harsh propagation
conditions; ii) although [5] specifies an authentication and
message integrity standard for CAM messages, it applies for
V2I messages only. The combination of the two factors leads
to the possibility of performing untraceable CAM forgery.

A. Enabling mobility verification

CAM messages provide mobility information of a car, and
allow to reconstruct fine-grained dynamics of urban mobility.
Many organizations may be interested in tracing back detailed
information related to individual vehicles. As an example,
insurance companies may be interested in this information,
e.g., for liability reasons, car manufacturers for monitoring
purposes, governments for billing. Each organization may be
interested in keeping mobility information for themselves and
may gain some advantage by being able to modify such
information. Storage of CAMs for future analysis raises issues
related to trust among organizations. Furthermore, due to
possible forgery, blind trust in the information contained in
each CAM is inconceivable.

It follows that there is a need for an architecture provid-
ing: i) a distributed immutable storage, ii) validation of the
information contained inside each CAM to detect forgery and
iii) cooperation among mutually untrusting organizations. All
these properties can be satisfied by employing a blockchain
since it i) is append-only by construction, ii) involves untrusted
entities and iii) allows information validation by means of
smart contracts. However, the use of traditional blockchains
comes with significant overhead in terms of transaction la-
tency, small throughput, complex commit operations and over-
all scalability. Nevertheless, recent proposals address these
issues by introducing the concept of permissioned blockchains.

B. Permissioned blockchain

To understand the benefits provided by the use of permis-
sioned blockchains we will consider as an example Hyper-
ledger Fabric (HF) [6], which is also the platform adopted in
our proposed BIFOCAL architecture. In HF,

1) high throughput is achieved in terms of transactions per
second, which is necessary for the high amount of CAMs
generated in a mobility scenario.

2) the commit latency is small (typically less than 1 s),
thanks to the presence of an auxiliary key-value store
besides the conventional hashchain. This database permits

fast read access, while the hashchain is used as a tamper-
evident replica of the data.

3) the access is permissioned, i.e., differently from public
blockchains, in HF only authorized users (identified by
public key certificates) can access the blockchain, is-
sue transactions and retrieve data. Thus in BIFOCAL,
only authorized public/private organizations can access
mobility data, thus protecting users’ sensitive informa-
tion. Furthermore, different companies can interact and
manage the ledger without the intervention of a trusted
authority controlling the whole process. The role of the
trusted authority is limited to the issuing of certificates
to authorized members of the blockchain.

4) multiple independent ledgers, called channels, are pos-
sible, each maintained by a different subset of peers. In
BIFOCAL this permits to maintain different ledgers, each
containing data relative to a given geographical area, thus
improving the overall architecture scalability.

5) smart contracts, named chaincodes, implement CAM val-
idation algorithms to check the reliability of information
contained within transmitted/received CAMs.

The majority of the aforementioned features are achieved
thanks to a peculiar architecture employed by HF. This archi-
tecture is known as execute-order-validate and it is composed
of four agents:

• clients: are the actual users requiring the execution of
transactions;

• endorsing peers: receive transaction execution requests
from the clients and perform a pre-commit by simulating
its execution. After this, the endorsing peers reply to the
clients with a signed outcome of the operation;

• orderers: after the endorsement process, clients forward
the response of the endorsing peers to the orderers which
form an Apache Kafka cluster. These agents are primarily
responsible of ordering in a chronological way all the
transactions and ultimately creating a block;

• committing peers: after the block has been created, or-
derers forward it to the committing peers. Committing
peers verify the correctness of the transactions inside each
block and then store them, each of them holding a full
replica of the ledger.

HF permits different organizations to cooperate. Each or-
ganization can manage different members (clients, peers, or-
derers) and interact with other organizations to operate the
ledger.

IV. BIFOCAL ARCHITECTURE

The proposed BIFOCAL architecture is shown in Fig. 1.
We consider an urban geographical area served by one or
more mobile network operators, where user access is provided
through base stations (BSs) such as LTE eNodeBs. We assume
that each vehicle is equipped with a 4G USIM (Universal Sub-
scriber Identity Module), permitting a secure communication
with a mobile network infrastructure.

Upon transmitting a CAM, a car generates a report with
contains a copy of the generated CAM alongside with the list



CAM1

REPORT
(CAM1,CAM2)

CAM2

CAM3

CAM4

REPORT
(CAM3,CAM4)

REPORT
(CAM2,CAM1)

REPORT
(CAM4,CAM3)

Base Station
(BS)

Base Station
(BS)

Network infrastructure

tamper-evident log tamper-evident log tamper-evident log tamper-evident log

Blockchain

Fig. 1: Scenario and BIFOCAL architecture.

of all the CAMs that have been received from neighboring
cars since the last report. The car sends the report to the Base
Station (BS) to which it is connected. If out of coverage, the
car will send it as soon as it gets connected again.

Since cars have limited computational and storage capa-
bilities, they store only a simple tamper-evident log of all its
generated reports. On the other side, the network infrastructure
leverages the MEC paradigm to host the peers operating the
blockchain, which logs all of the reports received from the
cars.

Below, we describe the main system components, their
role, and, without loss of generality, how they interact with
reference to a single mobile network operator.

A. Report log in the cars

The in-car tamper-evident log of the locally generated
reports is implemented using a classic hash-chain [7]. In
such a chain, the ith commit Ci, after event Xi has been
inserted, is computed by applying a hash function H(·) on
the combination of Xi and the previous commit Ci�1, i.e.,

Ci = H(Xi||Ci�1)

. Thus, a membership proof can be easily implemented for
any stored event Xi and for any subsequent commit Cj , with
i  j. Note that this hash-chain is similar to the structure of
a blockchain, but it is implemented locally by each car in a
centralized way, differently from the distributed nature of a
blockchain.

Each received CAM is associated with the following addi-
tional information: position, speed, acceleration, heading, and
timestamp of the receiving car, all evaluated at the instant of
the message reception at the physical layer. As explained later
in Sec. IV-D, this additional information enables the validation
of the data carried by the CAM.

B. Report storage and validation in the blockchain

The overall interaction with the blockchain is managed by
the BSs while cars just play the role of generating reports and
uploading them to the BSs, and are oblivious to the presence
of a blockchain. Likewise, the blockchain is kept unaware of
the real identity of cars thus ensuring user privacy, as the

Kafka Cluster:
4. Ordering + block creation

2. Issue transaction +
3. Endorsement

5. Validation + 
Commit

5. Validation + 
Commit

5. Validation + 
Commit

Fig. 2: Interactions between BIFOCAL entities.

mobile network operators are in charge of the authentication
of vehicular users.

In BIFOCAL, each BS maintains a local copy of a portion
of the ledger (i.e., one or multiple channels) and acts as a
client as well as an endorsing and committing peer.

For each report received at a BS, multiple key-value pairs
are generated, each corresponding to a different reported
CAM. The key includes the time at which the CAM was
generated, as well as the sender and the receiver identifier. The
value includes the position, speed, acceleration, and heading
of the CAM sender and of the CAM receiver, at the time of
transmission and reception, respectively.

Fig. 2 describes a typical interaction between the different
entities in BIFOCAL. Upon the reception of a report (step 1),
a BS issues a transaction with the goal of storing the received
report inside the blockchain (step 2). In accordance with the
behavior of the HF endorsing peers, the BSs execute the
chaincode functions that are necessary to store and validate
reports previously logged in the blockchain (step 3). The
transaction is then transmitted to the orderer, which orders
the transaction and creates the corresponding block (step 4).
Finally, the created block is distributed back to the committing
peers so that it can be validated and committed (step 5). For
every newly committed block, the ledger state database is
updated with the addition of as many new key-value pairs
as the number of CAMs included in the report for which the
block was generated.

Since committing a transaction to the ledger involves con-
siderable processing burden for all of the agents, we consider
bulk report commits. That is, after a predefined number
of reports has been collected, each BS issues a transaction
triggering the storage of multiple reports simultaneously into
the blockchain at the cost of a single commit. This strategy
permits us to reduce the storage overhead since the execution
of transactions requires to store the digital signatures of peers
that endorsed the transaction.

At last, we remark that the interactions and the transaction
(and related validation) described above are solely aimed at
storing the reports, hence the CAMs and the information
related to their reception, in a tamper-evident manner. As
detailed below, subsequently to the storage of reports, another
kind of transaction and validation occur in the system, which



A

B

G C

D

E

F

A,B,C,D,E,F,G

A,D,E,F

A,C,D,E

A,B,C,D

A,B,C,G

A,B,F,G

A,E,F,G

Fig. 3: Architecture composed of several channels, each stor-
ing data related to a different geographical area.

are aimed at the verification of the information carried by the
reported CAMs.

C. Geodistributed blockchain architecture

As mentioned, HF permits the creation of different channels,
i.e., separated ledgers that increase the system scalability and
the privacy of stored information: peers may store only some
channels, and only peers belonging to a given channel can
access and retrieve the data stored therein. Importantly, peers
can access simultaneously different channels.

In BIFOCAL, channels are used to create different ledgers,
each referring to a well-defined geographical area, which
naturally maps into the coverage area of a BS. The reports
collected by a BS are stored only in the channel of its
coverage area. Fig. 3 shows the case where, depending on their
geographical position, BSs store data of different channels.
The letters A, B, C, D, E, F, G identify the channels and
the relative geographical areas. A BS peer must join only the
channels corresponding to the areas covered by its own cell site
and by those of its neighbouring BSs (which may belong to a
different mobile operator). In this way, on the one hand, each
BS will maintain a replica of a reduced portion of data, on the
other hand it will have visibility of the reports sent by all cars
under its coverage as well as of those sent by cars (potentially
under the coverage of neighboring BSs) that received such
CAMs. The latter permits the BS to have a broader view of the
geographical area, enabling an effective execution of position
verification algorithms. However, the validation of reports may
require to retrieve data stored in different channels.

It is important, however, to highlight that the management
of different separated ledgers leads to a higher system com-
plexity. This is because the algorithms for the verification of
the information carried by the CAMs need to retrieve the
CAMs stored in different channels, increasing the number
of interactions with the blockchain. Another problem related
to the management of different channels is the identification
of cars launching a Sybil attack. Indeed, in the presence
of one channel only, it is possible to execute a query to
understand that the victim of the attack is simultaneously
located in different geographical regions, while the use of
different channels makes it difficult to identify this condition.
In our case, this problem is overcome by the adoption of the

Transaction
result

Transaction
result (position

verification)

Data persisted
into the
blockchain

Ve
hi

cl
e

Ba
se

 S
ta

tio
n

H
F 

no
de

s

Send/Receive CAMs
Generate Reports
Upload Reports

Receive 
response of 
transaction

Issue 
transaction 
for report

Collect 
multiple 
reports

Issue postion 
valitaion 

transaction

Analyze 
verification 

results

Endorsment +
Ordering + Commit

Endorsment +
Ordering + Commit

Fig. 4: Process of storage and validation of the CAMs

in-car tamper-evident data structure of reports, as previously
discussed in Sec. IV-A.

D. Validation of CAM messages

The application of position verification algorithms to CAMs
contained in reports is possible only after the reports have
been committed to the ledger (i.e., they have been stored in
the blockchain). Most importantly, the position verification
process may require to access the content of transactions
initiated by different peers (i.e., BSs). We therefore introduce
a processing time window, Wp, between the time when the
reports are stored at a BS and the time when the CAMs are
validated therein. Clearly, the value of Wp should be carefully
tailored in order to establish the best trade-off between latency
and reliability. Small values of Wp imply a low latency
before a CAM is validated, but decrease the reliability of the
CAM verification since only a subset of the generated reports
may be already available in the blockchain and, hence, used
for verification. Conversely, large values of Wp increase the
latency but also the reliability of the process.

The overall validation process is shown in Fig. 4 and can
be summarized as follows:

1) The BS, acting as a client of the blockchain, issues a
transaction to store the reports (each typically including
multiple CAMs), received from the cars in the blockchain.

2) After the transaction has been committed, the BS waits
Wp to ensure that its neighbouring BSs have stored their
collected reports in the blockchain.

3) The BS issues one or more transactions to apply the
position verification algorithm to the key-value pairs
(each associated with a CAM) stored in the blockchain.

4) The BS collects and analyses the result of the validation
as soon as the transaction is committed.

We implement a simple position verification algorithm,
which is prototypal with respect to more advanced algorithms,
such as those in [8], [9]. The algorithm, named Simple Position
Validation (SPV), works as follows.

Consider a CAM that is transmitted by car TX located in
position (xTX, yTX) at time tTX and it is received by car RX



Algorithm 1 Simple Position Validation (SPV) algorithm
Input: K: set of all the transmitted CAMs
Input: ✏: maximum location error [m]
Input: dmax: maximum radio range [m]
Input: nmin: minimum number of witness cars
Output: Verification Information
1: for all k 2 K do . For each CAM
2: c queryCAM(k) . Query the blockchain to retrieve the CAM
3: TX is the transmitter of CAM c
4: nV  0 . Init number of positive votes
5: nI  0 . Init number of negative votes
6: Nc  queryReceiversCAM(k) . Query the blockchain to get the reports of

cars that received c
7: if |Nc| < nmin then . Check minimum number of witness cars
8: c.status undecided . Insufficient number of witness cars
9: updateBlockchain(c)

10: continue . Consider a new CAM
11: end if
12: for all RX 2 Nc do . For all cars that received c
13: if both equations (1) and (2) hold then
14: nV  nV + 1 . Vote for valid CAM
15: else
16: nI  nI + 1 . Vote for invalid CAM
17: end if
18: end for
19: if nI � nV then . Check if majority is for invalid CAM
20: c.status invalid . Invalidate the CAM
21: else
22: c.status valid . Validated CAM
23: end if
24: updateBlockchain(c)
25: end for

located in position (xRX, yRX) at time tTX. RX is denoted as
witness car. Let dTX,RX be the physical distance between TX
and RX based on their positions (evaluated at the time of,
respectively, transmission and reception at the physical layer)
declared in the report1:

dTX,RX =
p
(xTX � xRX)2 + (yTX � yRX)2

To validate the CAM, the propagation delay between the cars
must be compatible with their relative distance as well as with
the maximum radio range dmax, i.e.,

c · (tTX � tRX)� ✏  dTX,RX  c · (tTX � tRX) + ✏ (1)
dTX,RX  dmax (2)

where c is the speed of light and ✏ is the maximum location
error taking into account factors such as clock synchroniza-
tion, non-instantaneous transmissions (due to radio channel
congestion at MAC layer), and processing delays.

The validation process, verifying the conditions in (1) and
(2), has been implemented through a chaincode function,
whose pseudo-code is reported in Algorithm 1. The position
verification algorithm is based on a voting scheme (lines 12–
21), which evaluates the number of consistent and inconsistent
reports with respect to the information available in a CAM.
The voting is executed only if enough witness cars have
received the CAM (lines 7–10). Due to the append-property of
the blockchain, for performance reasons, in SPV the ledger is
updated only if the CAM is considered invalid (lines 20–21).

As a final remark, HF requires that the committing peers
of the blockchain maintain a complete replica of the ledger.
No other alternatives like sharding are possible. This poses

1More accurate formulas could be used as the Harvesine one.

 0

 100

 200

 300

 400

 500

 0  20  40  60  80  100

T
im

e
 (

s)

Trace size (MB)

Insertion latency
Query latency

(a) Transaction and query latency
as functions of the trace size

 0

 20

 40

 60

 80

 100

Begin Middle End

T
im

e
 (

m
s)

Position of the queried entry

1MB trace size
10MB trace size

100MB trace size

(b) Query latency as a function of
the CAM entry position

Fig. 5: Transaction and query latencies

some scalability issues due to the always growing record of
transactions and blocks. Notably, it is not possible to remove
“intermediate” blocks, otherwise the tamper-evident property
of the blockchain is violated.

V. SIMULATION RESULTS

We deployed HF version 1.1.0 inside multiple Docker
containers (one for each peer and orderer) running on Ubuntu
16.04 in a private cloud system available at our university. To
validate the proposed architecture and solution, we followed a
two steps approach. As first step, we created synthetic traces of
the reports uploaded to the BS, based on a vehicular mobility
simulator able to model the CAM exchanges between the cars
and from the cars to the network infrastructure. The full traces
carry 100 MB of CAM data, comprising approximately 60,000
reports. As second step, we emulated a real scenario by feeding
to HF the report trace. Thus, we could test the operations of
insertion, search, and validation of each individual CAM.

A. Numerical results

We conducted an exhaustive set of experiments to test
the scalability and the overall performance of the proposed
architecture.

1) HF interaction latency: We first focus on the time to
perform the insertion and retrieval of the CAM data traces
inside the blockchain. We consider the case of one orga-
nization (i.e., one mobile network operator) with two peers
and one orderer. Fig. 5a depicts the latency related to the
insertion and query of a full trace as the trace size varies.
As expected, for both insertion and query, the latency grows
linearly with the amount of data to insert/query, since, thanks
to the presence of the auxiliary database, there is no need to
scan the whole blockchain to retrieve a particular entry. The
latter fact is highlighted in Fig. 5b, which shows almost no
variability in accessing entries that are stored at the beginning
of the blockchain, in the middle, or at the end of it. Such
behavior essentially translates into a deterministic processing
time of new reports, and it provides latency guarantees for
the query of CAMs needed during the position verification
execution.

2) Transaction overhead: As previously mentioned, in or-
der to avoid significant storage and processing overhead we



TABLE I: Storage and performance to store 10 MB of report
data, equivalent to 6000 reports.

Trans. Num. Num. Total storage Total storage Reports
size [kB] blocks trans. overhead [%] latency [s] per sec.

10.88 90 894 30.02 122.94 48.8
98.74 10 99 4.99 35.34 169

244.95 5 40 3.33 31.83 188
489.75 2 20 2.42 29.10 206
977.65 1 10 2.29 29.10 206

employed bulk commit, which involves transactions contain-
ing more than one report at a time. We executed a set of
experiments by performing multiple storage transactions and
by varying their size while maintaining constant the number
of per-block transactions, equal to 10 transactions per block.
The experimental results are reported in Table I.

By construction, the number of stored reports for each
transaction is proportional to the transaction size, thus the
total number of transactions is inversely proportional to the
transaction size, hence to the required number of blocks,
given a fixed amount of reports to store. The results show
that, for minimum-size transactions, a considerable overhead is
experienced in terms of storage, equal to about 30% of the total
size of the blockchain. Indeed, each transaction contains the
digital signatures necessary for the identification of the peers
that executed the endorsement of the transaction. Notably,
it is sufficient to increase the size of each transaction by
one order of magnitude, to reduce this overhead by almost
a factor 6. Further increase in the transaction size provides
marginal decrease in the introduced storage overhead. A
similar behavior is exhibited by the overall time required to
execute all transactions, which decreases roughly by a factor
3.5. Furthermore, the latency for each transaction increases
with the size of each transaction, as expected. The throughput
in terms of stored reports over time varies from (roughly) 50 to
200 reports/s. We can conclude that bulk commits increases
the throughput, at the expenses of the increased latency to
collect all the required reports.

3) Scalability analysis: We assessed the scalability of our
approach by varying the number of peers, organizations, and
orderers, in the scenario with 6000 reports to store (i.e., 10 MB
trace). Fig. 6 shows that the time required to store the reports
grows linearly with the numbers of peers  8, after which
it remains stable. Fig. 7 instead depicts the overall CPU and
RAM resources utilization of all peers in the cloud system. The
linear behavior as a function of the number of peers highlights
that there is no significant increase in terms of CPU and RAM
consumption per peer, as the number of peers grows.

The number of organizations does not impact either the
scalability of the system. Indeed, by fixing the total number
of peers and by equally splitting them across multiple organi-
zations (whose number is also varied), no change in terms of
storage time can be observed. We do not report here the results
for the sake of space. Similarly, the impact of the number of
orderers is negligible: by increasing the number of orderers
from 1 to 12, it can be shown that the processing time for the

 0

 50

 100

 150

 200

 250

 300

 2  4  6  8  10  12  14  16

T
im

e
 (

s)

Number of Peers

Insertion latency
95% confidence interval

Fig. 6: Total time to store 6000 reports

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 2  4  6  8  10  12  14  16
 0

 1000

 2000

 3000

 4000

 5000

C
P

U
 (

%
)

R
A

M
 (

M
B

)

Number of Peers

CPU utilization
RAM Utilization

Fig. 7: Overall CPU and RAM consumption to store 6000
reports

insertion of a block increases by a mere 11%.

VI. CONCLUSIONS

We proposed a novel architecture to store and validate the
CAMs exchanged among connected cars. Our solution is based
on a local tamper-evident log of the CAMs received by a car
and a collective CAM report sent by each car to the network
infrastructure. The network infrastructure runs a distributed
ledger through a multi-channel blockchain technology. A smart
contract discovers invalid CAMs, i.e., the ones transmitted
with incoherent positions with respect to the positions of the
receiving cars. We implemented a prototype of the solution
on Hyperledger Fabric and tested using synthetic CAM traces,
and we assess the performance in terms of transaction latency
and computation and storage resources.

REFERENCES

[1] “ETSI EN 302 637-2 V1.4.1,” http://www.etsi.org/, Apr. 2014.
[2] J. B. Kenney, “Dedicated short-range communications (dsrc) standards in

the united states,” Proceedings of the IEEE, 2011.
[3] B. Leiding, P. Memarmoshrefi, and D. Hogrefe, “Self-managed and

blockchain-based vehicular ad-hoc networks,” in ACM UbiComp, 2016.
[4] P. K. Sharma, S. Y. Moon, and J. H. Park, “Block-VN: A distributed

blockchain based vehicular network architecture in smart city,” Journal

of Information Processing Systems, vol. 13, no. 1, p. 84, 2017.
[5] “ETSI TS 103 097 V1.3.1,” http://www.etsi.org/, Oct. 2017.
[6] “Hyperledger fabric,” https://www.hyperledger.org/.
[7] S. A. Crosby and D. S. Wallach, “Efficient data structures for tamper-

evident logging.” in USENIX Security Symposium, 2009, pp. 317–334.
[8] M. Fiore, C. E. Casetti, C. F. Chiasserini, and P. Papadimitratos, “Dis-

covery and verification of neighbor positions in mobile ad hoc networks,”
IEEE Transactions on Mobile Computing, Feb 2013.

[9] F. Malandrino, C. Borgiattino, C. Casetti, C. F. Chiasserini, M. Fiore,
and R. Sadao, “Verification and inference of positions in vehicular
networks through anonymous beaconing,” IEEE Transactions on Mobile

Computing, vol. 13, no. 10, pp. 2415–2428, Oct 2014.


